
Microchip Technology - PIC16LC57C-04/SP Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc57c-04-sp

Email: info@E-XFL.COM

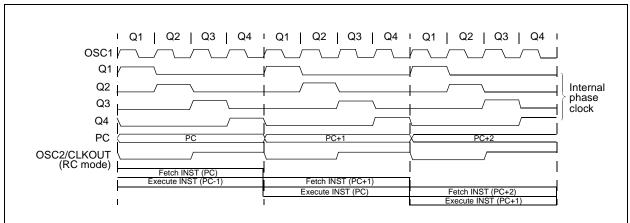
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C5X FAMILY OF DEVICES

Features	PIC16C54	PIC16CR54	PIC16C55	PIC16C56	PIC16CR56
Maximum Operation Frequency	40 MHz	20 MHz	40 MHz	40 MHz	20 MHz
EPROM Program Memory (x12 words)	512	_	512	1K	
ROM Program Memory (x12 words)		512	_	_	1K
RAM Data Memory (bytes)	25	25	24	25	25
Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0
I/O Pins	12	12	20	12	12
Number of Instructions	33	33	33	33	33
Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC; 28-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

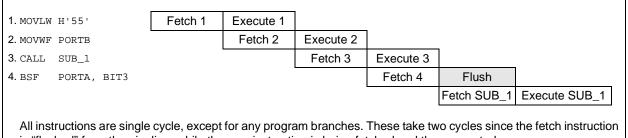
PIC16C58 Features **PIC16C57** PIC16CR57 PIC16CR58 Maximum Operation Frequency 20 MHz 40 MHz 40 MHz 20 MHz EPROM Program Memory (x12 words) 2K 2K ____ _ ROM Program Memory (x12 words) 2K 2K _ _ RAM Data Memory (bytes) 72 72 73 73 Timer Module(s) TMR0 TMR0 TMR0 TMR0 I/O Pins 20 20 12 12 Number of Instructions 33 33 33 33 28-pin DIP, SOIC; 28-pin DIP, SOIC; 18-pin DIP, SOIC; 18-pin DIP, SOIC; Packages 28-pin SSOP 28-pin SSOP 20-pin SSOP 20-pin SSOP All PIC® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high I/O current capability.

3.1 **Clocking Scheme/Instruction** Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1 and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

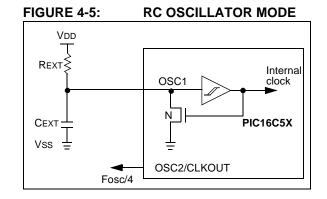
FIGURE 3-2: **CLOCK/INSTRUCTION CYCLE**

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

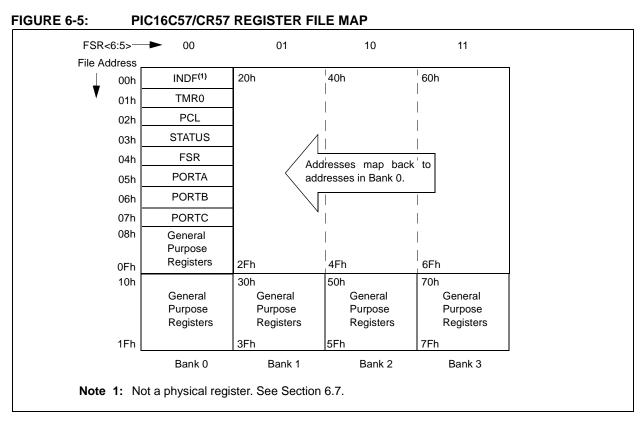
is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

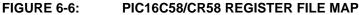
4.4 RC Oscillator

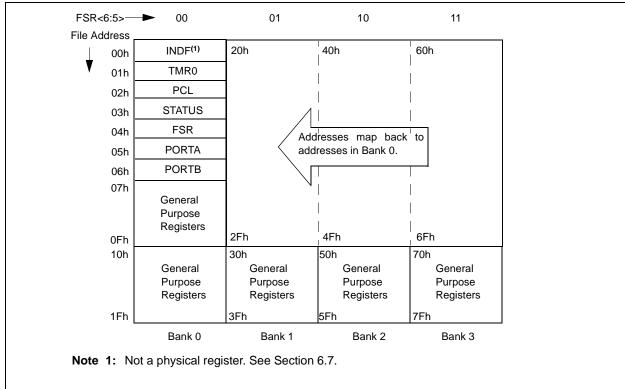
For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.


Figure 4-5 shows how the R/C combination is connected to the PIC16C5X. For REXT values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.


The Electrical Specifications sections show RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).


Also, see the Electrical Specifications sections for variation of oscillator frequency due to VDD for given REXT/ CEXT values as well as frequency variation due to operating temperature for given R, C, and VDD values.


The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic.

Note: If you change from this device to another device, please verify oscillator characteristics in your application.

6.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of the device (Table 6-1).

The Special Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Details on Page
N/A	TRIS	I/O Cont	rol Regis	ters (TRIS	SA, TRIS	B, TRISC	;)			1111 1111	35
N/A	OPTION	Contains	s control b	oits to cor	figure Ti	mer0 and	Timer0/V	VDT pres	caler	11 1111	30
00h	INDF	Uses co	ntents of	FSR to ac	ddress da	ata memo	ory (not a	physical ı	egister)	XXXX XXXX	32
01h	TMR0	Timer0	Module R	egister						XXXX XXXX	38
02h ⁽¹⁾	PCL	Low ord	er 8 bits c	of PC						1111 1111	31
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	29
04h	FSR	Indirect	data merr	nory addre	ess point	er				1xxx xxxx ⁽³⁾	32
05h	PORTA	—	—	—	—	RA3	RA2	RA1	RA0	xxxx	35
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	35
07h ⁽²⁾	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	35

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 6.5 for an explanation of how to access these bits.

2: File address 07h is a General Purpose Register on the PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16CR58 and PIC16CR58.

3: These values are valid for PIC16C57/CR57/C58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.

7.6 I/O Programming Considerations

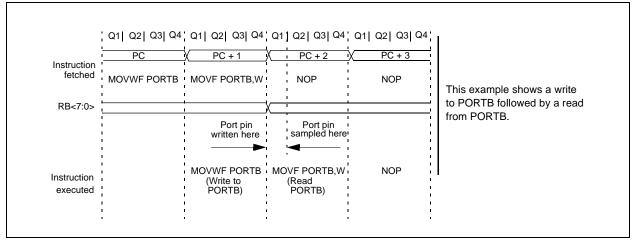
7.6.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched into Output mode later on, the content of the data latch may now be unknown.

Example 7-1 shows the effect of two sequential read-modify-write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 7-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT


;Initial PORT Settings
; PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;

;				PORT	latch	PORT	pins
;							
	BCF	PORTB,	7	;01pp	pppp	11pp	pppp
	BCF	PORTB,	6	;10pp	pppp	11pp	pppp
	MOVLW	H'3F'		;			
	TRIS	PORTB		;10pp	pppp	10pp	pppp
;							

;Note that the user may have expected the pin ;values to be 00pp pppp. The 2nd BCF caused ;RB7 to be latched as the pin value (High).

7.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 7-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 7-2: SUCCESSIVE I/O OPERATION

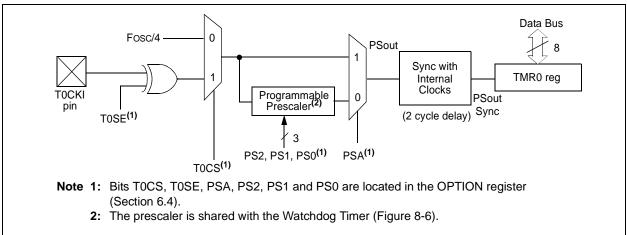
8.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

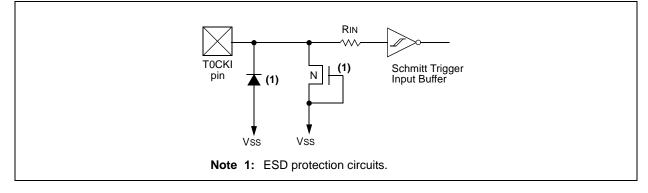
- 8-bit timer/counter register, TMR0
 - Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Edge select for external clock

Figure 8-1 is a simplified block diagram of the Timer0 module, while Figure 8-2 shows the electrical structure of the Timer0 input.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 8-3 and Figure 8-4). The user can work around this by writing an adjusted value to the TMR0 register.



Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The incrementing edge is determined by the source edge select bit T0SE (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 8.1.


Note: The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both.

The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 8.2 details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 8-1.

FIGURE 8-2: ELECTRICAL STRUCTURE OF TOCKI PIN

CALL	Subroutine Call			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq k \leq 255$			
Operation:	$\begin{array}{l} (PC) + 1 \rightarrow TOS; \\ k \rightarrow PC < 7:0>; \\ (STATUS < 6:5>) \rightarrow PC < 10:9>; \\ 0 \rightarrow PC < 8> \end{array}$			
Status Affected:	None			
Encoding:	1001 kkkk kkkk			
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two- cycle instruction.			
Words:	1			
Cycles:	2			
Example:	HERE CALL THERE			
After Instruct	address (HERE) ion address (THERE)			

CLRF	Clear f
	Oloui I

Syntax:	[label]	CLRF f			
Operands:	$0 \leq f \leq 31$				
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	0000	011f	ffff		
Description:	The contents of register 'f' are cleared and the Z bit is set.				
Words:	1				
Cycles:	1				
Example:	CLRF	FLAG_RE	IG		
Before Instru FLAG_R After Instruct	EG =	0x5A			
FLAG_R Z	EG = =	0x00 1			

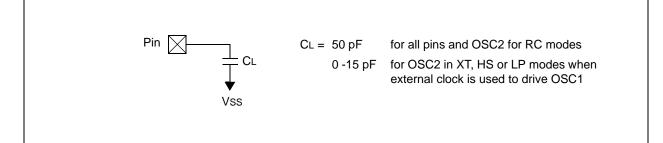
CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
W = After Instruct	ion
W = Z =	1
Z =	Clear Watchdog Timer
Z = CLRWDT Syntax:	Clear Watchdog Timer
Z = CLRWDT Syntax: Operands:	Clear Watchdog Timer [label] CLRWDT None
Z = CLRWDT Syntax:	Clear Watchdog Timer
Z = CLRWDT Syntax: Operands:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$
Z = CLRWDT Syntax: Operands: Operation:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$
Z = CLRWDT Syntax: Operands: Operation: Status Affected:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
Z = CLRWDT Syntax: Operands: Operation: Status Affected: Encoding:	Clear Watchdog Timer[label] CLRWDTNone $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ $0000 0000 0100$ The CLRWDT instruction resets theWDT. It also resets the prescaler, ifthe prescaler is assigned to theWDT and not Timer0. Status bits
Z = CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description:	Clear Watchdog Timer[label] CLRWDTNone $00h \rightarrow WDT$; $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO}$; $1 \rightarrow \overline{PD}$ \overline{TO} , \overline{PD} 0000 0000 0100 The CLRWDT instruction resets theWDT. It also resets the prescaler, ifthe prescaler is assigned to theWDT and not Timer0. Status bitsTO and \overline{PD} are set.

After Instruction		
WDT counter	=	0x00
WDT prescaler	=	0
TO	=	1
PD	=	1

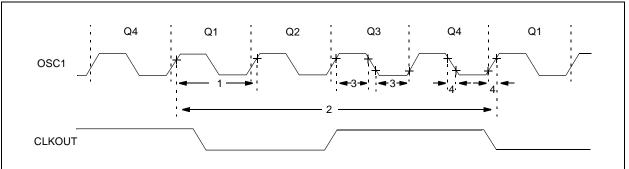
PIC16C5X

XORLW	Exclusiv	e OR lite	eral with	w
Syntax:	[label]	XORLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .XOF	$R. k \to (W$	/)	
Status Affected:	Z			
Encoding:	1111	kkkk	kkkk	
Description:	XOR'ed	with the e	e W regis eight bit lit ed in the V	eral 'k'.
Words:	1			
Cycles:	1			
Example:	XORLW	0xAF		
Before Instruction W = 0xB5 After Instruction W = 0x1A				

Exclusive OR W with f	
[label] XORWF f,d	-
$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$	
(W) .XOR. (f) \rightarrow (dest)	
ted: Z	
0001 10df ffff	
W register with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is 1 the result is stored back in register 'f'.	
1	
1	
XORWF REG,1	
Instruction G = 0xAF = 0xB5 struction G = 0x1A = 0xB5	
the result is stored in t ter. If 'd' is 1 the result back in register 'f'. 1 1 XORWF REG, 1 nstruction G = 0xAF = 0xB5 struction	er 'f'. If 'd' is 0 the W regis-


13.5 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:


1. TppS2ppS

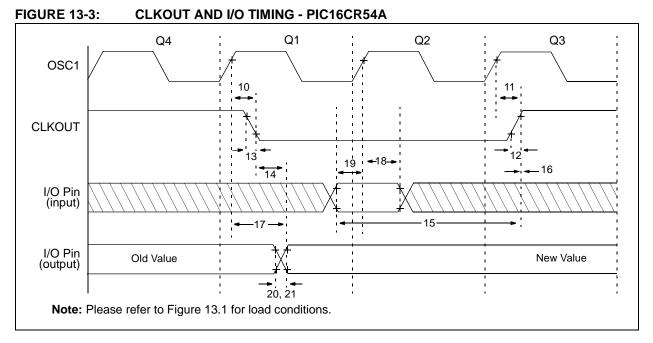
2. Tp	2. TppS							
Т								
F	Frequency	T Time						
Lowe	Lowercase letters (pp) and their meanings:							
рр								
2	to	mc MCLR						
ck	CLKOUT	osc oscillator						
су	cycle time	os OSC1						
drt	device reset timer	t0 T0CKI						
io	I/O port	wdt watchdog timer						
Uppe	ercase letters and their meanings:							
S								
F	Fall	P Period						
н	High	R Rise						
I	Invalid (Hi-impedance)	V Valid						
L	Low	Z Hi-impedance						

FIGURE 13-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16CR54A

13.6 Timing Diagrams and Specifications

FIGURE 13-2: EXTERNAL CLOCK TIMING - PIC16CR54A

TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A


AC Characteristics		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No. Symbol		Characteristic		Min Typ†		Units	Conditions		
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	4.0	MHz	XT OSC mode		
			DC	—	4.0	MHz	HS osc mode (04)		
			DC	_	10	MHz	HS osc mode (10)		
			DC	—	20	MHz	HS osc mode (20)		
			DC	_	200	kHz	LP osc mode		
		Oscillator Frequency ⁽¹⁾	DC		4.0	MHz	RC OSC mode		
			0.1	_	4.0	MHz	XT osc mode		
			4.0	_	4.0	MHz	HS osc mode (04)		
			4.0	_	10	MHz	HS osc mode (10)		
			4.0	_	20	MHz	HS osc mode (20)		
			5.0	—	200	kHz	LP osc mode		

* These parameters are characterized but not tested.

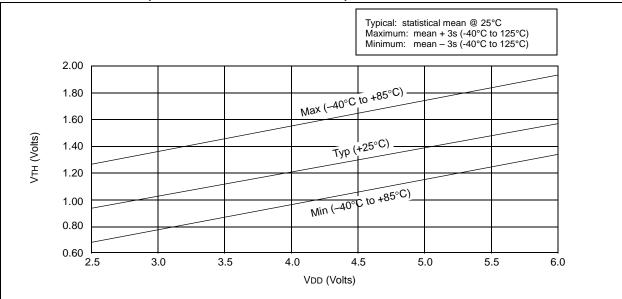
† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

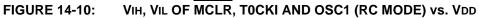
Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

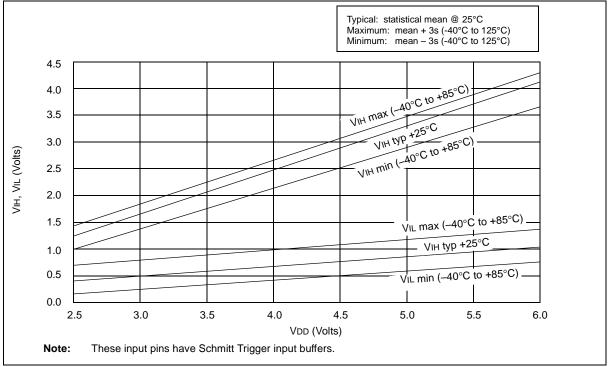
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

TABLE 13-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16CR54A

AC Chara	acteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units		
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	—	15	30**	ns		
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	—	15	30**	ns		
12	TckR	CLKOUT rise time ⁽¹⁾	—	5.0	15**	ns		
13	TckF	CLKOUT fall time ⁽¹⁾	—	5.0	15**	ns		
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	40**	ns		
15	TioV2ckH	Port in valid before CLKOUT ⁽¹⁾	0.25 TCY+30*	—		ns		
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	—		ns		
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid ⁽²⁾	—	—	100*	ns		
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	—	ns		
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	—	ns		
20	TioR	Port output rise time ⁽²⁾	_	10	25**	ns		
21	TioF	Port output fall time ⁽²⁾	-	10	25**	ns		


* These parameters are characterized but not tested.


- ** These parameters are design targets and are not tested. No characterization data available at this time.
- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.


Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

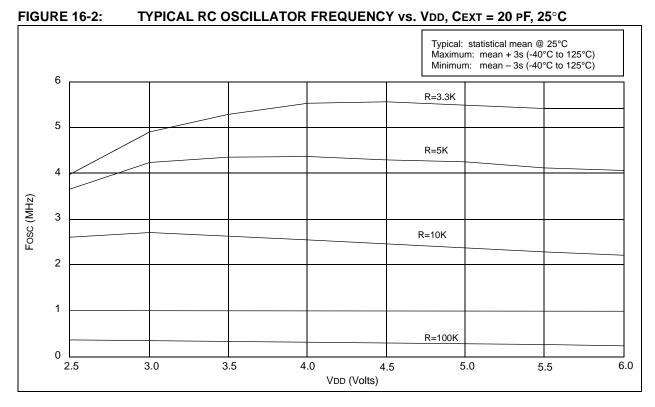
2: Please refer to Figure 13.1 for load conditions.

FIGURE 14-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD

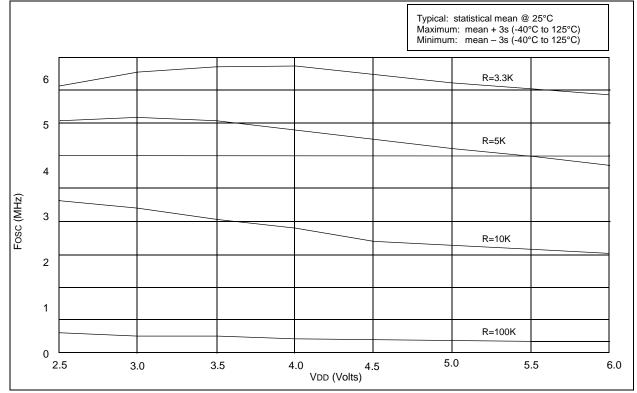
15.0 ELECTRICAL CHARACTERISTICS - PIC16C54A

Absolute Maximum Ratings ^(†)	
Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into Vod pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O port (PORTA or B)	50 mA
Max. output current sunk by a single I/O port (PORTA or B)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VD	D-VOH) X IOH} + Σ (VOL X IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


15.1 DC Characteristics: PIC16C54A-04, 10, 20 (Commercial) PIC16C54A-04I, 10I, 20I (Industrial) PIC16LC54A-04 (Commercial) PIC16LC54A-04I (Industrial)

	C54A-04I		Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16C	(Commercial, Industrial) PIC16C54A-04, 10, 20 PIC16C54A-04I, 10I, 20I (Commercial, Industrial)				Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No. Symbol Characteristic/Device				Тур†	Max	Units	Conditions			
	Vdd	Supply Voltage			•					
D001		PIC16LC54A	3.0 2.5	_	6.25 6.25	V V	XT and RC modes LP mode			
D001A		PIC16C54A	3.0 4.5	_	6.25 5.5	V V	RC, XT and LP modes HS mode			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode			
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset			
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset			
IDD Supply Current ⁽²⁾										
D005		PIC16LC5X	—	0.5	2.5	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes			
			—	11	27	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode, Commercial			
			—	11	35	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode, Industrial			
D005A		PIC16C5X	—	1.8	2.4	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes			
			—	2.4	8.0	mA	Fosc = 10 MHz, VDD = 5.5V, HS mode			
			_	4.5 14	16 29	mA μA	Fosc = 20 MHz, VDD = 5.5V, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP mode, Commercial			
			—	17	37	μA	Fosc = 32 kHz , VDD = 3.0V , WDT disabled, LP mode, Industrial			


Legend: Rows with standard voltage device data only are shaded for improved readability.

These parameters are characterized but not tested.

- † Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

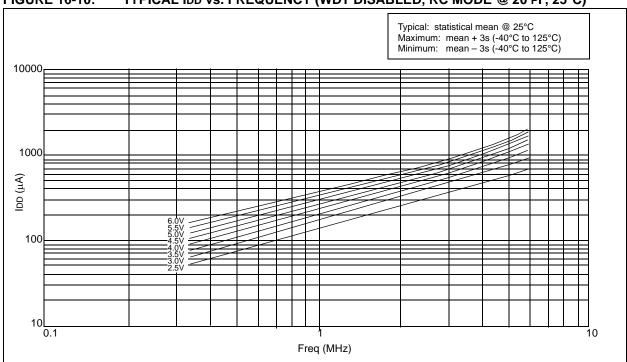
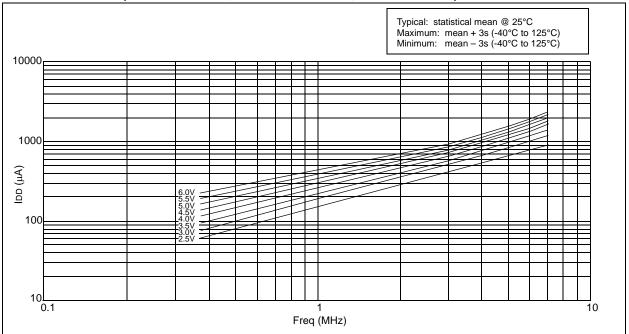
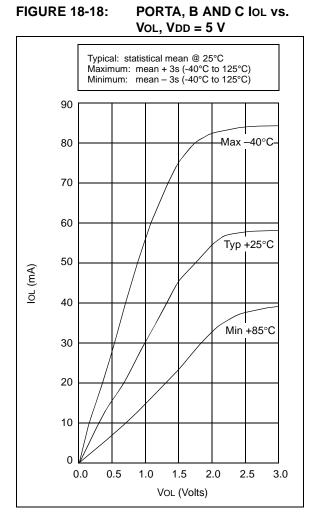




FIGURE 16-10: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 20 PF, 25°C)

FIGURE 16-11: MAXIMUM IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 20 PF, -40°C to +85°C)

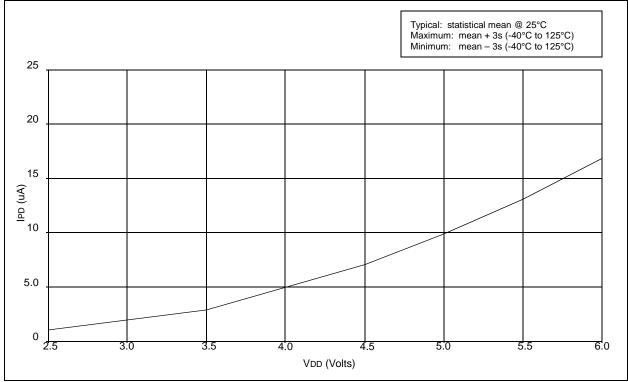
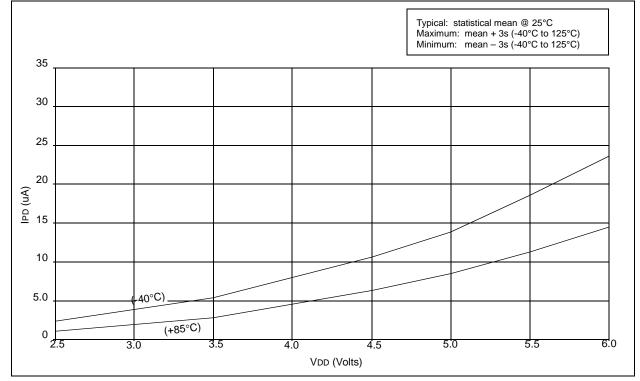
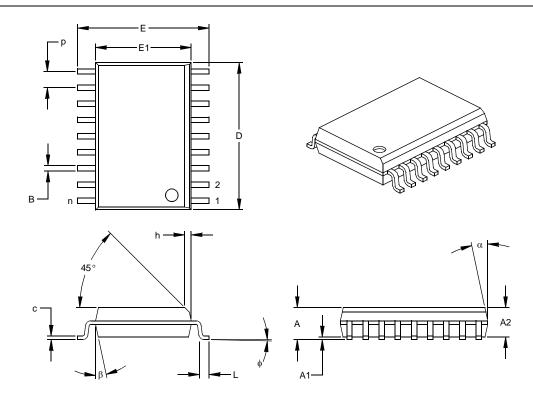


TABLE 18-2:INPUT CAPACITANCE


Pin	Typical Capacitance (pF)				
Pin	18L PDIP	18L SOIC			
RA port	5.0	4.3			
RB port	5.0	4.3			
MCLR	17.0	17.0			
OSC1	4.0	3.5			
OSC2/CLKOUT	4.3	3.5			
тоскі	3.2	2.8			

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.



18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051