

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc56at-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C5X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C5X uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle except for program branches.

The PIC16C54/CR54 and PIC16C55 address 512 x 12 of program memory, the PIC16C56/CR56 address 1K x 12 of program memory, and the PIC16C57/CR57 and PIC16C58/CR58 address 2K x 12 of program memory. All program memory is internal.

The PIC16C5X can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC16C5X has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C5X simple yet efficient. In addition, the learning curve is reduced significantly. The PIC16C5X device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

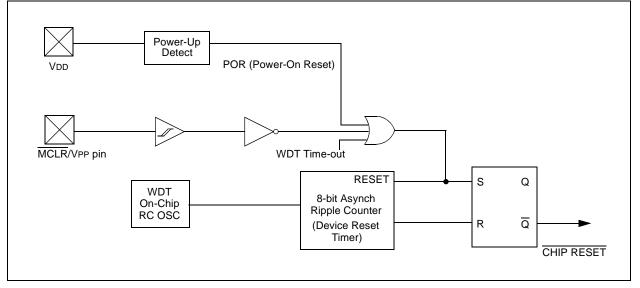
A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1 (for PIC16C54/56/58) and Table 3-2 (for PIC16C55/57).

Pin Name	Pi	Pin Numb		Pin	Buffer	Description
Pin Name	DIP	SOIC	SSOP	Туре	Туре	Description
RA0	6	6	5	I/O	TTL	Bi-directional I/O port
RA1	7	7	6	I/O	TTL	
RA2	8	8	7	I/O	TTL	
RA3	9	9	8	I/O	TTL	
RB0	10	10	9	I/O	TTL	Bi-directional I/O port
RB1	11	11	10	I/O	TTL	
RB2	12	12	11	I/O	TTL	
RB3	13	13	12	I/O	TTL	
RB4	14	14	13	I/O	TTL	
RB5	15	15	15	I/O	TTL	
RB6	16	16	16	I/O	TTL	
RB7	17	17	17	I/O	TTL	
RC0	18	18	18	I/O	TTL	Bi-directional I/O port
RC1	19	19	19	I/O	TTL	
RC2	20	20	20	I/O	TTL	
RC3	21	21	21	I/O	TTL	
RC4	22	22	22	I/O	TTL	
RC5	23	23	23	I/O	TTL	
RC6	24	24	24	I/O	TTL	
RC7	25	25	25	I/O	TTL	
TOCKI	1	1	2	Ι	ST	Clock input to Timer0. Must be tied to Vss or VDD, if not in use, to reduce current consumption.
MCLR	28	28	28	I	ST	Master clear (RESET) input. This pin is an active low RESET to the device.
OSC1/CLKIN	27	27	27	I	ST	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	26	26	26	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
Vdd	2	2	3,4	Р	_	Positive supply for logic and I/O pins.
Vss	4	4	1,14	Р		Ground reference for logic and I/O pins.
N/C	3,5	3,5		_		Unused, do not connect.

TABLE 3-2: PINOUT DESCRIPTION - PIC16C55, PIC16C57, PIC16CR57

Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input

NOTES:


TABLE 5-3: RESET CONDITIONS FOR ALL REGISTERS

Register	Address	Power-On Reset	MCLR or WDT Reset
W	N/A	XXXX XXXX	uuuu uuuu
TRIS	N/A	1111 1111	1111 1111
OPTION	N/A	11 1111	11 1111
INDF	00h	XXXX XXXX	uuuu uuuu
TMR0	01h	XXXX XXXX	uuuu uuuu
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	000q quuu
FSR ⁽¹⁾	04h	1xxx xxxx	luuu uuuu
PORTA	05h	xxxx	uuuu
PORTB	06h	XXXX XXXX	uuuu uuuu
PORTC ⁽²⁾	07h	XXXX XXXX	uuuu uuuu
General Purpose Register Files	07-7Fh	XXXX XXXX	սսսս սսսս

Legend: x = unknown u = unchanged - = unimplemented, read as '0'<math>q = see tables in Table 5-1 for possible values.

- Note 1: These values are valid for PIC16C57/CR57/CR58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.
 - **2:** General purpose register file on PIC16C54/CR54/C56/CR56/C58/CR58.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

NOTES:

ADDWF	Add W	and f		
Syntax:	[label] A	DDWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	(W) + (f)	\rightarrow (dest)		
Status Affected:	C, DC, Z			
Encoding:	0001	11df	ffff	
Description:	and regis	ster 'f'. If 'd in the W sult is sto	of the W r d' is 0 the register. I red back	result f 'd' is
Words:	1			
Cycles:	1			
Example:	ADDWF	TEMP_RE	G, 0	
Before Instr W TEMP_I After Instruc W TEMP_F	= REG = ction =	0x17 0xC2 0xD9 0xC2		

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	0001 01df ffff
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is '1' the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	ANDWF TEMP_REG, 1
Before Instru W TEMP_ After Instruc W TEMP_	= 0x17 REG = 0xC2 tion = 0x17

ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \le k \le 255$			
Operation:	(W).AND. (k) \rightarrow (W)			
Status Affected:	Z			
Encoding:	1110 kkkk kkkk			
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W regis- ter.			
Words:	1			
Cycles:	1			
Example:	ANDLW H'5F'			
Before Instruction W = 0xA3 After Instruction W = 0x03				

BCF	Bit Clea	r f				
Syntax:	[label] BCF f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$0 \rightarrow (f < b$	$0 \rightarrow (f < b >)$				
Status Affected:	None					
Encoding:	0100	bbbf	ffff			
Description:	Bit 'b' in	register 'f'	is cleared.			
Words:	1					
Cycles:	1					
Example:	BCF	FLAG_RE	IG, 7			
Before Instru FLAG_F After Instruct	REG =	0xC7				
FLAG_F	REG =	0x47				

RLF	Rotate Left f through Carry					
Syntax:	[<i>label</i>] RLF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Encoding:	0011 01df ffff					
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example:	RLF REG1,0					
Before Instru REG1 C After Instruct	= 1110 0110 = 0 tion					
REG1 W C	= 1110 0110 = 1100 1100 = 1					

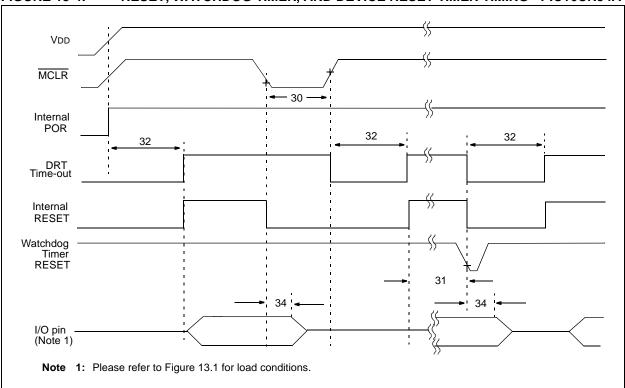
RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Encoding:	0011 00df ffff					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.					
Words:	1					
Cycles:	1					
Example:	RRF REG1,0					
Before Instru REG1 C After Instruct	$= 1110 0110 \\ = 0$					
REG1 W C	= 1110 0110 = 0111 0011 = 0					

SLEEP	Enter SLEEP Mode				
Syntax:	[<i>label</i>] SLEEP				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \text{ prescaler; if assigned} \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$				
Status Affected:	TO, PD				
Encoding:	0000 0000 0011				
Description:	Time-out status bit (TO) is set. The power-down status bit (PD) is cleared. The WDT and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See section on SLEEP for more details.				
Words:	1				
Cycles:	1				
Example:	SLEEP				

XORLW	Exclusive OR literal with W				
Syntax:	[label]	XORLW	k		
Operands:	$0 \le k \le 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Encoding:	1111	kkkk	kkkk		
Description:	XOR'ed	with the e	e W regis eight bit lit ed in the V	eral 'k'.	
Words:	1				
Cycles:	1				
Example:	XORLW	0xAF			
Before Instruction W = 0xB5 After Instruction W = 0x1A					

Exclusive OR W with f	Exclusive OR W with f				
[label] XORWF f,d	-				
$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$					
(W) .XOR. (f) \rightarrow (dest)					
ted: Z					
0001 10df ffff					
W register with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is 1 the result is stored back in register 'f'.					
1					
1					
XORWF REG,1					
Instruction G = 0xAF = 0xB5 struction G = 0x1A = 0xB5					
the result is stored in t ter. If 'd' is 1 the result back in register 'f'. 1 1 XORWF REG, 1 nstruction G = 0xAF = 0xB5 struction	er 'f'. If 'd' is 0 the W regis-				

11.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board


The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

11.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

11.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

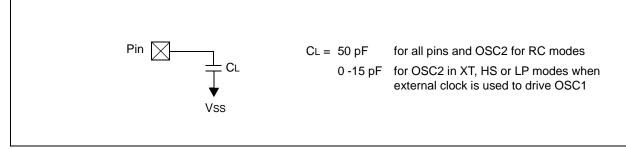
FIGURE 13-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16CR54A

TABLE 13-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR54A

AC Chara	cteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	1.0*			μS	VDD = 5.0V		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7.0*	18*	40*	ms	VDD = 5.0V (Comm)		
32	Tdrt	Device Reset Timer Period	7.0*	18*	30*	ms	VDD = 5.0V (Comm)		
34	Tioz	I/O Hi-impedance from MCLR Low	_	_	1.0*	μS			

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


15.5 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

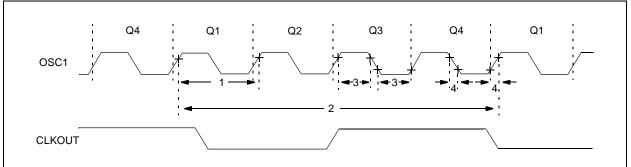
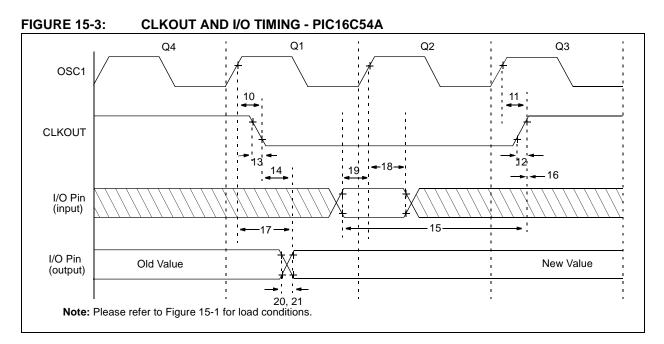

oS	
Frequency	T Time
case letters (pp) and their meanings:	
to	mc MCLR
CLKOUT	osc oscillator
cycle time	os OSC1
device reset timer	t0 T0CKI
I/O port	wdt watchdog timer
case letters and their meanings:	
Fall	P Period
High	R Rise
Invalid (Hi-impedance)	V Valid
Low	Z Hi-impedance
	case letters (pp) and their meanings: o CLKOUT cycle time device reset timer I/O port case letters and their meanings: Fall High Invalid (Hi-impedance)

FIGURE 15-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54A

15.6 Timing Diagrams and Specifications

FIGURE 15-2: EXTERNAL CLOCK TIMING - PIC16C54A


TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A
--

AC Chara	cteristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Conditions						
	Fosc	External CLKIN Fre-	DC	_	4.0	MHz	XT OSC mode		
		quency ⁽¹⁾	DC	—	2.0	MHz	XT osc mode (PIC16LV54A)		
			DC	—	4.0	MHz	HS osc mode (04)		
			DC	—	10	MHz	HS osc mode (10)		
			DC	—	20	MHz	HS osc mode (20)		
			DC	—	200	kHz	LP OSC mode		
		Oscillator Frequency ⁽¹⁾	DC		4.0	MHz	RC osc mode		
			DC	—	2.0	MHz	RC osc mode (PIC16LV54A)		
			0.1	—	4.0	MHz	XT OSC mode		
			0.1	—	2.0	MHz	XT osc mode (PIC16LV54A)		
			4.0	—	4.0	MHz	HS osc mode (04)		
			4.0	—	10	MHz	HS osc mode (10)		
			4.0	—	20	MHz	HS osc mode (20)		
			5.0	—	200	kHz	LP osc mode		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - Instruction cycle period (TcY) equals four times the input oscillator time base period.

TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54A

AC Chara	octeristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} \mbox{mdard Operating Conditions (unless otherwise specified)} \\ \mbox{erating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \ \ \mbox{for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \ \ \mbox{for industrial} \\ -20^{\circ}C \leq TA \leq +85^{\circ}C \ \ \mbox{for industrial} - PIC16LV54A-02I \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ \ \mbox{for extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units		
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	—	15	30**	ns		
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	—	15	30**	ns		
12	TckR	CLKOUT rise time ⁽¹⁾	—	5.0	15**	ns		
13	TckF	CLKOUT fall time ⁽¹⁾	—	5.0	15**	ns		
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	40**	ns		
15	TioV2ckH	Port in valid before CLKOUT ⁽¹⁾	0.25 TCY+30*	—	—	ns		
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	—	—	ns		
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid ⁽²⁾	—	—	100*	ns		
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	—	ns		
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	—	ns		
20	TioR	Port output rise time ⁽²⁾	—	10	25**	ns		
21	TioF	Port output fall time ⁽²⁾	—	10	25**	ns		

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

2: Please refer to Figure 15-1 for load conditions.

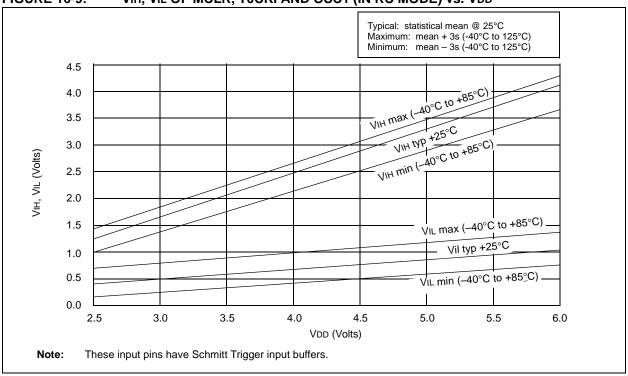
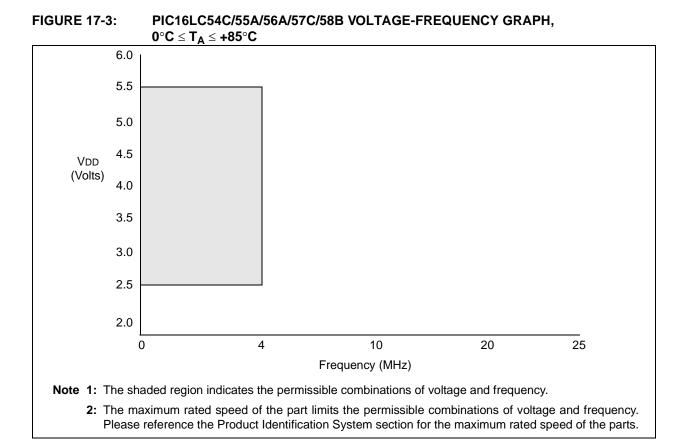
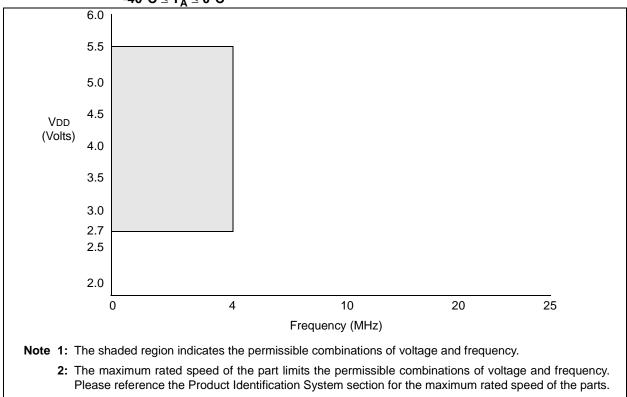
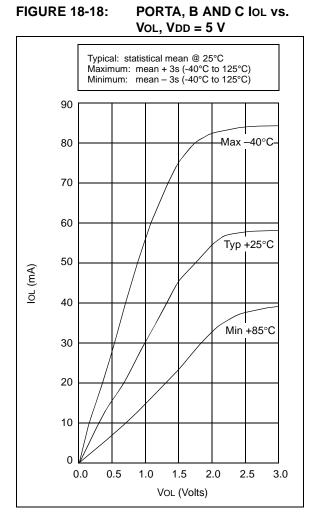





FIGURE 16-9: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) vs. VDD

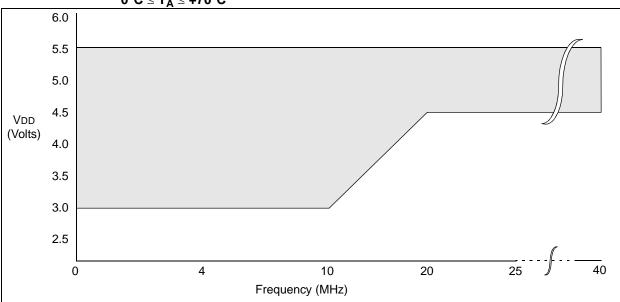
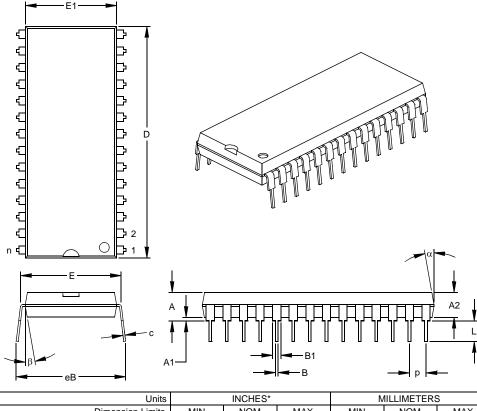


TABLE 18-2:INPUT CAPACITANCE

Pin	Typical Capacitance (pF)				
Pin	18L PDIP	18L SOIC			
RA port	5.0	4.3			
RB port	5.0	4.3			
MCLR	17.0	17.0			
OSC1	4.0	3.5			
OSC2/CLKOUT	4.3	3.5			
тоскі	3.2	2.8			

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

FIGURE 19-1: PIC16C54C/C55A/C56A/C57C/C58B-40 VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le T_A \le +70^{\circ}C$


- **2:** The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
- **3:** Operation between 20 to 40 MHz requires the following:
 - VDD between 4.5V. and 5.5V
 - OSC1 externally driven
 - OSC2 not connected
 - HS mode
 - Commercial temperatures

Devices qualified for 40 MHz operation have -40 designation (ex: PIC16C54C-40/P).

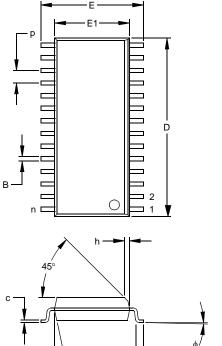
4: For operation between DC and 20 MHz, see Section 17.1.

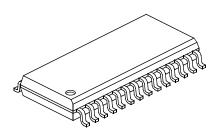
28-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

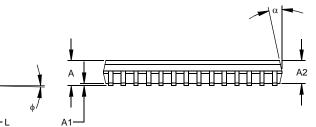
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimer	ision Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.505	.545	.560	12.83	13.84	14.22
Overall Length	D	1.395	1.430	1.465	35.43	36.32	37.21
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	§ eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.


JEDEC Equivalent: MO-011 Drawing No. C04-079

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units				MILLIMETERS		
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-052

Μ

MCLR Reset	
Register values on2	20
Memory Map	
PIC16C54/CR54/C55	25
PIC16C56/CR56	25
PIC16C57/CR57/C58/CR582	25
Memory Organization	
MOVF	56
MOVLW	56
MOVWF	57
MPLAB C17 and MPLAB C18 C Compilers	31
MPLAB ICD In-Circuit Debugger	33
MPLAB ICE High Performance Universal In-Circuit Emulat	or
with MPLAB IDE	32
MPLAB Integrated Development Environment Software	31
MPLINK Object Linker/MPLIB Object Librarian	32

Ν

NOP

0

One-Time-Programmable (OTP) Devices	7
-	
OPTION	-
OPTION Register	
Value on reset	
Oscillator Configurations	
Oscillator Types	
HS	
LP	
RC	
XT	

Ρ

PA0 bit	.29
PA1 bit	.29
Paging	. 31
PC	. 31
Value on reset	.20
PD bit	, 29
Peripheral Features	1
PICDEM 1 Low Cost PIC MCU Demonstration Board	.63
PICDEM 17 Demonstration Board	. 64
PICDEM 2 Low Cost PIC16CXX Demonstration Board	.63
PICDEM 3 Low Cost PIC16CXXX Demonstration Board	.64
PICSTART Plus Entry Level Development Programmer	.63
Pin Configurations	
Pinout Description - PIC16C54, PIC16CR54, PIC16C	56,
PIC16CR56, PIC16C58, PIC16CR58	.11
Pinout Description - PIC16C55, PIC16C57, PIC16CR57	. 12
PORTA	. 35
Value on reset	. 20
PORTB	. 35
Value on reset	. 20
PORTC	. 35
Value on reset	. 20
Power-Down Mode	. 47
Power-On Reset (POR)	.21
Register values on	. 20
Prescaler	
PRO MATE II Universal Device Programmer	
Program Counter	
Program Memory Organization	
Program Verification/Code Protection	. 47

Q

Q cycles
Quick-Turnaround-Production (QTP) Devices
R
RC Oscillator
Read Only Memory (ROM) Devices7
Read-Modify-Write
Register File Map
PIC16C54, PIC16CR54, PIC16C55, PIC16C56,
PIC16CR56
PIC16C57/CR57
PIC16C58/CR5827
Registers
Special Function
Value on reset 20
Reset 19
Reset on Brown-Out 23
RETLW 57
RLF
RRF

S

Serialized Quick-Turnaround-Production (SQTP) D SLEEP	
	, ,
Software Simulator (MPLAB SIM)	62
Special Features of the CPU	43
Special Function Registers	
Stack	32
STATUS Register	9, 29
Value on reset	20
SUBWF	59
SWAPF	59

Т