

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6.25V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc54at-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.0		_
1.0	General Description	
2.0	PIC16C5X Device Varieties	
3.0	Architectural Overview	
4.0	Oscillator Configurations	. 15
5.0	Reset	. 19
6.0	Memory Organization	. 25
7.0	I/O Ports	. 35
8.0	Timer0 Module and TMR0 Register	. 37
9.0	Special Features of the CPU	. 43
10.0	Instruction Set Summary	. 49
11.0	Development Support	. 61
12.0	Electrical Characteristics - PIC16C54/55/56/57	. 67
13.0	Electrical Characteristics - PIC16CR54A	
14.0	Device Characterization - PIC16C54/55/56/57/CR54A	. 91
15.0	Electrical Characteristics - PIC16C54A	103
16.0	Device Characterization - PIC16C54A	117
17.0	Electrical Characteristics - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B	131
18.0	Device Characterization - PIC16C54C/CR54C/C55A/C56A/CR56A/CR56A/CR57C/CR57C/C58B/CR58B	145
19.0	Electrical Characteristics - PIC16C54C/C55A/C56A/C57C/C58B 40MHz	155
20.0	Device Characterization - PIC16C54C/C55A/C56A/C57C/C58B 40MHz	165
21.0	Packaging Information	171
Appe	ndix A: Compatibility	182
On-L	ne Support	187
Read	er Response	188
Produ	uct Identification System	189

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

2.0 PIC16C5X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16C5X Product Identification System at the back of this data sheet to specify the correct part number.

For the PIC16C5X family of devices, there are four device types, as indicated in the device number:

- 1. **C**, as in PIC16**C**54C. These devices have EPROM program memory and operate over the standard voltage range.
- LC, as in PIC16LC54A. These devices have EPROM program memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**54A. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR54A. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices (EPROM)

The UV erasable versions offered in CERDIP packages, are optimal for prototype development and pilot programs.

UV erasable devices can be programmed for any of the four oscillator configurations. Microchip's

PICSTART[®] Plus⁽¹⁾ and PRO MATE[®] programmers both support programming of the PIC16C5X. Third party programmers also are available. Refer to the Third Party Guide (DS00104) for a list of sources.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates, or small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must be programmed.

Note 1: PIC16LC54C and PIC16C54A devices require OSC2 not to be connected while programming with PICSTART[®] Plus programmer.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround-Production (SQTPSM) Devices

Microchip offers the unique programming service where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, giving the customer a low cost option for high volume, mature products.

9.2 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins have been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT Reset or Wake-up Reset generates a device RESET.

The $\overline{\text{TO}}$ bit (STATUS<4>) will be cleared upon a Watchdog Timer Reset (Section 6.3).

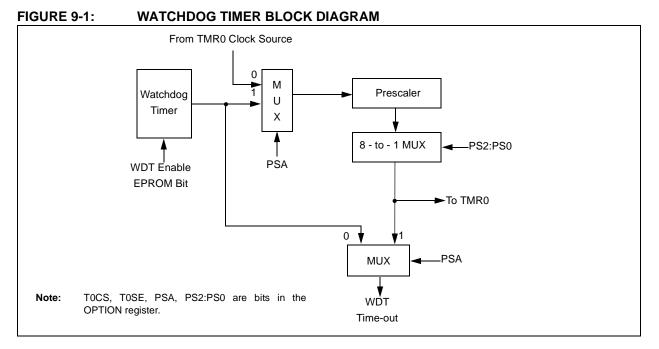
The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 9.1). Refer to the PIC16C5X Programming Specifications (Literature Number DS30190) to determine how to access the configuration word.

9.2.1 WDT PERIOD

An 8-bit counter is available as a prescaler for the Timer0 module (Section 8.2), or as a postscaler for the Watchdog Timer (WDT), respectively. For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not

both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio (Section 6.4).


The WDT has a nominal time-out period of 18 ms (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, time-out a period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see Device Characterization).

Under worst case conditions (VDD = Min., Temperature = Max., WDT prescaler = 1:128), it may take several seconds before a WDT time-out occurs.

9.2.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction RESETS the WDT and the prescaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset.

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

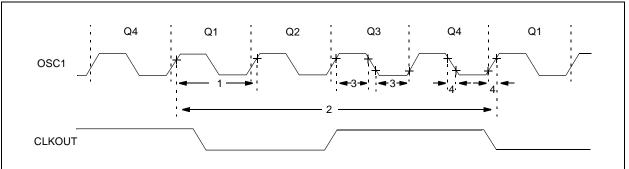
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	<u>Value</u> on MCLR and WDT Reset
N/A	OPTION	—		Tosc	Tose	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: u = unchanged, - = unimplemented, read as '0'. Shaded cells not used by Watchdog Timer.

NOTES:

13.1 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)

PIC16LCR54A-04 PIC16LCR54A-04I (Commercial, Industrial)				$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16CR54A-04, 10, 20 PIC16CR54A-04I, 10I, 20I (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$							
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions				
	Vdd	Supply Voltage									
D001		PIC16LCR54A	2.0		6.25	V					
D001 D001A		PIC16CR54A	2.5 4.5	_	6.25 5.5	V V	RC and XT modes HS mode				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*	_	V	Device in SLEEP mode				
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset				
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset				
	Idd	Supply Current ⁽²⁾									
D005		PICLCR54A	_	10	20 70	μΑ μΑ	Fosc = 32 kHz, VDD = 2.0V Fosc = 32 kHz, VDD = 6.0V				
D005A		PIC16CR54A		2.0 0.8 90	3.6 1.8 350	mA mA μA	RC⁽³⁾ and XT modes: Fosc = 4.0 MHz, VDD = 6.0V Fosc = 4.0 MHz, VDD = 3.0V Fosc = 200 kHz, VDD = 2.5V HS mode:				
				4.8 9.0	10 20	mA mA	Fosc = 10 MHz, VDD = 5.5V Fosc = 20 MHz, VDD = 5.5V				


Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

13.6 Timing Diagrams and Specifications

FIGURE 13-2: EXTERNAL CLOCK TIMING - PIC16CR54A

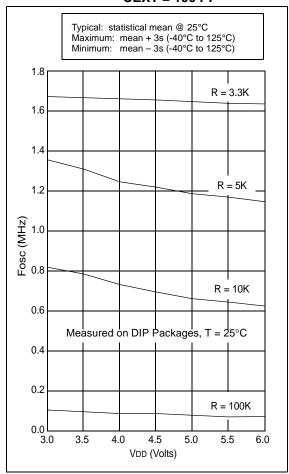
TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A

AC Characteristics		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \ \ \mbox{for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \ \ \mbox{for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ \ \mbox{for extended} \end{array}$							
Param No.	Symbol	Ol Characteristic Min Typ†		Тур†	Max	Units	Conditions		
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	4.0	MHz	XT OSC mode		
			DC	—	4.0	MHz	HS osc mode (04)		
			DC	_	10	MHz	HS osc mode (10)		
			DC	—	20	MHz	HS osc mode (20)		
			DC	_	200	kHz	LP osc mode		
		Oscillator Frequency ⁽¹⁾	DC		4.0	MHz	RC OSC mode		
			0.1	_	4.0	MHz	XT osc mode		
			4.0	_	4.0	MHz	HS osc mode (04)		
			4.0	_	10	MHz	HS osc mode (10)		
			4.0	_	20	MHz	HS osc mode (20)		
			5.0	—	200	kHz	LP osc mode		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.


2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

PIC16C5X

FIGURE 14-2: TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 20 PF Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean – 3s (-40°C to 125°C) 5.5 R = 3.3K5.0 4.5 R = 5K 4.0 3.5 Fosc (MHz) 3.0 R = 10K 2.5 2.0 Measured on DIP Packages, $T = 25^{\circ}C$ 1.5 1.0 R = 100K 0.5 0.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts)

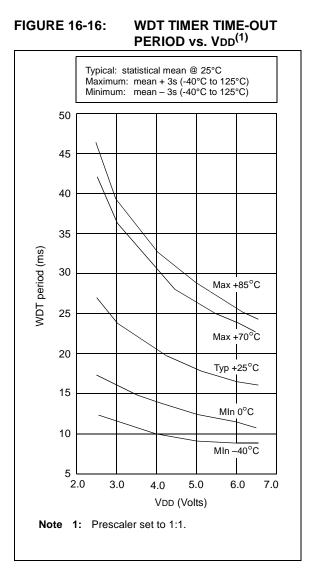
FIGURE 14-3:

TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 100 PF

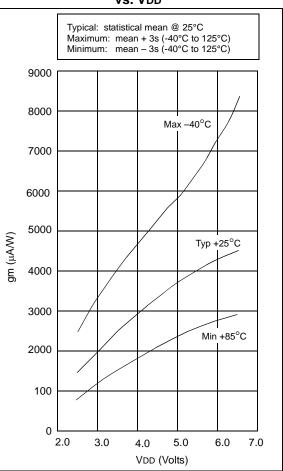
15.1 DC Characteristics: PIC16C54A-04, 10, 20 (Commercial) PIC16C54A-04I, 10I, 20I (Industrial) PIC16LC54A-04 (Commercial) PIC16LC54A-04I (Industrial)

PIC16LC54A-04 PIC16LC54A-04I (Commercial, Industrial)				$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$					
PIC16C54A-04, 10, 20 PIC16C54A-04I, 10I, 20I (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$					
Param No.	Symbol	Characteristic/Device	Min Typ† Max Units Conditions				Conditions		
	IPD	Power-down Current ⁽²⁾							
D006		PIC16LC5X		2.5 0.25 2.5 0.25	12 4.0 14 5.0	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT enabled, Commercial VDD = 2.5V, WDT disabled, Commercial VDD = 2.5V, WDT enabled, Industrial VDD = 2.5V, WDT disabled, Industrial		
D006A		PIC16C5X		4.0 0.25 5.0 0.3	12 4.0 14 5.0	μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT enabled, Commercial VDD = 3.0V, WDT disabled, Commercial VDD = 3.0V, WDT enabled, Industrial VDD = 3.0V, WDT disabled, Industrial		

Legend: Rows with standard voltage device data only are shaded for improved readability.


* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.


Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 16-17: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

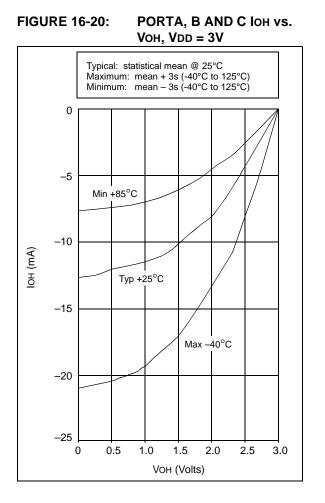
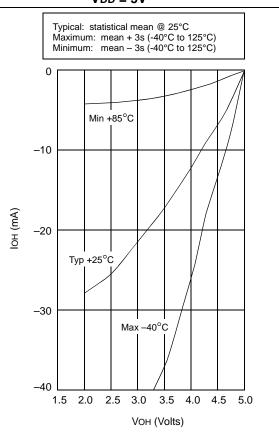
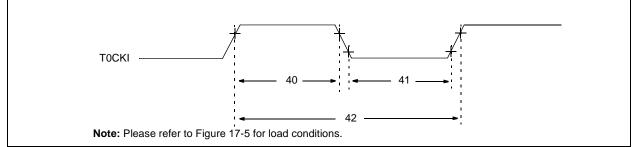




FIGURE 16-21: PORTA, B AND C IOH vs. VOH, VDD = 5V

FIGURE 17-9: TIMER0 CLOCK TIMINGS - PIC16C5X, PIC16CR5X

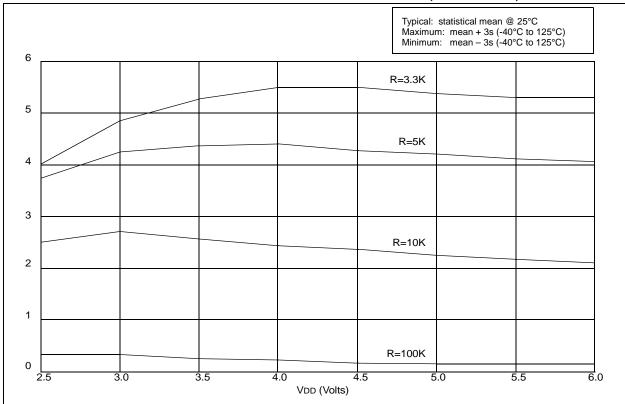
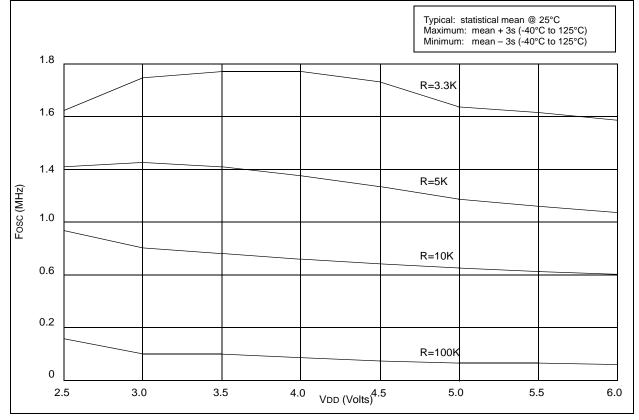


TABLE 17-4: TIMER0 CLOCK REQUIREMENTS - PIC16C5X, PIC16CR5X

ļ	AC Chara	Cteristics Standard Operatin Operating Temperat	$\begin{array}{ll} \textbf{ng Conditions (unless otherwise specified)} \\ \textbf{ature} & 0^\circ C \leq T A \leq +70^\circ C \text{ for commercial} \\ -40^\circ C \leq T A \leq +85^\circ C \text{ for industrial} \\ -40^\circ C \leq T A \leq +125^\circ C \text{ for extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width - No Prescaler	0.5 Tcy + 20*	_	_	ns		
		- With Prescaler	10*	—	—	ns		
41	TtOL	T0CKI Low Pulse Width - No Prescaler	0.5 Tcy + 20*	_	_	ns		
		- With Prescaler	10*	—	_	ns		
42	Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> * N			ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)	


These parameters are characterized but not tested.

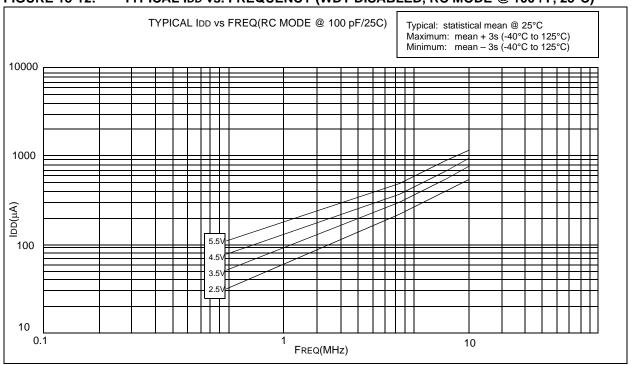

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF, 25°C

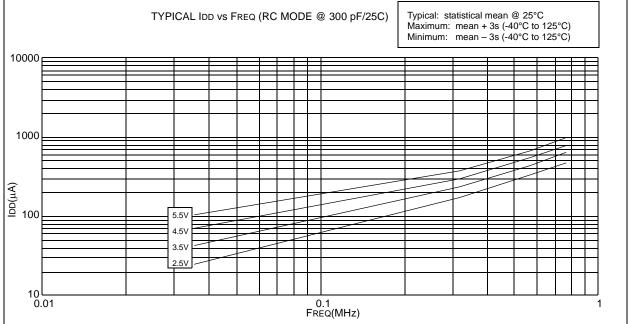


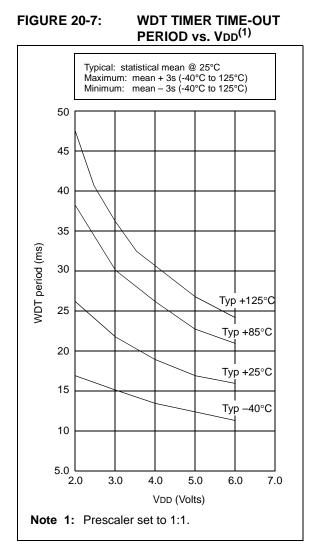
FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)

19.0 ELECTRICAL CHARACTERISTICS - PIC16LC54C 40MHz

Absolute Maximum Ratings^(†)

Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into Vod pin	
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, liк (Vi <0 or Vi > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O (Port A, B or C)	50 mA
Max. output current sunk by a single I/O (Port A, B or C)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH)	x IOH} + Σ (Vol x Iol)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


19.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)				ard Ope ing Tem	-		tions (unless otherwise specified) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial
Param No.	Symbol	Characteristic	Min Typ† Max Units		Units	Conditions	
D001	Vdd	Supply Voltage	4.5	-	5.5	V	HS mode from 20 - 40 MHz
D002	Vdr	RAM Data Retention Voltage ⁽²⁾		1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD Rise Rate to ensure Power- on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset
D010	Idd	Supply Current ⁽³⁾	_	5.2 6.8	12.3 16	mA mA	Fosc = 40 MHz, VDD = 4.5V, HS mode Fosc = 40 MHz, VDD = 5.5V, HS mode
D020	IPD	Power-down Current ⁽³⁾	_	1.8 9.8	7.0 27*	μΑ μΑ	VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT enabled, Commercial

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

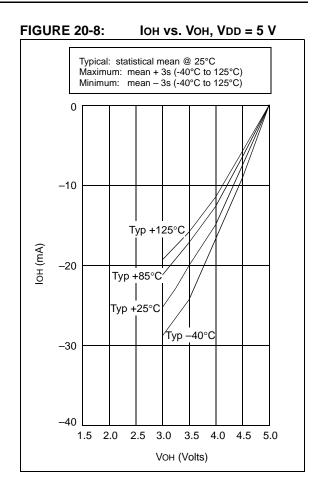
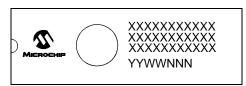

- **Note 1:** Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected, HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 19.1.
 - **2:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.

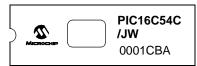
TABLE 20-1: INPUT CAPACITANCE

Pin	Typical Capa	acitance (pF)
FIII	18L PDIP	18L SOIC
RA port	5.0	4.3
RB port	5.0	4.3
MCLR	17.0	17.0
OSC1	4.0	3.5
OSC2/CLKOUT	4.3	3.5
тоскі	3.2	2.8

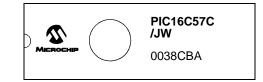
All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.



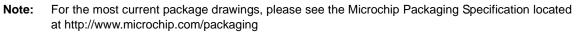
Package Marking Information (Cont'd)

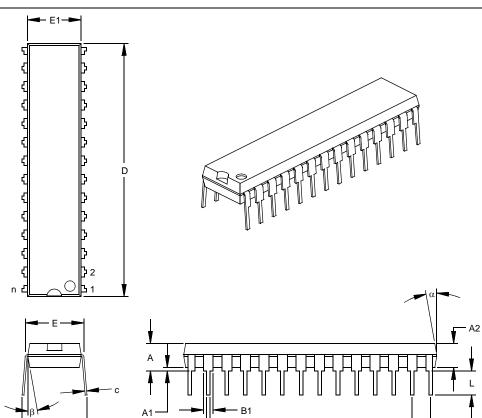

18-Lead CERDIP Windowed

	XXXXXXXX XXXXXXXX YYWWNNN
--	---------------------------------


28-Lead CERDIP Windowed

Example




Example

Lege	end: XX? Y YY WW NNN @3 *	 Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note	be carr	vent the full Microchip part number cannot be marked on one line, it will ied over to the next line, thus limiting the number of available ers for customer-specific information.

28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

в

	Units	Units INCHES*			MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	èB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

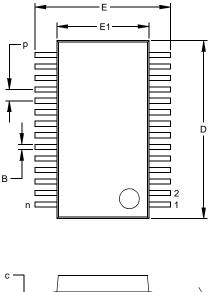
* Controlling Parameter § Significant Characteristic

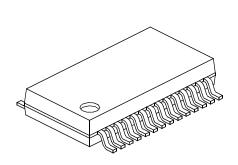
eВ

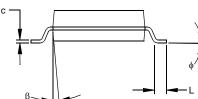
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

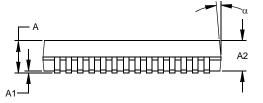
.010" (0.254mm) per side.

JEDEC Equivalent: MO-095


Drawing No. C04-070


- p -


Notes:


28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	А	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-150 Drawing No. C04-073

APPENDIX A: COMPATIBILITY

To convert code written for PIC16CXX to PIC16C5X, the user should take the following steps:

- 1. Check any CALL, GOTO or instructions that modify the PC to determine if any program memory page select operations (PA2, PA1, PA0 bits) need to be made.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any special function register page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to proper value for processor used.
- 6. Remove any use of the ADDLW, RETURN and SUBLW instructions.
- 7. Rewrite any code segments that use interrupts.

APPENDIX B: REVISION HISTORY

Revision KE (January 2013)

Added a note to each package outline drawing.