

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	·
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	•
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc55at-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.0		-
1.0	General Description	
2.0	PIC16C5X Device Varieties	
3.0	Architectural Overview	
4.0	Oscillator Configurations	. 15
5.0	Reset	. 19
6.0	Memory Organization	. 25
7.0	I/O Ports	. 35
8.0	Timer0 Module and TMR0 Register	. 37
9.0	Special Features of the CPU	. 43
10.0	Instruction Set Summary	. 49
11.0	Development Support	. 61
12.0	Electrical Characteristics - PIC16C54/55/56/57	. 67
13.0	Electrical Characteristics - PIC16CR54A	
14.0	Device Characterization - PIC16C54/55/56/57/CR54A	. 91
15.0	Electrical Characteristics - PIC16C54A	103
16.0	Device Characterization - PIC16C54A	117
17.0	Electrical Characteristics - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B	131
18.0	Device Characterization - PIC16C54C/CR54C/C55A/C56A/CR56A/CR56A/CR57C/CR57C/C58B/CR58B	145
19.0	Electrical Characteristics - PIC16C54C/C55A/C56A/C57C/C58B 40MHz	155
20.0	Device Characterization - PIC16C54C/C55A/C56A/C57C/C58B 40MHz	165
21.0	Packaging Information	171
Appe	ndix A: Compatibility	182
On-L	ne Support	187
Read	er Response	188
Produ	uct Identification System	189

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

Pi	n Numb	er	Pin	Buffer	Description
DIP	SOIC	SSOP	Туре	Туре	Description
17	17	19	I/O	TTL	Bi-directional I/O port
18	18	20	I/O	TTL	
1	1	1	I/O	TTL	
2	2	2	I/O	TTL	
6	6	7	I/O	TTL	Bi-directional I/O port
7	7	8	I/O	TTL	
8	8	9	I/O	TTL	
9	9	10	I/O	TTL	
10	10	11	I/O	TTL	
11	11	12	I/O	TTL	
12	12	13	I/O	TTL	
13	13	14	I/O	TTL	
3	3	3	Ι	ST	Clock input to Timer0. Must be tied to Vss or VDD, if not in
					use, to reduce current consumption.
4	4	4	Ι	ST	Master clear (RESET) input/programming voltage input.
					This pin is an active low RESET to the device. Voltage on
					the MCLR/VPP pin must not exceed VDD to avoid unin-
					tended entering of Programming mode.
16	16	18	I	ST	Oscillator crystal input/external clock source input.
15	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator
					in crystal Oscillator mode. In RC mode, OSC2 pin outputs
					CLKOUT, which has 1/4 the frequency of OSC1 and
					denotes the instruction cycle rate.
14	14	15,16	Р	_	Positive supply for logic and I/O pins.
5	5	5,6	Р	—	Ground reference for logic and I/O pins.
	Pi DIP 17 18 1 2 6 7 8 9 10 11 12 13 3 4 16 15 14	Pin Numb DIP SOIC 17 17 18 18 1 1 2 2 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 3 3 4 4 16 16 15 15 14 14	Pin Number DIP SOIC SSOP 17 17 19 18 18 20 1 1 1 2 2 2 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 3 3 3 4 4 4 15 15 17 14 14 15,16	Pin Pin DIP SOIC SSOP Type 17 17 19 I/O 18 18 20 I/O 1 1 1 I/O 2 2 2 I/O 6 6 7 I/O 7 7 8 I/O 8 9 I/O I/O 9 9 10 I/O 10 10 11 I/O 11 11 12 I/O 12 12 13 I/O 13 13 14 I/O 3 3 3 I 16 16 18 I 15 15 17 O 14 14 15,16 P	Pin Buffer DIP SOIC SSOP Type Type 17 17 19 I/O TTL 18 18 20 I/O TTL 1 1 1/O TTL 2 2 2 I/O TTL 6 6 7 I/O TTL 7 7 8 I/O TTL 9 9 10 I/O TTL 10 10 11 I/O TTL 11 11 12 I/O TTL 9 9 10 I/O TTL 10 10 11 I/O TTL 12 12 13 I/O TTL 13 13 14 I/O TTL 3 3 3 I ST 16 16 18 I ST 15 15 17 <td< td=""></td<>

TABLE 3-1:PINOUT DESCRIPTION - PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16CR58,
PIC16CR58

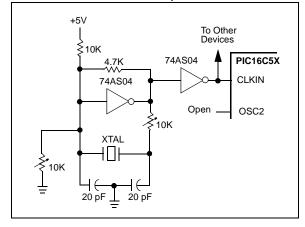
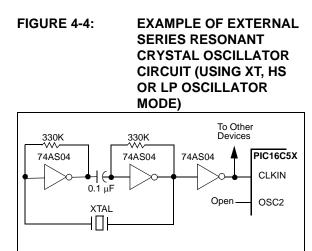
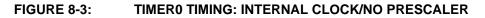
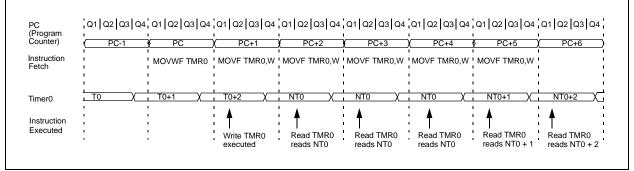
Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input

4.3 External Crystal Oscillator Circuit

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A welldesigned crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

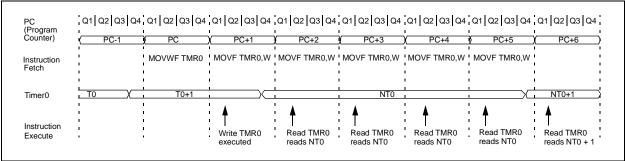

Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

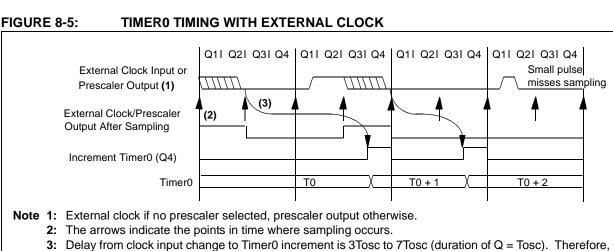
FIGURE 8-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0 -	Fimer0 - 8-bit real-time clock/counter							xxxx xxxx	uuuu uuuu
N/A	OPTION	_		TOCS	TOSE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells not used by Timer0.

8.1 Using Timer0 with an External Clock

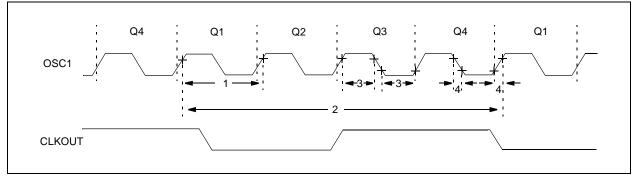

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

8.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 8-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

8.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 8-5 shows the delay from the external clock edge to the timer incrementing.


Belay from clock input change to Timer0 increment is 3 lose to 7 lose (duration of Q = lose). There the error in measuring the interval between two edges on Timer0 input = ± 4 Tose max.

CONFIGURATION WORD FOR PIC16C54/C55/C56/C57 **REGISTER 9-2:**

							İ	СР	WDTE	FOSC1	FOSC0
		_	_	_				CP	WDIE	FUSCI	
bit 11											bit 0
bit 11-4:	Unimple	mented	Read as '	0'							
bit 3:	CP: Cod	e protecti	on bit.								
		e protecti									
	0 = Code	e protectio	on on								
bit 2:	WDTE: \	Vatchdog	timer ena	ble bit							
	1 = WDT	enabled									
	0 = WDT	disabled									
bit 1-0:	FOSC1:I	FOSC0: (Oscillator s	election b	oits ⁽²⁾						
	00 = LF	oscillato	or								
	01 = X	T oscillato	or								
		S oscillato									
	11 = R	C oscillate	or								
Note 1.	Refer to t	ha PIC16	C5X Prog	rammina	Specificat	ions (Liter	atura Num	her DS3	190) to d	otormino l	now to
			iration wor	0	opeemear				, 100) to u		1011 10
2:		•	orts XT, R		oscillator	onlv.					
						- 1					
Legend:											

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown		

12.7 Timing Diagrams and Specifications

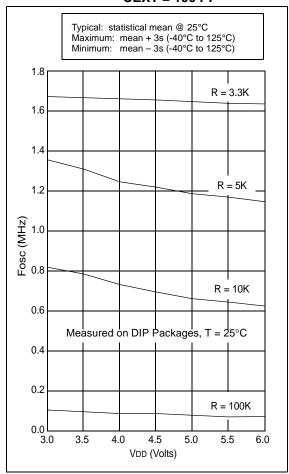
FIGURE 12-2: EXTERNAL CLOCK TIMING - PIC16C54/55/56/57

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

AC Chara	acteristics	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT OSC mode		
			DC	—	10	MHz	10 MHz mode		
			DC	_	20	MHz	HS osc mode (Comm/Ind)		
			DC	_	16	MHz	HS osc mode (Ext)		
			DC	—	40	kHz	LP osc mode		
		Oscillator Frequency ⁽¹⁾	DC	_	4.0	MHz	RC osc mode		
			0.1	_	4.0	MHz	XT OSC mode		
			4.0	_	10	MHz	10 MHz mode		
			4.0	—	20	MHz	HS OSC mode (Comm/Ind)		
			4.0	_	16	MHz	HS osc mode (Ext)		
			DC	—	40	kHz	LP osc mode		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

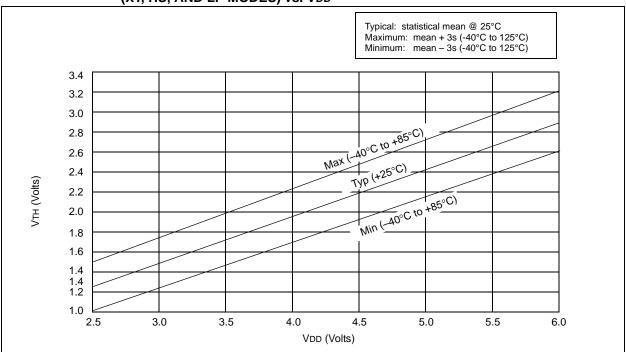
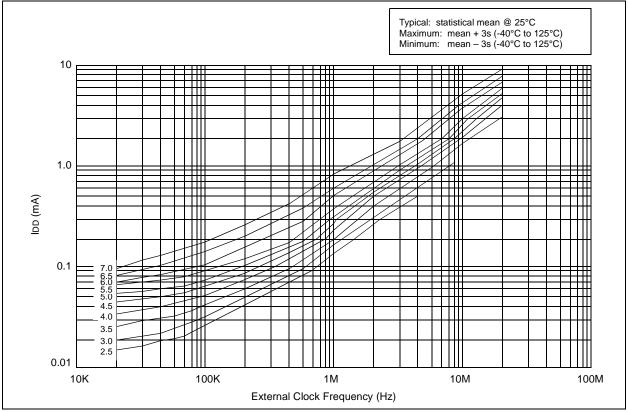
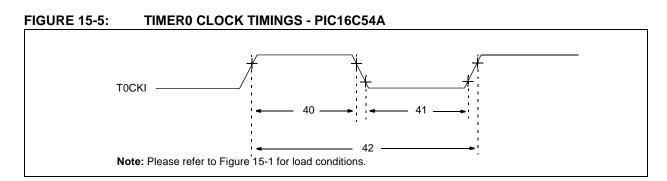

FIGURE 14-2: TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 20 PF Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean – 3s (-40°C to 125°C) 5.5 R = 3.3K5.0 4.5 R = 5K 4.0 3.5 Fosc (MHz) 3.0 R = 10K 2.5 2.0 Measured on DIP Packages, $T = 25^{\circ}C$ 1.5 1.0 R = 100K 0.5 0.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts)

FIGURE 14-3:


TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 100 PF



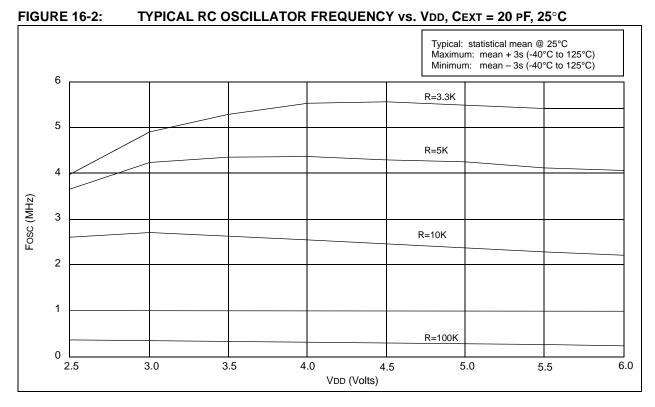
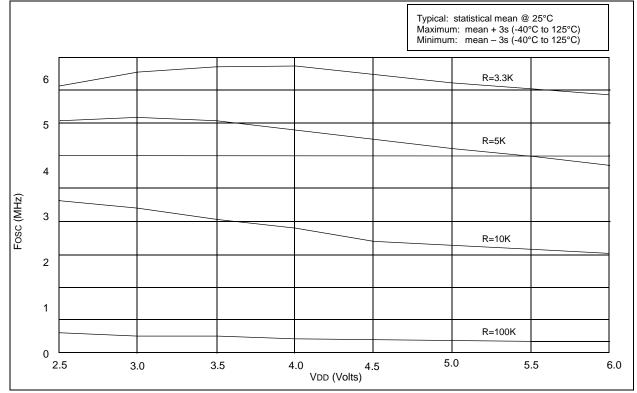
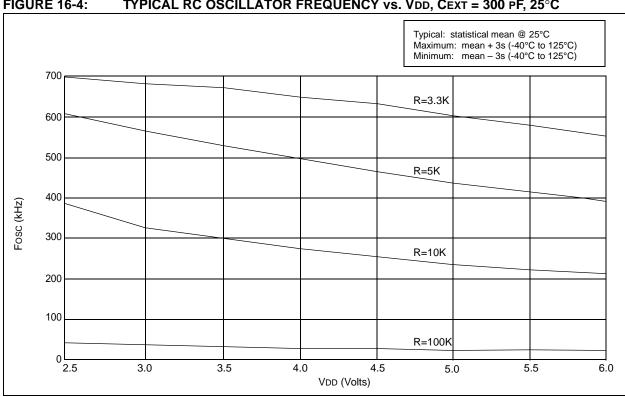


TABLE 15-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54A


		Standard Operating	g Conditions (ur	nless o	therw	ise spe	ecified)
		Operating Temperat	ure $0^{\circ}C \leq$	$TA \le +7$	∕0°C fo	or comn	nercial
1	AC Chara	octeristics	$-40^{\circ}C \le$	$TA \le +8$	85°C fo	or indus	trial
			$-20^{\circ}C \le$	TA ≤ +8	85°C fc	or indus	trial - PIC16LV54A-02I
			$-40^{\circ}C \le$	Ta ≤ +1	25°C	for exte	ended
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width					
		- No Prescaler	0.5 TCY + 20*	—	—	ns	
		- With Prescaler	10*	—	_	ns	
41	Tt0L	T0CKI Low Pulse Width					
		- No Prescaler	0.5 TCY + 20*	—	—	ns	
		- With Prescaler	10*	—	_	ns	
42	Tt0P	T0CKI Period	20 or <u>TCY + 40</u> *	—	_	ns	Whichever is greater.
			N				N = Prescale Value
							(1, 2, 4,, 256)


* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC5X Standard (Operating) PIC16LCR5X Operating 2					•		ions (unless otherwise specified) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial	
PIC16C5X PIC16CR5X (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$				
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions	
	IDD	Supply Current ^(2,3)						
D010		PIC16LC5X		0.5	2.4	mA	Fosc = 4.0 MHz, VDD = 5.5V, XT and	
			—	11	27	μA	RC modes	
							FOSC = 32 kHz, VDD = 2.5 V, LP mode,	
			_	14	35	μA	Commercial Fosc = 32 kHz, VDD = 2.5V, LP mode,	
							Industrial	
D010A		PIC16C5X	_	1.8	2.4	mA	FOSC = 4 MHz, $VDD = 5.5V$, XT and RC	
				2.6 4.5	3.6* 16	mA mA	modes Fosc = 10 MHz, VDD = 3.0V, HS mode	
				4.5	32	μA	FOSC = 20 MHz, VDD = 3.00, HS mode FOSC = 20 MHz, VDD = 5.5V, HS mode	
				14	52	μΛ	FOSC = 32 kHz, VDD = 3.3 V, HS mode	
			_	17	40	μA	Commercial	
							Fosc = 32 kHz, VDD = 3.0V, LP mode, Industrial	

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

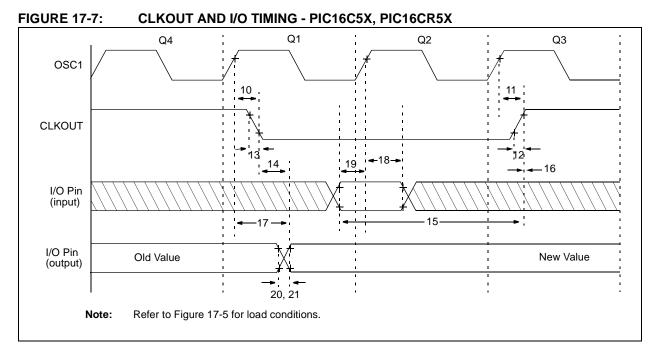
17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC5X PIC16LCR5X (Commercial, Industrial)				$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array} $							
PIC16C5X PIC16CR5X (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}\mbox{C} \leq T\mbox{A} \leq +70^{\circ}\mbox{C} \mbox{ for commercial} \\ -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for industrial} \end{array}$							
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions				
	IPD	Power-down Current ⁽²⁾									
D020		PIC16LC5X		0.25 0.25 1	2 3 5	μΑ μΑ μΑ	VDD = 2.5V, WDT disabled, Commercial $VDD = 2.5V$, WDT disabled, Industrial $VDD = 2.5V$, WDT enabled, Commercial				
			_	1.25	8	μA	$V_{DD} = 2.5V, WDT$ enabled, Industrial				
D020A		PIC16C5X	 	0.25 0.25 1.8 2.0 4	4.0 5.0 7.0* 8.0* 12*	μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled, Commercial VDD = 3.0V, WDT disabled, Industrial VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT disabled, Industrial VDD = 3.0V, WDT enabled, Commercial				
			—	4	14*	μA	VDD = 3.0V, WDT enabled, Industrial				
			_	9.8 12	27* 30*	μΑ μΑ	VDD = 5.5V, WDT enabled, Commercial VDD = 5.5V, WDT enabled, Industrial				

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.


Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

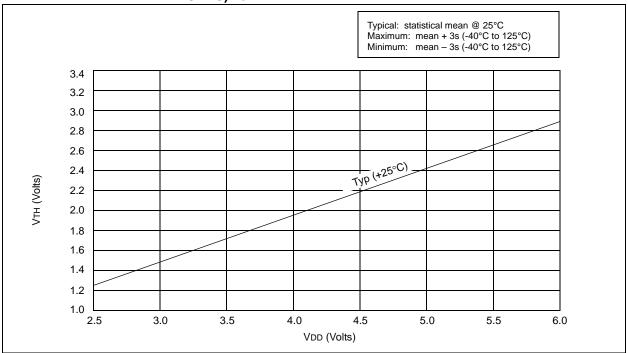
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.

3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

	ALVAUT AND VA TIMINA DEALUDENENTA DIALAASY DIALAADSY
IABLE 17-2:	CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X

AC Chara	acteristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units				
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	_	15	30**	ns				
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	_	15	30**	ns				
12	TckR	CLKOUT rise time ⁽¹⁾	—	5.0	15**	ns				
13	TckF	CLKOUT fall time ⁽¹⁾	—	5.0	15**	ns				
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	40**	ns				
15	TioV2ckH	Port in valid before CLKOUT ⁽¹⁾	0.25 TCY+30*	—	_	ns				
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	—	_	ns				
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾	—	—	100*	ns				
18	TosH2iol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	_	ns				
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	—	ns				
20	TioR	Port output rise time ⁽²⁾	_	10	25**	ns				
21	TioF	Port output fall time ⁽²⁾	—	10	25**	ns				

* These parameters are characterized but not tested.


** These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

2: Refer to Figure 17-5 for load conditions.

FIGURE 18-10: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (IN XT, HS AND LP MODES) vs. VDD

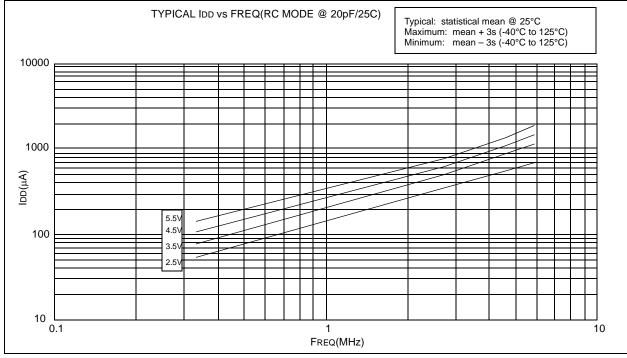
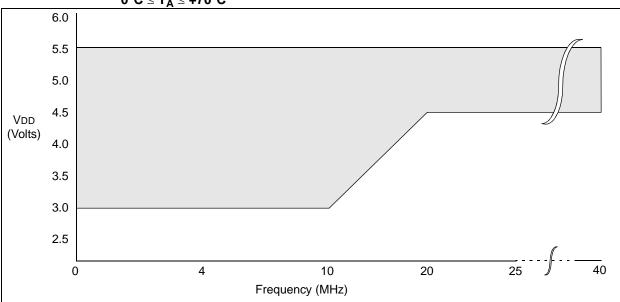
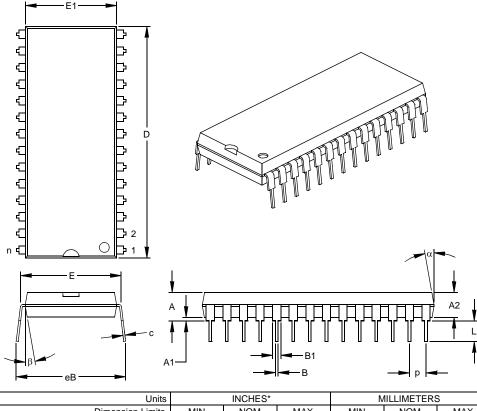



FIGURE 19-1: PIC16C54C/C55A/C56A/C57C/C58B-40 VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le T_A \le +70^{\circ}C$


- **2:** The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
- **3:** Operation between 20 to 40 MHz requires the following:
 - VDD between 4.5V. and 5.5V
 - OSC1 externally driven
 - OSC2 not connected
 - HS mode
 - Commercial temperatures

Devices qualified for 40 MHz operation have -40 designation (ex: PIC16C54C-40/P).

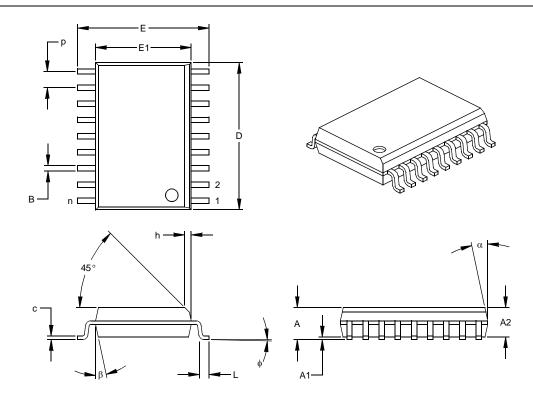
4: For operation between DC and 20 MHz, see Section 17.1.

28-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83	
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88	
Molded Package Width	E1	.505	.545	.560	12.83	13.84	14.22	
Overall Length	D	1.395	1.430	1.465	35.43	36.32	37.21	
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing	§ eB	.620	.650	.680	15.75	16.51	17.27	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic


Notes:

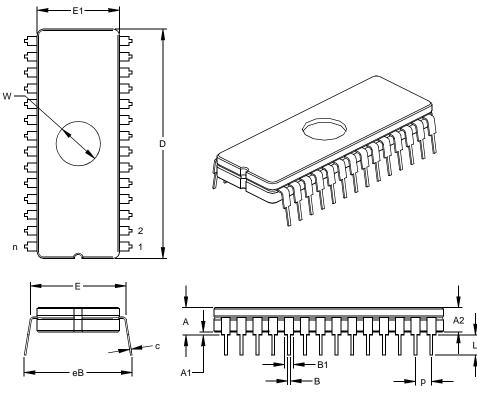
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-011 Drawing No. C04-079

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units	INCHES*		MILLIMETERS			
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15


* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37

Sontolling Parameter
 Significant Characteristic
 JEDEC Equivalent: MO-103
 Drawing No. C04-013