

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc54ct-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2 Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers and General Purpose Registers.

The Special Function Registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports) and the File Select Register (FSR). In addition, Special Purpose Registers are used to control the I/O port configuration and prescaler options.

The General Purpose Registers are used for data and control information under command of the instructions.

For the PIC16C54, PIC16CR54, PIC16C56 and PIC16CR56, the register file is composed of 7 Special Function Registers and 25 General Purpose Registers (Figure 6-4).

For the PIC16C55, the register file is composed of 8 Special Function Registers and 24 General Purpose Registers.

For the PIC16C57 and PIC16CR57, the register file is composed of 8 Special Function Registers, 24 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-5).

For the PIC16C58 and PIC16CR58, the register file is composed of 7 Special Function Registers, 25 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-6).

6.2.1 GENERAL PURPOSE REGISTER FILE

The register file is accessed either directly or indirectly through the File Select Register (FSR). The FSR Register is described in Section 6.7.

FIGURE 6-4:

PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56 REGISTER FILE MAP

8.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
 - Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Edge select for external clock

Figure 8-1 is a simplified block diagram of the Timer0 module, while Figure 8-2 shows the electrical structure of the Timer0 input.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 8-3 and Figure 8-4). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The incrementing edge is determined by the source edge select bit T0SE (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 8.1.

Note: The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both.

The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 8.2 details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 8-1.

FIGURE 8-2: ELECTRICAL STRUCTURE OF TOCKI PIN

FIGURE 8-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0 -	Timer0 - 8-bit real-time clock/counter							xxxx xxxx	uuuu uuuu
N/A	OPTION	_	_	TOCS	TOSE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells not used by Timer0.

BSF Bit Set f								
Syntax:	[label]	[label] BSF f,b						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$							
Operation: $1 \rightarrow (f < b >)$								
Status Affected:	None							
Encoding:	0101	bbbf	ffff					
Description:	Bit 'b' in register 'f' is set.							
Words:	1							
Cycles:	1							
Example:	BSF	BSF FLAG_REG, 7						
Before Instruction FLAG_REG = 0x0A After Instruction								
FLAG_F	REG = C)x8A						

BTFSC	Bit Test	f, Skip if	Clear				
Syntax:	[label]	BTFSC	f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$						
Operation:	skip if $(f < b >) = 0$						
Status Affected:	None						
Encoding:	0110 bbbf ffff						
Description:	If bit 'b' in register 'f' is 0 then the next instruction is skipped. If bit 'b' is 0 then the next instruc- tion fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2-cycle instruction						
Words:	1						
Cycles:	1(2)						
Example:	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •						
Before Instru	ction						
PC After Instructi if FLAG< PC if FLAG< PC	= (1> = (1> = (1> = =	address 0, address (1, address (1	(HERE) TRUE); FALSE)				

BTFSS	Bit Test f, Skip if Set							
Syntax:	[label] BTFSS f,b							
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$							
Operation:	skip if (f) = 1							
Status Affected:	None							
Encoding:	0111 bbbf ffff							
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2-cycle instruction							
Words:	1							
Cycles:	1(2)							
Example:	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_COU TRUE • • •							
Before Instr	ruction							
PC	= address (HERE)							
After Instruc	ction							
	< i > = 0, = address (FALSE)							
if FLAG<	<1> = 1.							
PC	= address (TRUE)							

GOTO	Unconditional Branch							
Syntax:	[label]	GOTO	k					
Operands:	$0 \le k \le 511$							
Operation:	$k \rightarrow PC < 8:0>;$ STATUS<6:5> $\rightarrow PC < 10:9>$							
Status Affected:	None							
Encoding:	101k	kkkk	kkkk					
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two- cycle instruction.							
Words:	1							
Cycles:	2							
Example:	GOTO TH	IERE						
After Instruction PC = address (THERE)								

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	0010 10df ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	INCF CNT, 1
Before Instru CNT Z After Instructi CNT Z	ction = 0xFF = 0 ion = 0x00 = 1

INCFSZ	Increment f, Skip if 0					
Syntax:	[label] INCFSZ f,d					
Operands:	$0 \le f \le 31$ d $\in [0,1]$					
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0					
Status Affected:	None					
Encoding:	0011 11df ffff					
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two- avelo instruction					
Words:	1					
Cycles:	1(2)					
Example:	HERE INCFSZ CNT, 1 GOTO LOOP					
	CONTINUE • • •					
Before Instru	iction					
PC	= address (HERE)					
After Instruct	ion					
CNT	= CNT + 1;					
if CNT	= 0,					
PC	= address (CONTINUE);					
if CNT	≠ 0, 					
PC	= address (HERE +1)					

PIC16C5X

RLF	Rotate Left f through Carry							
Syntax:	[label	[<i>label</i>] RLF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$							
Operation:	See description below							
Status Affected:	С							
Encoding:	0011	. 01	df	ffff				
Description:	I he contents of register 'f' are rotated one bit to the left through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example:	RLF	REG	£1,0					
Before Instru REG1 C After Instruct	0110	0						
REG1	=	1110	0110	C				
W	=	1100	1100	C				
С	=	1						

RRF	Rotate Right f through Carry							
Syntax:	[<i>label</i>] RRF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$							
Operation:	See description below							
Status Affected:	С							
Encoding:	0011 00df ffff							
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.							
Words:	1							
Cycles:	1							
Example:	RRF REG1,0							
Before Instru REG1 C	uction = 1110 0110 = 0							
REG1	= 1110 0110							
W C	= 0111 0011 = 0							

SLEEP	Enter SLEEP Mode						
Syntax:	[<i>label</i>] SLEEP						
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \ prescaler; \ if \ assigned \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$						
Status Affected:	TO, PD						
Encoding:	0000 0000 0011						
Description:	Time-out status bit (TO) is set. The power-down status bit (PD) is cleared. The WDT and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See section on SLEEP for more dotails.						
Words:	1						
Cycles:	1						
Example:	SLEEP						

12.3 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)

PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)			Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage PIC16C5X-RCE PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-LPE	3.25 3.25 4.5 4.5 2.5		6.0 6.0 5.5 5.5 6.0	V V V V V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	_	V	Device in SLEEP mode	
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset	
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset	
D010	IDD	Supply Current ⁽²⁾ PIC16C5X-RCE ⁽³⁾ PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-HSE PIC16C5X-LPE		1.8 1.8 4.8 9.0 19	3.3 3.3 10 10 20 55	mA mA mA mA μA	Fosc = 4 MHz, VDD = $5.5V$ Fosc = 4 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 16 MHz, VDD = $5.5V$ Fosc = 32 kHz, VDD = $3.25V$, WDT disabled	
D020	IPD	Power-down Current ⁽²⁾	_	5.0 0.8	22 18	μΑ μΑ	VDD = 3.25V, WDT enabled VDD = 3.25V, WDT disabled	

* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

AC Chara	cteristics								
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions		
1	Tosc	External CLKIN Period ⁽¹⁾	250			ns	XT OSC mode		
			100		—	ns	10 MHz mode		
			50		—	ns	HS OSC mode (Comm/Ind)		
			62.5		—	ns	HS OSC mode (Ext)		
			25		—	μS	LP OSC mode		
		Oscillator Period ⁽¹⁾	250	—	—	ns	RC OSC mode		
			250		10,000	ns	XT OSC mode		
			100		250	ns	10 MHz mode		
			50		250	ns	HS OSC mode (Comm/Ind)		
			62.5		250	ns	HS OSC mode (Ext)		
			25		—	μS	LP OSC mode		
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc	—	—			
3	TosL,	Clock in (OSC1) Low or High	85*	—	—	ns	XT oscillator		
	TosH	Time	20*	—	—	ns	HS oscillator		
			2.0*		—	μS	LP oscillator		
4	TosR,	Clock in (OSC1) Rise or Fall	—	_	25*	ns	XT oscillator		
	TosF	Time	—	—	25*	ns	HS oscillator		
			—	—	50*	ns	LP oscillator		

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

© 1997-2013 Microchip Technology Inc.

13.2 DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)

PIC16CR54A-04E, 10E, 20E (Extended)			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage RC, XT and LP modes HS mode	3.25 4.5		6.0 5.5	V V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD Rise Rate to ensure Power- on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset
D010	IDD	Supply Current ⁽²⁾ RC ⁽³⁾ and XT modes HS mode HS mode		1.8 4.8 9.0	3.3 10 20	mA mA mA	Fosc = 4.0 MHz, VDD = 5.5V Fosc = 10 MHz, VDD = 5.5V Fosc = 16 MHz, VDD = 5.5V
D020	IPD	Power-down Current ⁽²⁾		5.0 0.8	22 18	μΑ μΑ	VDD = 3.25V, WDT enabled VDD = 3.25V, WDT disabled

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

15.0 ELECTRICAL CHARACTERISTICS - PIC16C54A

Absolute Maximum Ratings ^(†)	
Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	
Max. current out of Vss pin	150 mA
Max. current into VDD pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	
Max. output current sourced by any I/O pin	
Max. output current sourced by a single I/O port (PORTA or B)	
Max. output current sunk by a single I/O port (PORTA or B)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH	$+ \sum \{(VDD-VOH) \times IOH\} + \sum (VOL \times IOL)$

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

15.6 Timing Diagrams and Specifications

FIGURE 15-2: EXTERNAL CLOCK TIMING - PIC16C54A

TABLE 15-1:	EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A

AC Chara	acteristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic Min Typ† Max Units Conditions								
	Fosc	External CLKIN Fre-	DC		4.0	MHz	XT OSC mode			
		quency ⁽¹⁾	DC	—	2.0	MHz	XT osc mode (PIC16LV54A)			
			DC	—	4.0	MHz	HS osc mode (04)			
			DC	—	10	MHz	HS osc mode (10)			
			DC	—	20	MHz	HS osc mode (20)			
			DC	—	200	kHz	LP osc mode			
		Oscillator Frequency ⁽¹⁾	DC	_	4.0	MHz	RC osc mode			
			DC	—	2.0	MHz	RC osc mode (PIC16LV54A)			
			0.1	—	4.0	MHz	XT osc mode			
			0.1	—	2.0	MHz	XT osc mode (PIC16LV54A)			
			4.0	—	4.0	MHz	HS osc mode (04)			
			4.0	—	10	MHz	HS osc mode (10)			
			4.0	—	20	MHz	HS osc mode (20)			
			5.0		200	kHz	LP osc mode			

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - Instruction cycle period (TcY) equals four times the input oscillator time base period.

NOTES:

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC5X PIC16LCR5X (Commercial, Industrial)			Stand Opera	ard Ope ting Terr	e rating peratu	Condit ire	ions (unless otherwise specified) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial	
PIC16C5X PIC16CR5X (Commercial, Industrial)			Stand Opera	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions	
	IPD	Power-down Current ⁽²⁾						
D020		PIC16LC5X	—	0.25	2	μΑ	VDD = 2.5V, WDT disabled, Commercial	
			—	0.25	3	μA	VDD = 2.5V, WDT disabled, Industrial	
			_	1 1 25	5	μΑ	VDD = $2.5V$, WDT enabled, Commercial VDD = $2.5V$ WDT enabled Industrial	
		PIC16C5X		0.25	4.0	μ.	$V_{DD} = 3.0V$ WDT disabled Commercial	
DOZOR			_	0.25	5.0	μΑ	$V_{DD} = 3.0V$, W_{DT} disabled, our intercent VDD = 3.0V. WDT disabled. Industrial	
			—	1.8	7.0*	μA	VDD = 5.5V, WDT disabled, Commercial	
			—	2.0	8.0*	μA	VDD = 5.5V, WDT disabled, Industrial	
			—	4	12*	μΑ	VDD = 3.0V, WDT enabled, Commercial	
			—	4	14*	μA	VDD = 3.0V, WDT enabled, Industrial	
			—	9.8	27*	μA	VDD = 5.5V, WDT enabled, Commercial	
			—	12	30*	μA	VDD = 5.5V, WDT enabled, Industrial	

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

17.3 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial, Extended) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial, Extended) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)}\\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial}\\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial}\\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
D030	VIL	Input Low Voltage I/O Ports I/O Ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss Vss Vss		0.8 V 0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V V	4.5V <v<sub>DD ≤ 5.5V Otherwise RC mode only⁽³⁾ XT, HS and LP modes</v<sub>
D040	Vih	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	2.0 0.25 Vdd+0.8 0.85 Vdd 0.85 Vdd 0.85 Vdd 0.85 Vdd 0.7 Vdd	 	Vdd Vdd Vdd Vdd Vdd Vdd Vdd	V V V V V	4.5V < V _{DD} ≤ 5.5V Otherwise RC mode only ⁽³⁾ XT, HS and LP modes
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	_	V	
D060	lı∟	Input Leakage Current ^(1,2) I/O ports	-1.0	0.5	+1.0	μA	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance
		MCLR MCLR T0CKI OSC1	-5.0 -3.0 -3.0	— 0.5 0.5 0.5	+5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ	$VPIN = VSS +0.25V$ $VPIN = VDD$ $VSS \le VPIN \le VDD$ $VSS \le VPIN \le VDD,$ $XT, HS and LP modes$
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5 V IOL = 1.6 mA, VDD = 4.5 V, RC mode only
D090	Vон	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd - 0.7 Vdd - 0.7			V V	IOH = -5.4 mA, VDD = 4.5 V IOH = -1.0 mA, VDD = 4.5 V, RC mode only

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.
 - **2:** Negative current is defined as coming out of the pin.
 - 3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

FIGURE 17-9: TIMER0 CLOCK TIMINGS - PIC16C5X, PIC16CR5X

TABLE 17-4: TIMER0 CLOCK REQUIREMENTS - PIC16C5X, PIC16CR5X

AC Chara	icteristics Operating Tempera	ture 0°C ≤ -40°C ≤ -40°C ≤ -40°C ≤	Ta ≤ +7 Ta ≤ +8 Ta ≤ +1	0°C fo 5°C fo 25°C f	r comm r indust or exter	nercial rial nded
Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions
Tt0H	T0CKI High Pulse Width - No Prescaler	0.5 Tcy + 20*			ns	
	- With Prescaler	10*	-	_	ns	
TtOL	T0CKI Low Pulse Width - No Prescaler	0.5 Tcy + 20*			ns	
	- With Prescaler	10*	_	_	ns	
Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> * N			ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)
	Symbol Tt0H Tt0L Tt0P	Symbol Characteristic Tt0H T0CKI High Pulse Width - No Prescaler - With Prescaler Tt0L T0CKI Low Pulse Width - No Prescaler - With Prescaler Tt0P T0CKI Period	SymbolCharacteristics $-40^{\circ}C \leq -40^{\circ}C < -40^{\circ}C \leq -40^{\circ}C \leq -40^{\circ}C < -40^{\circ}C < -40^{\circ}C \leq -40^{\circ}C < -40^{\circ}C $	-40°C \leq TA \leq +8 -40°C \leq TA \leq +1SymbolCharacteristicMinTyptTt0HT0CKI High Pulse Width - No Prescaler0.5 Tcy + 20* With Prescaler10*-Tt0LT0CKI Low Pulse Width - No Prescaler0.5 Tcy + 20* With Prescaler10* No20 or Tcy + 40* N-	-40°C \leq TA \leq +85°C fo -40°C \leq TA \leq +125°C fSymbolCharacteristicMinTyp†MaxTt0HT0CKI High Pulse Width - No Prescaler0.5 TCY + 20*With Prescaler10*Tt0LT0CKI Low Pulse Width - No Prescaler0.5 TCY + 20*Tt0LT0CKI Low Pulse Width - No Prescaler0.5 TCY + 20*Tt0PT0CKI Period20 or TCY + 40* N	-40°C \leq TA \leq +85°C for indust -40°C \leq TA \leq +125°C for exterSymbolCharacteristicMinTyp†MaxUnitsTt0HTOCKI High Pulse Width - No Prescaler - With Prescaler0.5 TCY + 20*nsTt0LTOCKI Low Pulse Width - No Prescaler - With Prescaler0.5 TCY + 20*nsTt0LTOCKI Low Pulse Width - No Prescaler - With Prescaler0.5 TCY + 20*nsTt0PTOCKI Period20 or TCY + 40*nsTt0PTOCKI Period20 or TCY + 40* Nns

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-17: PORTA, B AND C IOL vs. Vol, VDD = 3 V

19.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)				Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage	4.5	—	5.5	V	HS mode from 20 - 40 MHz		
D002	Vdr	RAM Data Retention Voltage ⁽²⁾	—	1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD Rise Rate to ensure Power- on Reset	0.05*	—		V/ms	See Section 5.1 for details on Power-on Reset		
D010	IDD	Supply Current ⁽³⁾		5.2 6.8	12.3 16	mA mA	FOSC = 40 MHz, VDD = 4.5V, HS mode FOSC = 40 MHz, VDD = 5.5V, HS mode		
D020	IPD	Power-down Current ⁽³⁾	_	1.8 9.8	7.0 27*	μΑ μΑ	VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT enabled, Commercial		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- **Note 1:** Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected, HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 19.1.
 - **2:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.

NOTES:

PIC16C5X

INDEX

Α

Absolute Maximum Ratings	
PIC16C54/55/56/57	67
PIC16C54A	103
PIC16C54C/CR54C/C55A/C56A/CR56A/C570	C/CR57C/
C58B/CR58B	131
PIC16C54C/CR54C/C55A/C56A/CR56A/C570	C/CR57C/
C58B/CR58B-40	155
PIC16CR54A	79
ADDWF	51
ALU	9
ANDLW	51
ANDWF	51
Applications	5
Architectural Overview	9
Assembler	
MPASM Assembler	61

в

Block Diagram	
On-Chip Reset Circuit	
PIC16C5X Series	
Timer0	
TMR0/WDT Prescaler	41
Watchdog Timer	
Brown-Out Protection Circuit	
BSF	
BTFSC	
BTFSS	

С

CALL	
Carry (C) bit	9, 29
Clocking Scheme	
CLRF	
CLRW	
CLRWDT	53
CMOS Technology	
Code Protection	
COMF	54
Compatibility	
Configuration Bits	

D

Data Memory Organization
PIC16C54/55/56/57
Commercial
Extended70, 72
Industrial69, 71
PIC16C54A
Commercial104, 109
Extended106, 109
Industrial104, 109
PIC16C54C/C55A/C56A/C57C/C58B-40
Commercial157, 158
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/
C58B/CR58B
Commercial134, 138
Extended137, 138
Industrial134, 138
PIC16CR54A
Commercial

Extended	82, 84
Industrial	80, 83
PIC16LV54A	
Commercial	108, 109
Industrial	108, 109
DECF	54
DECFSZ	54
Development Support	61
Device Characterization	
PIC16C54/55/56/57/CR54A	91
PIC16C54A	117
PIC16C54C/C55A/C56A/C57C/C58B-40	165
Device Reset Timer (DRT)	23
Device Varieties	7
Digit Carry (DC) bit	9, 29
DRT	23

Ε

Electrical Specifications
PIC16C54/55/56/57 67
PIC16C54A103
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/
C58B/CR58B 131
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/
C58B/CR58B-40155
PIC16CR54A 79
Errata
External Power-On Reset Circuit 21

F

Family of Devices	
PIC16C5X	
FSR Register	
Value on reset	

G

General Purpose Registers	
Value on reset	20
GOTO	31, 55

Н

High-Performance RISC CPU	1
---------------------------	---

L

•	
I/O Interfacing	35
I/O Ports	35
I/O Programming Considerations	36
ICEPIC In-Circuit Emulator	62
ID Locations	43, 47
INCF	55
INCFSZ	55
INDF Register	33
Value on reset	20
Indirect Data Addressing	33
Instruction Cycle	
Instruction Flow/Pipelining	13
Instruction Set Summary	49
IORLW	56
IORWF	56
к	

KeeLoq Evaluation and Programming Tools 64

Loading of PC	3	,	1	
---------------	---	---	---	--

L