

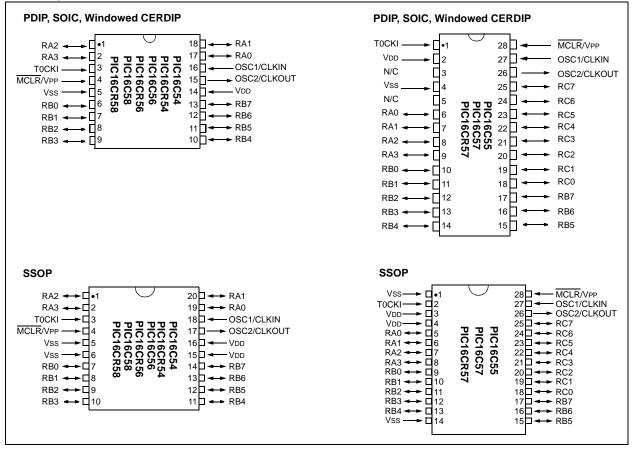
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

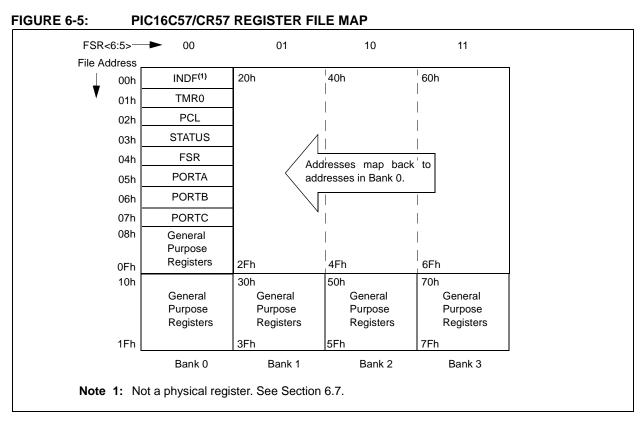

E·XFl

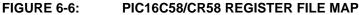
2 0 14110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc57c-04i-so

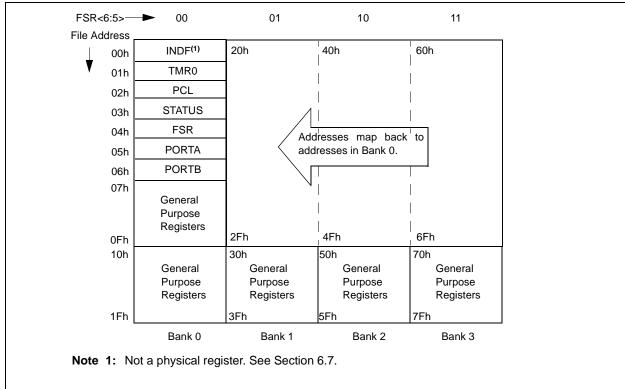
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams




Device Differences


Device	Voltage Range	Oscillator Selection (Program)	Oscillator	Process Technology (Microns)	ROM Equivalent	MCLR Filter
PIC16C54	2.5-6.25	Factory	See Note 1	1.2	PIC16CR54A	No
PIC16C54A	2.0-6.25	User	See Note 1	0.9	—	No
PIC16C54C	2.5-5.5	User	See Note 1	0.7	PIC16CR54C	Yes
PIC16C55	2.5-6.25	Factory	See Note 1	1.7	—	No
PIC16C55A	2.5-5.5	User	See Note 1	0.7	—	Yes
PIC16C56	2.5-6.25	Factory	See Note 1	1.7	—	No
PIC16C56A	2.5-5.5	User	See Note 1	0.7	PIC16CR56A	Yes
PIC16C57	2.5-6.25	Factory	See Note 1	1.2	—	No
PIC16C57C	2.5-5.5	User	See Note 1	0.7	PIC16CR57C	Yes
PIC16C58B	2.5-5.5	User	See Note 1	0.7	PIC16CR58B	Yes
PIC16CR54A	2.5-6.25	Factory	See Note 1	1.2	N/A	Yes
PIC16CR54C	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes
PIC16CR56A	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes
PIC16CR57C	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes
PIC16CR58B	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

Note: The table shown above shows the generic names of the PIC16C5X devices. For device varieties, please refer to Section 2.0.

6.4 **OPTION Register**

The OPTION Register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W Register will be transferred to the OPTION Register. A RESET sets the OPTION<5:0> bits.

REGISTER 6-2: OPTION REGISTER

U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1
_	_	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

- bit 7-6: Unimplemented: Read as '0'
- bit 5: **TOCS**: Timer0 clock source select bit
 - 1 = Transition on T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)
- bit 4: **TOSE**: Timer0 source edge select bit
 - 1 = Increment on high-to-low transition on T0CKI pin
 - 0 = Increment on low-to-high transition on T0CKI pin
- bit 3: **PSA**: Prescaler assignment bit
 - 1 = Prescaler assigned to the WDT
 - 0 = Prescaler assigned to Timer0

bit 2-0: **PS<2:0>:** Prescaler rate select bits

Bit Value	Timer0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1:256	1:128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

6.7 Indirect Data Addressing; INDF and FSR Registers

The INDF Register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 6-1: INDIRECT ADDRESSING

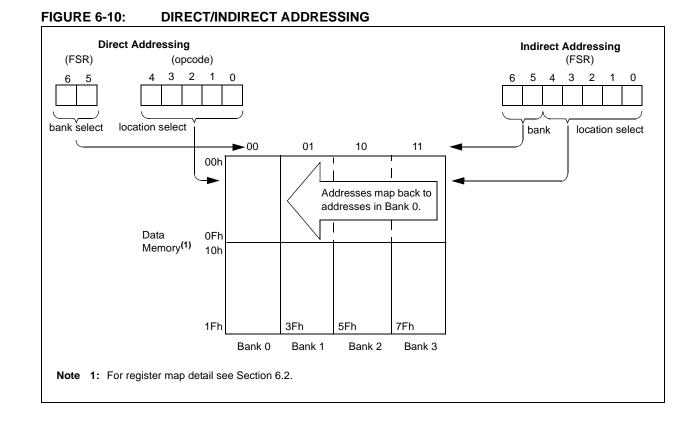
- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- · Load the value 08 into the FSR Register
- A read of the INDF Register will return the value of 10h
- Increment the value of the FSR Register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF Register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 6-2.

EXAMPLE 6-2:

HOW TO CLEAR RAM USING INDIRECT ADDRESSING


	MOVLW	H'10'	;initialize pointer
	MOVWF	FSR	; to RAM
NEXT	CLRF	INDF	;clear INDF Register
	INCF	FSR,F	;inc pointer
	BTFSC	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56) or 7-bit (PIC16C57, PIC16CR57, PIC16CR58, PIC16CR58) wide register. It is used in conjunction with the INDF Register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56: These do not use banking. FSR<6:5> bits are unimplemented and read as '1's.

PIC16C57, **PIC16CR57**, **PIC16C58**, **PIC16CR58**: FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = bank 0, 01 = bank 1, 10 = bank 2, 11 = bank 3).

© 1997-2013 Microchip Technology Inc.

8.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT), respectively (Section 9.2.1). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all '0's.

8.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 8-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 8-1: CHANGING PRESCALER (TIMER0→WDT)

CLRWDT	;Clear WDT
CLRF TMR0	Clear TMR0 & Prescaler
MOVLW B'00xx1111'	;Last 3 instructions in
	this example
OPTION	;are required only if
	;desired
CLRWDT	;PS<2:0> are 000 or
	;001
MOVLW B'00xx1xxx'	;Set Prescaler to
OPTION	;desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 8-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 8-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

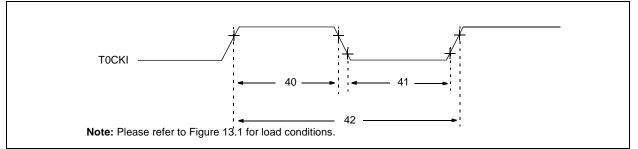
CLRWDT		;Clear WDT and
		;prescaler
MOVLW	B'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source

OPTION

NOTES:

NOTES:

12.4 DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial) PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)


			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$				
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions
D030	VIL	Input Low Voltage I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger)	Vss Vss Vss Vss Vss		0.2 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Pin at hi-impedance PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP
D040	Vih	Input High Voltage I/O ports I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger)	0.45 VDD 2.0 0.36 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD		VDD VDD VDD VDD VDD VDD VDD VDD	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	For all VDD ⁽⁴⁾ 4.0V < VDD ≤ 5.5V ⁽⁴⁾ VDD > 5.5V PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 VDD*	—	—	V	
D060	Ιι∟	Input Leakage Current ^(1,2) I/O ports MCLR MCLR T0CKI OSC1	-1 -5 -3 -3	0.5 — 0.5 0.5 0.5	+1 +5 +3 +3	μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS + 0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, PIC16C5X-XT, 10, HS, LP
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		—	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, PIC16C5X-RC
D090	Vон	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd – 0.7 Vdd – 0.7	_		V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, PIC16C5X-RC

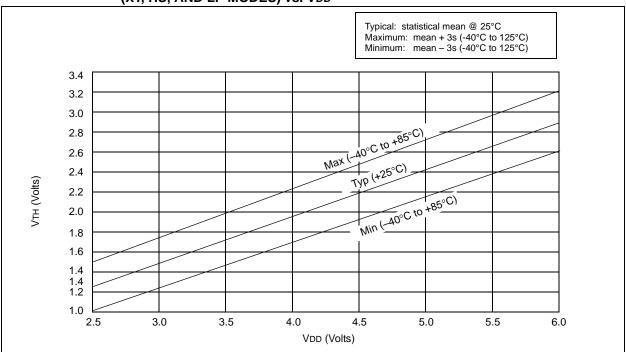
* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

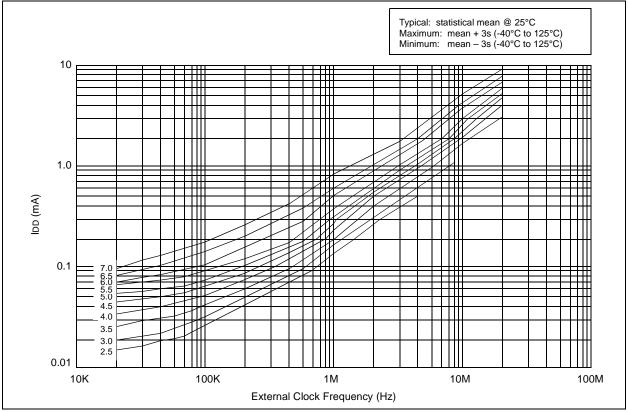
- **Note 1:** The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.
 - 2: Negative current is defined as coming out of the pin.
 - **3:** For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.
 - 4: The user may use the better of the two specifications.

FIGURE 13-5: TIMER0 CLOCK TIMINGS - PIC16CR54A

TABLE 13-4: TIMER0 CLOCK REQUIREMENTS - PIC16CR54A


•			Standard Operating Operating Temperat	g Conditions (unless otherwise specified) ature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Symbol		Characteristic	Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High	Pulse Width - No Prescaler - With Prescaler	0.5 Tcy + 20* 10*		_	ns ns	
41	TtOL	T0CKI Low	Pulse Width - No Prescaler - With Prescaler	0.5 Tcy + 20* 10*			ns ns	-
42	Tt0P	T0CKI Perio	od	20 or <u>Tcy + 40</u> * N		—	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

These parameters are characterized but not tested.


† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C5X

15.2 DC Characteristics: PIC16

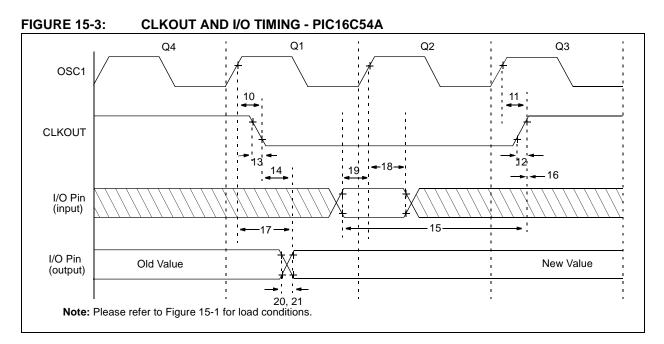
PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

PIC16L (Extend					tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended			
PIC16C54A-04E, 10E, 20E (Extended)				ard Ope ting Terr	-		tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended	
Param No.	Symbol	Characteristic	Min Typ† Max Units Conditions					
	IPD	Power-down Current ⁽²⁾						
D020		PIC16LC54A	_	2.5 0.25	15 7.0	μΑ μΑ	VDD = 2.5V, WDT enabled, Extended VDD = 2.5V, WDT disabled, Extended	
D020A		PIC16C54A		5.0 0.8	22 18*	μΑ μΑ	VDD = 3.5V, WDT enabled VDD = 3.5V, WDT disabled	

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .


© 1997-2013 Microchip Technology Inc.

15.3 DC Characteristics: PIC16LV54A-02 (Commercial) PIC16LV54A-02I (Industrial)

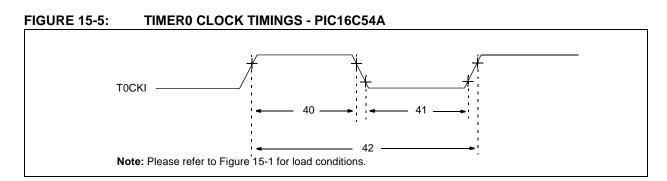
PIC16LV54A-02 PIC16LV54A-02I (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}\mbox{C} \leq T\mbox{A} \leq +70^{\circ}\mbox{C for commercial} \\ -20^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for industrial} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage RC and XT modes	2.0	_	3.8	V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*		—	V/ms	See Section 5.1 for details on Power-on Reset		
D010	IDD	Supply Current⁽²⁾ RC ⁽³⁾ and XT modes LP mode, Commercial LP mode, Industrial		0.5 11 14	 27 35	μA	Fosc = 2.0 MHz, VDD = 3.0V Fosc = 32 kHz, VDD = 2.5V WDT disabled Fosc = 32 kHz, VDD = 2.5V WDT disabled		
D020	IPD	Power-down Current^(2,4) Commercial Commercial Industrial Industrial		2.5 0.25 3.5 0.3	12 4.0 14 5.0	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT enabled VDD = 2.5V, WDT disabled VDD = 2.5V, WDT enabled VDD = 2.5V, WDT disabled		

These parameters are characterized but not tested.

- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.
 - 4: The oscillator start-up time can be as much as 8 seconds for XT and LP oscillator selection on wake-up from SLEEP mode or during initial power-up.

TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54A

AC Chara	octeristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \ \mbox{for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \ \mbox{for industrial} \\ -20^{\circ}C \leq TA \leq +85^{\circ}C \ \mbox{for industrial} - PIC16LV54A-02I \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ \mbox{for extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	—	15	30**	ns	
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	—	15	30**	ns	
12	TckR	CLKOUT rise time ⁽¹⁾	—	5.0	15**	ns	
13	TckF	CLKOUT fall time ⁽¹⁾	—	5.0	15**	ns	
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	40**	ns	
15	TioV2ckH	Port in valid before CLKOUT ⁽¹⁾	0.25 TCY+30*	—	—	ns	
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	—	—	ns	
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid ⁽²⁾	—	—	100*	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	—	ns	
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	—	ns	
20	TioR	Port output rise time ⁽²⁾	—	10	25**	ns	
21	TioF	Port output fall time ⁽²⁾	—	10	25**	ns	


* These parameters are characterized but not tested.

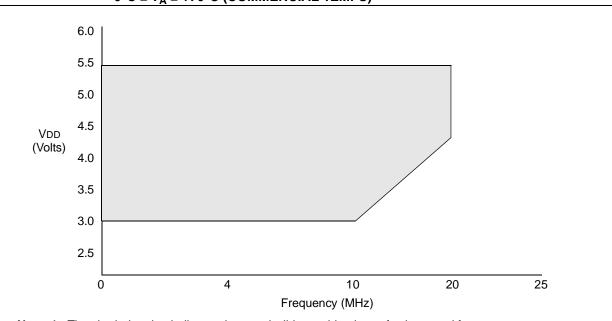
** These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

2: Please refer to Figure 15-1 for load conditions.

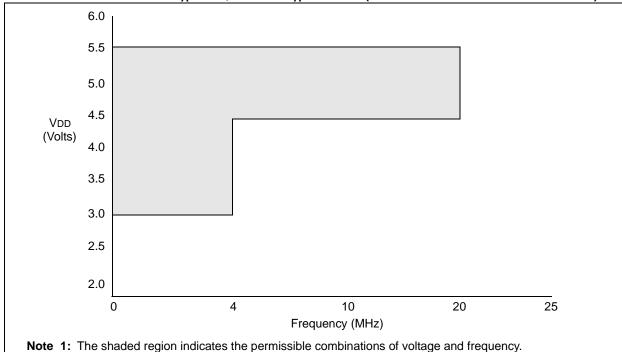
TABLE 15-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54A

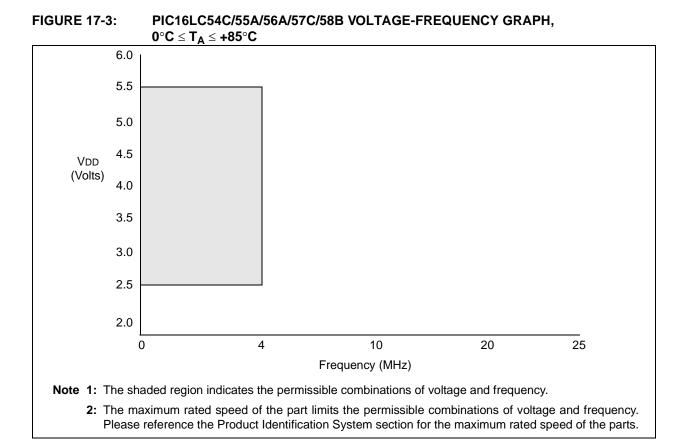

Standard Operating Conditions (unless otherwise specified)								
		Operating Temperat	ture $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
AC Characteristics			$-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
$-20^{\circ}C \le TA \le +85^{\circ}C$ for industrial - PIC16LV54A-02							trial - PIC16LV54A-02I	
$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							nded	
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width						
		- No Prescaler	0.5 TCY + 20*	—	—	ns		
		- With Prescaler	10*	—	_	ns		
41	Tt0L	T0CKI Low Pulse Width						
		- No Prescaler	0.5 TCY + 20*	—	—	ns		
		- With Prescaler	10*	—	_	ns		
42	Tt0P	T0CKI Period	20 or <u>TCY + 40</u> *	—	_	ns	Whichever is greater.	
			N				N = Prescale Value	
							(1, 2, 4,, 256)	

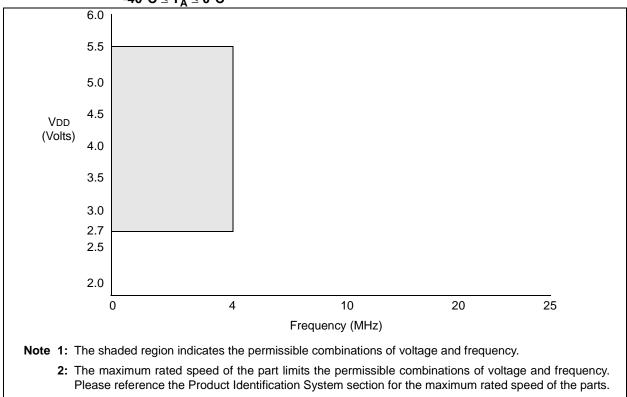
* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C5X

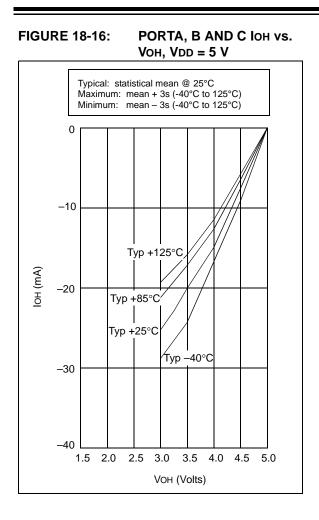



2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

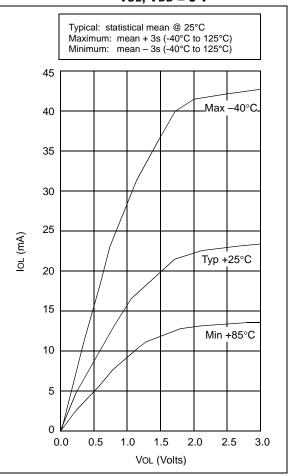


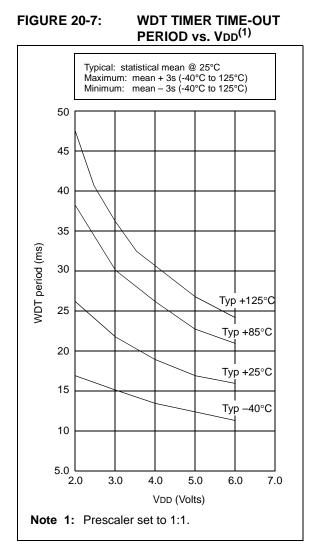
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.

Please reference the Product Identification System section for the maximum rated speed of the parts.



17.3 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial, Extended) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial, Extended) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)


DC CHARACTERISTICS		Standard Operating Co Operating Temperature		$\begin{array}{l} \mbox{nditions (unless otherwise specified)} \\ 0^\circ C \leq TA \leq +70^\circ C \mbox{ for commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$			
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
D030	VIL	Input Low Voltage I/O Ports I/O Ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss Vss Vss	 	0.8 V 0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V V	4.5V <v<sub>DD ≤ 5.5V Otherwise RC mode only⁽³⁾ XT, HS and LP modes</v<sub>
D040	Viн	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	2.0 0.25 Vdd+0.8 0.85 Vdd 0.85 Vdd 0.85 Vdd 0.85 Vdd 0.7 Vdd	 	Vdd Vdd Vdd Vdd Vdd Vdd Vdd	V V V V V	4.5V < VDD ≤ 5.5V Otherwise RC mode only ⁽³⁾ XT, HS and LP modes
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	_	V	
D060	Ιι∟	Input Leakage Current ^(1,2) I/O ports MCLR MCLR T0CKI OSC1	-1.0 -5.0 -3.0 -3.0	0.5 — 0.5 0.5 0.5	+1.0 +5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, XT, HS and LP modes
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, RC mode only
D090	Vон	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd - 0.7 Vdd - 0.7	_	_	V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, RC mode only


† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.
 - **2:** Negative current is defined as coming out of the pin.
 - 3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

FIGURE 18-17: PORTA, B AND C IOL vs. Vol, VDD = 3 V

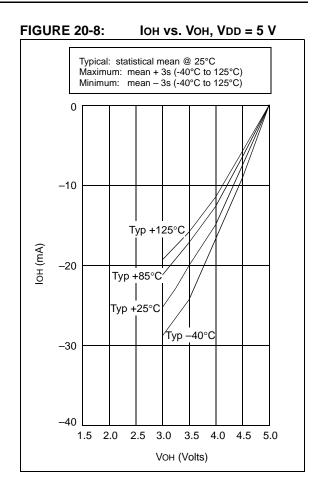


TABLE 20-1: INPUT CAPACITANCE

Pin	Typical Capacitance (pF)				
FIII	18L PDIP	18L SOIC			
RA port	5.0	4.3			
RB port	5.0	4.3			
MCLR	17.0	17.0			
OSC1	4.0	3.5			
OSC2/CLKOUT	4.3	3.5			
тоскі	3.2	2.8			

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1997-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769355

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.