# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 4MHz                                                                        |
| Connectivity               | -                                                                           |
| Peripherals                | POR, WDT                                                                    |
| Number of I/O              | 12                                                                          |
| Program Memory Size        | 3KB (2K x 12)                                                               |
| Program Memory Type        | OTP                                                                         |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 73 x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                                 |
| Data Converters            | -                                                                           |
| Oscillator Type            | External                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 20-SSOP (0.209", 5.30mm Width)                                              |
| Supplier Device Package    | 20-SSOP                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc58b-04i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## TABLE 1-1: PIC16C5X FAMILY OF DEVICES

| Features                                                                                                                                     | PIC16C54                            | PIC16CR54                           | PIC16C55                            | PIC16C56                            | PIC16CR56                           |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Maximum Operation Frequency                                                                                                                  | 40 MHz                              | 20 MHz                              | 40 MHz                              | 40 MHz                              | 20 MHz                              |
| EPROM Program Memory (x12 words)                                                                                                             | 512                                 | —                                   | 512                                 | 1K                                  | —                                   |
| ROM Program Memory (x12 words)                                                                                                               | —                                   | 512                                 | —                                   | —                                   | 1K                                  |
| RAM Data Memory (bytes)                                                                                                                      | 25                                  | 25                                  | 24                                  | 25                                  | 25                                  |
| Timer Module(s)                                                                                                                              | TMR0                                | TMR0                                | TMR0                                | TMR0                                | TMR0                                |
| I/O Pins                                                                                                                                     | 12                                  | 12                                  | 20                                  | 12                                  | 12                                  |
| Number of Instructions                                                                                                                       | 33                                  | 33                                  | 33                                  | 33                                  | 33                                  |
| Packages                                                                                                                                     | 18-pin DIP,<br>SOIC;<br>20-pin SSOP | 18-pin DIP,<br>SOIC;<br>20-pin SSOP | 28-pin DIP,<br>SOIC;<br>28-pin SSOP | 18-pin DIP,<br>SOIC;<br>20-pin SSOP | 18-pin DIP,<br>SOIC;<br>20-pin SSOP |
| All PIC <sup>®</sup> Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high I/O current capability. |                                     |                                     |                                     |                                     |                                     |

PIC16C58 Features **PIC16C57** PIC16CR57 PIC16CR58 Maximum Operation Frequency 20 MHz 40 MHz 40 MHz 20 MHz EPROM Program Memory (x12 words) 2K 2K \_\_\_\_ \_ ROM Program Memory (x12 words) 2K 2K \_ \_ RAM Data Memory (bytes) 72 72 73 73 Timer Module(s) TMR0 TMR0 TMR0 TMR0 I/O Pins 20 20 12 12 Number of Instructions 33 33 33 33 28-pin DIP, SOIC; 28-pin DIP, SOIC; 18-pin DIP, SOIC; 18-pin DIP, SOIC; Packages 28-pin SSOP 28-pin SSOP 20-pin SSOP 20-pin SSOP All PIC® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high I/O current capability.

## 2.0 PIC16C5X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16C5X Product Identification System at the back of this data sheet to specify the correct part number.

For the PIC16C5X family of devices, there are four device types, as indicated in the device number:

- 1. **C**, as in PIC16**C**54C. These devices have EPROM program memory and operate over the standard voltage range.
- LC, as in PIC16LC54A. These devices have EPROM program memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**54A. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR54A. These devices have ROM program memory and operate over an extended voltage range.

## 2.1 UV Erasable Devices (EPROM)

The UV erasable versions offered in CERDIP packages, are optimal for prototype development and pilot programs.

UV erasable devices can be programmed for any of the four oscillator configurations. Microchip's

PICSTART<sup>®</sup> Plus<sup>(1)</sup> and PRO MATE<sup>®</sup> programmers both support programming of the PIC16C5X. Third party programmers also are available. Refer to the Third Party Guide (DS00104) for a list of sources.

## 2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates, or small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must be programmed.

Note 1: PIC16LC54C and PIC16C54A devices require OSC2 not to be connected while programming with PICSTART<sup>®</sup> Plus programmer.

## 2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

## 2.4 Serialized Quick-Turnaround-Production (SQTP<sup>SM</sup>) Devices

Microchip offers the unique programming service where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

## 2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, giving the customer a low cost option for high volume, mature products.



#### FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM

## 5.0 RESET

PIC16C5X devices may be RESET in one of the following ways:

- Power-On Reset (POR)
- MCLR Reset (normal operation)
- MCLR Wake-up Reset (from SLEEP)
- WDT Reset (normal operation)
- WDT Wake-up Reset (from SLEEP)

Table 5-1 shows these RESET conditions for the PCL and STATUS registers.

Some registers are not affected in any RESET condition. Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-On Reset (POR), MCLR or WDT Reset. A MCLR or WDT wake-up from SLEEP also results in a device RESET, and not a continuation of operation before SLEEP. The  $\overline{\text{TO}}$  and  $\overline{\text{PD}}$  bits (STATUS <4:3>) are set or cleared depending on the different RESET conditions (Table 5-1). These bits may be used to determine the nature of the RESET.

Table 5-3 lists a full description of RESET states of all registers. Figure 5-1 shows a simplified block diagram of the On-chip Reset circuit.

## TABLE 5-1: STATUS BITS AND THEIR SIGNIFICANCE

| Condition                     | то | PD |
|-------------------------------|----|----|
| Power-On Reset                | 1  | 1  |
| MCLR Reset (normal operation) | u  | u  |
| MCLR Wake-up (from SLEEP)     | 1  | 0  |
| WDT Reset (normal operation)  | 0  | 1  |
| WDT Wake-up (from SLEEP)      | 0  | 0  |

Legend: u = unchanged, x = unknown, - = unimplemented read as '0'.

#### TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH RESET

| Address | Name   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on<br>POR | <u>Value</u> on<br>MCLR and<br>WDT Reset |
|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------|------------------------------------------|
| 03h     | STATUS | PA2   | PA1   | PA0   | TO    | PD    | Z     | DC    | С     | 0001 1xxx       | 000q quuu                                |

Legend: u = unchanged, x = unknown, q = see Table 5-1 for possible values.

## 6.0 MEMORY ORGANIZATION

PIC16C5X memory is organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one or two STATUS Register bits. For devices with a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Selection Register (FSR).

## 6.1 Program Memory Organization

The PIC16C54, PIC16CR54 and PIC16C55 have a 9bit Program Counter (PC) capable of addressing a 512 x 12 program memory space (Figure 6-1). The PIC16C56 and PIC16CR56 have a 10-bit Program Counter (PC) capable of addressing a 1K x 12 program memory space (Figure 6-2). The PIC16CR57, PIC16C58 and PIC16CR58 have an 11-bit Program Counter capable of addressing a 2K x 12 program memory space (Figure 6-3). Accessing a location above the physically implemented address will cause a wraparound.

A NOP at the RESET vector location will cause a restart at location 000h. The RESET vector for the PIC16C54, PIC16CR54 and PIC16C55 is at 1FFh. The RESET vector for the PIC16C56 and PIC16CR56 is at 3FFh. The RESET vector for the PIC16C57, PIC16CR57, PIC16C58, and PIC16CR58 is at 7FFh. See Section 6.5 for additional information using CALL and GOTO instructions.

#### FIGURE 6-1: PIC16C54/CR54/C55 PROGRAM MEMORY MAP AND STACK



#### FIGURE 6-2:

#### PIC16C56/CR56 PROGRAM MEMORY MAP AND STACK



FIGURE 6-3:

PIC16C57/CR57/C58/ CR58 PROGRAM MEMORY MAP AND STACK



## 6.2 Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers and General Purpose Registers.

The Special Function Registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports) and the File Select Register (FSR). In addition, Special Purpose Registers are used to control the I/O port configuration and prescaler options.

The General Purpose Registers are used for data and control information under command of the instructions.

For the PIC16C54, PIC16CR54, PIC16C56 and PIC16CR56, the register file is composed of 7 Special Function Registers and 25 General Purpose Registers (Figure 6-4).

For the PIC16C55, the register file is composed of 8 Special Function Registers and 24 General Purpose Registers.

For the PIC16C57 and PIC16CR57, the register file is composed of 8 Special Function Registers, 24 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-5).

For the PIC16C58 and PIC16CR58, the register file is composed of 7 Special Function Registers, 25 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-6).

#### 6.2.1 GENERAL PURPOSE REGISTER FILE

The register file is accessed either directly or indirectly through the File Select Register (FSR). The FSR Register is described in Section 6.7.

## FIGURE 6-4:

#### PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56 REGISTER FILE MAP



NOTES:

## 9.1 Configuration Bits

Configuration bits can be programmed to select various device configurations. Two bits are for the selection of the oscillator type and one bit is the Watchdog Timer enable bit. Nine bits are code protection bits for the PIC16C54A, PIC16CR54A, PIC16C55A, PIC16C56A, PIC16CR56A, PIC16CR57C, PIC16CR57C, PIC16CR57C,

PIC16C58B, and PIC16CR58B devices (Register 9-1). One bit is for code protection for the PIC16C54, PIC16C55, PIC16C56 and PIC16C57 devices (Register 9-2).

QTP or ROM devices have the oscillator configuration programmed at the factory and these parts are tested accordingly (see "Product Identification System" diagrams in the back of this data sheet).

#### REGISTER 9-1: CONFIGURATION WORD FOR PIC16C54A/CR54A/C54C/CR54C/C55A/C56A/ CR56A/C57C/CR57C/C58B/CR58B

| CP     | CP | CP | CP | CP | CP | CP | CP | CP | WDTE | FOSC1 | FOSC0 |
|--------|----|----|----|----|----|----|----|----|------|-------|-------|
| bit 11 |    |    |    |    |    |    |    |    |      |       | bit 0 |

bit 11-3: CP: Code Protection Bit

- 1 = Code protection off
  - 0 =Code protection on
- bit 2: WDTE: Watchdog timer enable bit
  - 1 = WDT enabled
  - 0 = WDT disabled

#### bit 1-0: FOSC1:FOSC0: Oscillator Selection Bit

- 00 = LP oscillator
- 01 = XT oscillator
- 10 = HS oscillator
- 11 = RC oscillator

## **Note 1:** Refer to the PIC16C5X Programming Specification (Literature Number DS30190) to determine how to access the configuration word.

| Legend:           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
| -n = Value at POR | 1 = bit is set   | 0 = bit is cleared        | x = bit is unknown |

## 11.0 DEVELOPMENT SUPPORT

The PIC<sup>®</sup> microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
  - MPLAB<sup>®</sup> IDE Software
- Assemblers/Compilers/Linkers
  - MPASM<sup>™</sup> Assembler
  - MPLAB C17 and MPLAB C18 C Compilers
  - MPLINK™ Object Linker/
  - MPLIB<sup>™</sup> Object Librarian
- Simulators
  - MPLAB SIM Software Simulator
- Emulators
  - MPLAB ICE 2000 In-Circuit Emulator
  - ICEPIC<sup>™</sup> In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
  - PRO MATE<sup>®</sup> II Universal Device Programmer
- PICSTART<sup>®</sup> Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
  - PICDEM<sup>™</sup>1 Demonstration Board
  - PICDEM 2 Demonstration Board
  - PICDEM 3 Demonstration Board
  - PICDEM 17 Demonstration Board
  - KEELOQ<sup>®</sup> Demonstration Board

## 11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows<sup>®</sup>-based application that contains:

- An interface to debugging tools
  - simulator
  - programmer (sold separately)
  - emulator (sold separately)
  - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
  - source files
  - absolute listing file
  - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

## 11.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel<sup>®</sup> standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

## 11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display. NOTES:

## 12.3 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)

| PIC16C<br>(Exten | PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE<br>(Extended) |                                                                                                                                              |                                   | Standard Operating Conditions (unless otherwise specified)<br>Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended |                                    |                            |                                                                                                                                                                                                           |  |  |
|------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Param<br>No.     | Symbol                                                  | Characteristic/Device                                                                                                                        | Min                               | Тур†                                                                                                                                     | Max                                | Units                      | Conditions                                                                                                                                                                                                |  |  |
| D001             | Vdd                                                     | Supply Voltage<br>PIC16C5X-RCE<br>PIC16C5X-XTE<br>PIC16C5X-10E<br>PIC16C5X-HSE<br>PIC16C5X-LPE                                               | 3.25<br>3.25<br>4.5<br>4.5<br>2.5 |                                                                                                                                          | 6.0<br>6.0<br>5.5<br>5.5<br>6.0    | V<br>V<br>V<br>V<br>V      |                                                                                                                                                                                                           |  |  |
| D002             | Vdr                                                     | RAM Data Retention Voltage <sup>(1)</sup>                                                                                                    | —                                 | 1.5*                                                                                                                                     | _                                  | V                          | Device in SLEEP mode                                                                                                                                                                                      |  |  |
| D003             | VPOR                                                    | VDD Start Voltage to ensure<br>Power-on Reset                                                                                                | —                                 | Vss                                                                                                                                      | —                                  | V                          | See Section 5.1 for details on<br>Power-on Reset                                                                                                                                                          |  |  |
| D004             | SVDD                                                    | VDD Rise Rate to ensure<br>Power-on Reset                                                                                                    | 0.05*                             | _                                                                                                                                        | —                                  | V/ms                       | See Section 5.1 for details on<br>Power-on Reset                                                                                                                                                          |  |  |
| D010             | IDD                                                     | Supply Current <sup>(2)</sup><br>PIC16C5X-RCE <sup>(3)</sup><br>PIC16C5X-XTE<br>PIC16C5X-10E<br>PIC16C5X-HSE<br>PIC16C5X-HSE<br>PIC16C5X-LPE |                                   | 1.8<br>1.8<br>4.8<br>9.0<br>19                                                                                                           | 3.3<br>3.3<br>10<br>10<br>20<br>55 | mA<br>mA<br>mA<br>mA<br>μA | Fosc = 4 MHz, VDD = $5.5V$<br>Fosc = 4 MHz, VDD = $5.5V$<br>Fosc = 10 MHz, VDD = $5.5V$<br>Fosc = 10 MHz, VDD = $5.5V$<br>Fosc = 16 MHz, VDD = $5.5V$<br>Fosc = $32$ kHz, VDD = $3.25V$ ,<br>WDT disabled |  |  |
| D020             | IPD                                                     | Power-down Current <sup>(2)</sup>                                                                                                            | _                                 | 5.0<br>0.8                                                                                                                               | 22<br>18                           | μΑ<br>μΑ                   | VDD = 3.25V, WDT enabled<br>VDD = 3.25V, WDT disabled                                                                                                                                                     |  |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

**Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k $\Omega$ .

| AC Characteristics |        | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$ |      |        |        |       |                        |  |
|--------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|--------|-------|------------------------|--|
| Param<br>No.       | Symbol | Characteristic                                                                                                                                                                                                                                                                                                                   | Min  | Тур†   | Мах    | Units | Conditions             |  |
| 1                  | Tosc   | External CLKIN Period <sup>(1)</sup>                                                                                                                                                                                                                                                                                             | 250  |        |        | ns    | XT OSC mode            |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 100  |        | —      | ns    | 10 MHz mode            |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 50   |        | —      | ns    | HS OSC mode (Comm/Ind) |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 62.5 |        | —      | ns    | HS OSC mode (Ext)      |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 25   |        | —      | μS    | LP OSC mode            |  |
|                    |        | Oscillator Period <sup>(1)</sup>                                                                                                                                                                                                                                                                                                 | 250  | —      | —      | ns    | RC OSC mode            |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 250  |        | 10,000 | ns    | XT OSC mode            |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 100  |        | 250    | ns    | 10 MHz mode            |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 50   |        | 250    | ns    | HS OSC mode (Comm/Ind) |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 62.5 |        | 250    | ns    | HS OSC mode (Ext)      |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 25   |        | —      | μS    | LP OSC mode            |  |
| 2                  | Тсу    | Instruction Cycle Time <sup>(2)</sup>                                                                                                                                                                                                                                                                                            | —    | 4/Fosc | —      | —     |                        |  |
| 3                  | TosL,  | Clock in (OSC1) Low or High                                                                                                                                                                                                                                                                                                      | 85*  | —      | —      | ns    | XT oscillator          |  |
|                    | TosH   | Time                                                                                                                                                                                                                                                                                                                             | 20*  | —      | —      | ns    | HS oscillator          |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | 2.0* |        | —      | μS    | LP oscillator          |  |
| 4                  | TosR,  | Clock in (OSC1) Rise or Fall                                                                                                                                                                                                                                                                                                     | —    |        | 25*    | ns    | XT oscillator          |  |
|                    | TosF   | Time                                                                                                                                                                                                                                                                                                                             | —    | —      | 25*    | ns    | HS oscillator          |  |
|                    |        |                                                                                                                                                                                                                                                                                                                                  | —    | —      | 50*    | ns    | LP oscillator          |  |

#### TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

\* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

© 1997-2013 Microchip Technology Inc.

## 14.0 DEVICE CHARACTERIZATION - PIC16C54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean +  $3\sigma$ ) or (mean -  $3\sigma$ ) respectively, where  $\sigma$  is a standard deviation, over the whole temperature range.





#### TABLE 14-1: RC OSCILLATOR FREQUENCIES

| Сехт   | Rext | Average<br>Fosc @ 5 V, 25°C |       |  |  |  |
|--------|------|-----------------------------|-------|--|--|--|
| 20 pF  | 3.3K | 5 MHz                       | ± 27% |  |  |  |
|        | 5K   | 3.8 MHz                     | ± 21% |  |  |  |
|        | 10K  | 2.2 MHz                     | ± 21% |  |  |  |
|        | 100K | 262 kHz                     | ± 31% |  |  |  |
| 100 pF | 3.3K | 1.6 MHz                     | ± 13% |  |  |  |
|        | 5K   | 1.2 MHz                     | ± 13% |  |  |  |
|        | 10K  | 684 kHz                     | ± 18% |  |  |  |
|        | 100K | 71 kHz                      | ± 25% |  |  |  |
| 300 pF | 3.3K | 660 kHz                     | ± 10% |  |  |  |
|        | 5.0K | 484 kHz                     | ± 14% |  |  |  |
|        | 10K  | 267 kHz                     | ± 15% |  |  |  |
|        | 100K | 29 kHz                      | ± 19% |  |  |  |

The frequencies are measured on DIP packages.

The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is  $\pm 3$  standard deviations from the average value for VDD = 5V.

## 15.2 DC Characteristics: PIC16

## PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

| PIC16LC54A-04E<br>(Extended)          |        |                                   |                 | ard Ope<br>ting Terr        | rating | <b>j Condi</b><br>ure | tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended |
|---------------------------------------|--------|-----------------------------------|-----------------|-----------------------------|--------|-----------------------|-----------------------------------------------------------------------------------------|
| PIC16C54A-04E, 10E, 20E<br>(Extended) |        |                                   | Stand:<br>Opera | <b>ard Ope</b><br>ting Terr | rating | <b>j Condi</b><br>ure | tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended |
| Param<br>No.                          | Symbol | Characteristic                    | Min             | Тур†                        | Max    | Units                 | Conditions                                                                              |
|                                       | IPD    | Power-down Current <sup>(2)</sup> |                 |                             |        |                       |                                                                                         |
| D020                                  |        | PIC16LC54A                        | —               | 2.5                         | 15     | μΑ                    | VDD = 2.5V, WDT enabled,                                                                |
|                                       |        |                                   | _               | 0.25                        | 7.0    | μA                    | Extended<br>VDD = 2.5V, WDT disabled,<br>Extended                                       |
| D020A                                 |        | PIC16C54A                         | —               | 5.0                         | 22     | μA                    | VDD = 3.5V, WDT enabled                                                                 |
|                                       |        |                                   |                 | 0.8                         | 18^    | μΑ                    | VDD = $3.5V$ , VVD I disabled                                                           |

Legend: Rows with standard voltage device data only are shaded for improved readability.

\* These parameters are characterized but not tested.

- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
  - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
    - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
    - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
  - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k $\Omega$ .

© 1997-2013 Microchip Technology Inc.

# 15.4 DC Characteristics: PIC16C54A-04, 10, 20, PIC16LC54A-04, PIC16LV54A-02 (Commercial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04E, 10E, 20E, PIC16LC54A-04E (Extended)

| DC CH        | ARACTE | RISTICS                                                                                                                             | $\begin{array}{llllllllllllllllllllllllllllllllllll$                          |                               |                                                        |                            |                                                                                                                                                                                                   |  |  |
|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Param<br>No. | Symbol | Characteristic                                                                                                                      | Min                                                                           | Тур†                          | Мах                                                    | Units                      | Conditions                                                                                                                                                                                        |  |  |
| D030         | VIL    | Input Low Voltage<br>I/O ports<br>MCLR (Schmitt Trigger)<br>T0CKI (Schmitt Trigger)<br>OSC1 (Schmitt Trigger)<br>OSC1               | Vss<br>Vss<br>Vss<br>Vss<br>Vss                                               |                               | 0.2 VDD<br>0.15 VDD<br>0.15 VDD<br>0.15 VDD<br>0.3 VDD | V<br>V<br>V<br>V           | Pin at hi-impedance<br>RC mode only <sup>(3)</sup><br>XT, HS and LP modes                                                                                                                         |  |  |
| D040         | VIH    | Input High Voltage<br>I/O ports<br>I/O ports<br>MCLR (Schmitt Trigger)<br>T0CKI (Schmitt Trigger)<br>OSC1 (Schmitt Trigger)<br>OSC1 | 0.2 VDD + 1<br>2.0<br>0.85 VDD<br>0.85 VDD<br>0.85 VDD<br>0.85 VDD<br>0.7 VDD |                               | VDD<br>VDD<br>VDD<br>VDD<br>VDD<br>VDD                 | V<br>V<br>V<br>V<br>V<br>V | For all V <sub>DD</sub> <sup>(4)</sup><br>4.0V < V <sub>DD</sub> ≤ 5.5V <sup>(4)</sup><br>RC mode only <sup>(3)</sup><br>XT, HS and LP modes                                                      |  |  |
| D050         | VHYS   | Hysteresis of Schmitt<br>Trigger inputs                                                                                             | 0.15 VDD*                                                                     | _                             | _                                                      | V                          |                                                                                                                                                                                                   |  |  |
| D060         | IIL    | Input Leakage Current <sup>(1,2)</sup><br>I/O ports<br>MCLR<br>MCLR<br>TOCKI<br>OSC1                                                | -1.0<br>-5.0<br><br>-3.0<br>-3.0                                              | 0.5<br>—<br>0.5<br>0.5<br>0.5 | +1.0<br>+5.0<br>+3.0<br>+3.0<br>—                      | μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ | For VDD $\leq$ 5.5V:<br>VSS $\leq$ VPIN $\leq$ VDD,<br>pin at hi-impedance<br>VPIN = VSS +0.25V<br>VPIN = VDD<br>VSS $\leq$ VPIN $\leq$ VDD<br>VSS $\leq$ VPIN $\leq$ VDD,<br>XT, HS and LP modes |  |  |
| D080         | VOL    | Output Low Voltage<br>I/O ports<br>OSC2/CLKOUT                                                                                      | _                                                                             |                               | 0.6<br>0.6                                             | V<br>V                     | IOL = 8.7 mA, VDD = 4.5V<br>IOL = 1.6 mA, VDD = 4.5V,<br>RC mode only                                                                                                                             |  |  |
|              | VOH    | Output High Voltage <sup>(2)</sup><br>I/O ports<br>OSC2/CLKOUT                                                                      | Vdd - 0.7<br>Vdd - 0.7                                                        |                               |                                                        | V<br>V                     | IOH = -5.4 mA, VDD = 4.5V<br>IOH = -1.0 mA, VDD = 4.5V,<br>RC mode only                                                                                                                           |  |  |

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

**Note 1:** The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

**3:** For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

\*

## 15.6 Timing Diagrams and Specifications

## FIGURE 15-2: EXTERNAL CLOCK TIMING - PIC16C54A



| TABLE 15-1: | <b>EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A</b> |
|-------------|-------------------------------------------------------|
|             |                                                       |

| AC Characteristics |        | $ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -20^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} - PIC16LV54A-02I \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \\ \end{array} $ |     |      |     |       |                          |
|--------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|-------|--------------------------|
| Param<br>No.       | Symbol | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                  | Min | Тур† | Max | Units | Conditions               |
|                    | Fosc   | External CLKIN Fre-                                                                                                                                                                                                                                                                                                                                                                                             | DC  |      | 4.0 | MHz   | XT OSC mode              |
|                    |        | quency <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                           | DC  | —    | 2.0 | MHz   | XT osc mode (PIC16LV54A) |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | DC  | —    | 4.0 | MHz   | HS osc mode (04)         |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | DC  | —    | 10  | MHz   | HS osc mode (10)         |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | DC  | —    | 20  | MHz   | HS osc mode (20)         |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | DC  | —    | 200 | kHz   | LP osc mode              |
|                    |        | Oscillator Frequency <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                             | DC  | _    | 4.0 | MHz   | RC osc mode              |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | DC  | —    | 2.0 | MHz   | RC osc mode (PIC16LV54A) |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 | —    | 4.0 | MHz   | XT osc mode              |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 | —    | 2.0 | MHz   | XT osc mode (PIC16LV54A) |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0 | —    | 4.0 | MHz   | HS osc mode (04)         |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0 | —    | 10  | MHz   | HS osc mode (10)         |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0 | —    | 20  | MHz   | HS osc mode (20)         |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0 |      | 200 | kHz   | LP osc mode              |

\* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
  - Instruction cycle period (TcY) equals four times the input oscillator time base period.

## 17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

| PIC16LC5X<br>PIC16LCR5X<br>(Commercial, Industrial) |        | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |                                                      |           |      |           |                                                                               |
|-----------------------------------------------------|--------|-------------------------------------------------------|------------------------------------------------------|-----------|------|-----------|-------------------------------------------------------------------------------|
| PIC16C5X<br>PIC16CR5X<br>(Commercial, Industrial)   |        |                                                       | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |           |      |           |                                                                               |
| Param<br>No.                                        | Symbol | Characteristic/Device                                 | Min                                                  | Тур†      | Max  | Units     | Conditions                                                                    |
|                                                     | IPD    | Power-down Current <sup>(2)</sup>                     |                                                      |           |      |           |                                                                               |
| D020                                                |        | PIC16LC5X                                             | —                                                    | 0.25      | 2    | μΑ        | VDD = 2.5V, WDT disabled, Commercial                                          |
|                                                     |        |                                                       | —                                                    | 0.25      | 3    | μA        | VDD = 2.5V, WDT disabled, Industrial                                          |
|                                                     |        |                                                       | _                                                    | 1<br>1 25 | 5    | μΑ        | VDD = $2.5V$ , WDT enabled, Commercial<br>VDD = $2.5V$ WDT enabled Industrial |
|                                                     |        | PIC16C5X                                              |                                                      | 0.25      | 4.0  | μΑ        | $V_{DD} = 3.0V$ WDT disabled Commercial                                       |
| DOZON                                               |        |                                                       | _                                                    | 0.25      | 5.0  | μ/(<br>μΑ | $V_{DD} = 3.0V$ , WDT disabled, Industrial                                    |
|                                                     |        |                                                       | —                                                    | 1.8       | 7.0* | μA        | VDD = 5.5V, WDT disabled, Commercial                                          |
|                                                     |        |                                                       | —                                                    | 2.0       | 8.0* | μA        | VDD = 5.5V, WDT disabled, Industrial                                          |
|                                                     |        |                                                       | —                                                    | 4         | 12*  | μA        | VDD = 3.0V, WDT enabled, Commercial                                           |
|                                                     |        |                                                       | —                                                    | 4         | 14*  | μA        | VDD = 3.0V, WDT enabled, Industrial                                           |
|                                                     |        |                                                       | —                                                    | 9.8       | 27*  | μA        | VDD = 5.5V, WDT enabled, Commercial                                           |
|                                                     |        |                                                       | -                                                    | 12        | 30*  | μA        | VDD = 5.5V, WDT enabled, Industrial                                           |

Legend: Rows with standard voltage device data only are shaded for improved readability.

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k $\Omega$ .

## 17.5 Timing Diagrams and Specifications



#### FIGURE 17-6: EXTERNAL CLOCK TIMING - PIC16C5X, PIC16CR5X

#### TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X

| AC Characteristics |        | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |      |      |       |       |                  |  |
|--------------------|--------|------------------------------------------------------|------|------|-------|-------|------------------|--|
| Param<br>No.       | Symbol | Characteristic                                       | Min  | Тур† | Max   | Units | Conditions       |  |
|                    | Fosc   | External CLKIN Frequency <sup>(1)</sup>              | DC   |      | 4.0   | MHz   | XT OSC mode      |  |
|                    |        |                                                      | DC   | —    | 4.0   | MHz   | HS osc mode (04) |  |
|                    |        |                                                      | DC   | —    | 20    | MHz   | HS osc mode (20) |  |
|                    |        |                                                      | DC   | _    | 200   | kHz   | LP OSC mode      |  |
|                    |        | Oscillator Frequency <sup>(1)</sup>                  | DC   | —    | 4.0   | MHz   | RC osc mode      |  |
|                    |        |                                                      | 0.45 | —    | 4.0   | MHz   | XT OSC mode      |  |
|                    |        |                                                      | 4.0  | —    | 4.0   | MHz   | HS osc mode (04) |  |
|                    |        |                                                      | 4.0  | —    | 20    | MHz   | HS osc mode (20) |  |
|                    |        |                                                      | 5.0  | _    | 200   | kHz   | LP OSC mode      |  |
| 1                  | Tosc   | External CLKIN Period <sup>(1)</sup>                 | 250  |      | —     | ns    | XT OSC mode      |  |
|                    |        |                                                      | 250  | —    | —     | ns    | HS osc mode (04) |  |
|                    |        |                                                      | 50   | —    | —     | ns    | HS osc mode (20) |  |
|                    |        |                                                      | 5.0  |      | —     | μS    | LP OSC mode      |  |
|                    |        | Oscillator Period <sup>(1)</sup>                     | 250  |      | —     | ns    | RC osc mode      |  |
|                    |        |                                                      | 250  | —    | 2,200 | ns    | XT osc mode      |  |
|                    |        |                                                      | 250  | —    | 250   | ns    | HS osc mode (04) |  |
|                    |        |                                                      | 50   | —    | 250   | ns    | HS osc mode (20) |  |
|                    |        |                                                      | 5.0  | —    | 200   | μS    | LP OSC mode      |  |

\* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

**2:** Instruction cycle period (TCY) equals four times the input oscillator time base period.

## 18.0 DEVICE CHARACTERIZATION - PIC16LC54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean +  $3\sigma$ ) or (mean -  $3\sigma$ ) respectively, where  $\sigma$  is a standard deviation, over the whole temperature range.



FIGURE 18-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

## TABLE 18-1: RC OSCILLATOR FREQUENCIES

| Сехт   | Rext | Average<br>Fosc @ 5V, 25°C |       |  |
|--------|------|----------------------------|-------|--|
| 20 pF  | 3.3K | 5 MHz                      | ± 27% |  |
|        | 5K   | 3.8 MHz                    | ± 21% |  |
|        | 10K  | 2.2 MHz                    | ± 21% |  |
|        | 100K | 262 kHz                    | ± 31% |  |
| 100 pF | 3.3K | 1.63 MHz                   | ± 13% |  |
|        | 5K   | 1.2 MHz                    | ± 13% |  |
|        | 10K  | 684 kHz                    | ± 18% |  |
|        | 100K | 71 kHz                     | ± 25% |  |
| 300 pF | 3.3K | 660 kHz                    | ± 10% |  |
|        | 5.0K | 484 kHz                    | ± 14% |  |
|        | 10K  | 267 kHz                    | ± 15% |  |
|        | 100K | 29 kHz                     | ± 19% |  |

The frequencies are measured on DIP packages.

The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is  $\pm 3$  standard deviation from average value for VDD = 5V.



## TABLE 20-1: INPUT CAPACITANCE

| Pin         | Typical Capacitance (pF) |          |  |  |  |
|-------------|--------------------------|----------|--|--|--|
| FIII        | 18L PDIP                 | 18L SOIC |  |  |  |
| RA port     | 5.0                      | 4.3      |  |  |  |
| RB port     | 5.0                      | 4.3      |  |  |  |
| MCLR        | 17.0                     | 17.0     |  |  |  |
| OSC1        | 4.0                      | 3.5      |  |  |  |
| OSC2/CLKOUT | 4.3                      | 3.5      |  |  |  |
| TOCKI       | 3.2                      | 2.8      |  |  |  |

All capacitance values are typical at  $25^{\circ}$ C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

