

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	2MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.8V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lv54a-02-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C5X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16C5X Product Identification System at the back of this data sheet to specify the correct part number.

For the PIC16C5X family of devices, there are four device types, as indicated in the device number:

- 1. **C**, as in PIC16**C**54C. These devices have EPROM program memory and operate over the standard voltage range.
- LC, as in PIC16LC54A. These devices have EPROM program memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**54A. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR54A. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices (EPROM)

The UV erasable versions offered in CERDIP packages, are optimal for prototype development and pilot programs.

UV erasable devices can be programmed for any of the four oscillator configurations. Microchip's

PICSTART[®] Plus⁽¹⁾ and PRO MATE[®] programmers both support programming of the PIC16C5X. Third party programmers also are available. Refer to the Third Party Guide (DS00104) for a list of sources.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates, or small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must be programmed.

Note 1: PIC16LC54C and PIC16C54A devices require OSC2 not to be connected while programming with PICSTART[®] Plus programmer.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround-Production (SQTPSM) Devices

Microchip offers the unique programming service where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, giving the customer a low cost option for high volume, mature products.

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

PIC16C5Xs can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- 1. LP: Low Power Crystal
- 2. XT: Crystal/Resonator
- 3. HS: High Speed Crystal/Resonator
- 4. RC: Resistor/Capacitor

Note: Not all oscillator selections available for all parts. See Section 9.1.

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 4-1). The PIC16C5X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 4-2).

FIGURE 4-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

FIGURE 4-2:

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 4-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS -PIC16C5X, PIC16CR5X

Osc Type	Resonator Freq	Cap. Range C1	Cap. Range C2
XT	455 kHz	68-100 pF	68-100 pF
	2.0 MHz	15-33 pF	15-33 pF
	4.0 MHz	10-22 pF	10-22 pF
HS	8.0 MHz	10-22 pF	10-22 pF
	16.0 MHz	10 pF	10 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 4-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR -PIC16C5X. PIC16CR5X

Osc Type	Crystal Freq	Cap.Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
XT	100 kHz	15-30 pF	200-300 pF
	200 kHz	15-30 pF	100-200 pF
	455 kHz	15-30 pF	15-100 pF
	1 MHz	15-30 pF	15-30 pF
	2 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15 pF	15 pF
	20 MHz	15 pF	15 pF

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Note: If you change from this device to another device, please verify oscillator characteristics in your application.

4.3 External Crystal Oscillator Circuit

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A welldesigned crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

TABLE 5-3: RESET CONDITIONS FOR ALL REGISTERS

Register	Address	Power-On Reset	MCLR or WDT Reset
W	N/A	xxxx xxxx	uuuu uuuu
TRIS	N/A	1111 1111	1111 1111
OPTION	N/A	11 1111	11 1111
INDF	00h	xxxx xxxx	uuuu uuuu
TMR0	01h	XXXX XXXX	uuuu uuuu
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	000q quuu
FSR ⁽¹⁾	04h	1xxx xxxx	luuu uuuu
PORTA	05h	xxxx	uuuu
PORTB	06h	XXXX XXXX	uuuu uuuu
PORTC ⁽²⁾	07h	XXXX XXXX	uuuu uuuu
General Purpose Register Files	07-7Fh	xxxx xxxx	սսսս սսսս

Legend: x = unknown u = unchanged - = unimplemented, read as '0'<math>q = see tables in Table 5-1 for possible values.

- Note 1: These values are valid for PIC16C57/CR57/CR58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.
 - **2:** General purpose register file on PIC16C54/CR54/C56/CR56/C58/CR58.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

6.3 STATUS Register

This register contains the arithmetic status of the ALU, the RESET status and the page preselect bits for program memories larger than 512 words.

The STATUS Register can be the destination for any instruction, as with any other register. If the STATUS Register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not

writable. Therefore, the result of an instruction with the STATUS Register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS Register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS Register because these instructions do not affect the Z, DC or C bits from the STATUS Register. For other instructions which do affect STATUS Bits, see Section 10.0, Instruction Set Summary.

REGISTER 6-1: STATUS REGISTER (ADDRESS: 03h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	PA2	PA1	PA0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7:	PA2: This bi	t unused at th	is time.					
	Use of the PA2 bit as a general purpose read/write bit is not recommended, since this may affect upward compatibility with future products.							
bit 6-5:	PA<1:0> : Pr	ogram page p	preselect bits	(PIC16C56/0	CR56)(PIC16	C57/CR57)(P	IC16C58/CR5	58)
	00 = Page 0	(000h - 1FFh) - PIC16C56	6/CR56, PIC1	6C57/CR57,	PIC16C58/C	R58	
	01 = Page 1	(200h - 3FFh) - PIC16C5	6/CR56, PIC1	6C57/CR57,	PIC16C58/C	R58	
	10 = Page 2 11 = Page 3	. (400h - 3FFh . (600h - 7FFh) - PIC16C5	7/CR57, PIC1	16C58/CR58			
	Each page is	s 512 words.	.,	., e ,				
	Using the PA	A<1:0> bits as	general purp	oose read/wri	te bits in devi	ces which do	not use them	for program
1.1.4	page presele	ect is not reco	mmended si	nce this may	affect upward	l compatibility	with future pr	oducts.
Dit 4:	IO: Time-ou	it dit						
	1 = After power of the second secon	ime-out occur	T instruction	1, Or SLEEP IR	Istruction			
bit 3:	PD: Power-c	down bit						
	1 = After power-up or by the CLRWDT instruction							
	0 = By execution of the SLEEP instruction							
bit 2:	Z: Zero bit							
	1 = The result of an arithmetic or logic operation is zero							
bit 1.	v = 110 result of an antimetic of logic operation is flot zero							
DIC 1.			(IOI ADDWF a		silucions			
	1 = A carry f	rom the 4th lo	w order bit o	f the result of	ccurred			
	0 = A carry f	rom the 4th lo	w order bit o	f the result di	d not occur			
	SUBWF	from the Ath	low order bit	of the requit	did not occur			
	1 = A borrow 0 = A borrow	v from the 4th	low order bit	of the result	occurred			
bit 0:	C: Carry/bor	row bit (for AD	DWF, SUBWF	and RRF, RLI	F instructions))		
	ADDWF		SUBW	/F		RRF or RLF		
	1 = A carry c	bccurred	1 = A	borrow did no	ot occur red	Loaded with	LSb or MSb,	respectively
	v = A carry c		0 = A I					
Lenendi								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

10.0 INSTRUCTION SET SUMMARY

Each PIC16C5X instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C5X instruction set summary in Table 10-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers in that bank is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 10-1:	OPCODE FIELD
	DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x1F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1)
	The assembler will generate code with $x = 0$.
	It is the recommended form of use for com-
	patibility with all Microchip software tools.
d	Destination select;
	d = 0 (store result in W)
	d = 1 (store result in file register 'f')
	Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
WDT	Watchdog Timer Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination, either the W register or the
	specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
E	In the set of
italics	User defined term (font is courier)

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time would be 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time would be 2 μ s.

Figure 10-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations						
<u>11 6</u>	5	4 0				
OPCODE	d	f (FILE #)				
d = 0 for destination d = 1 for destination f = 5-bit file registe	d = 0 for destination W d = 1 for destination f f = 5-bit file register address					
Bit-oriented file register	r ope	erations				
11 8	7	5 4 0				
OPCODE	b (Bl	IT #) f (FILE #)				
Literal and control ope	ratio	ns (except GOTO)				
<u>11</u>	8	7 0				
OPCODE		k (literal)				
k = 8-bit immediat	k = 8-bit immediate value					
Literal and control operations - GOTO instruction						
11	9	8 0				
OPCODE k (literal)						
k = 9-bit immediate value						

^{© 1997-2013} Microchip Technology Inc.

BSF	Bit Set f				
Syntax:	[label]	BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b)$	>)			
Status Affected:	None				
Encoding:	0101	bbbf	ffff		
Description:	Bit 'b' in r	register 'f'	is set.		
Words:	1				
Cycles:	1				
Example:	BSF	FLAG_RE	G, 7		
Before Instruction FLAG_REG = 0x0A After Instruction					
FLAG_F	REG = C)x8A			

BTFSC	Bit Test	Bit Test f, Skip if Clear			
Syntax:	[label]	[<i>label</i>] BTFSC f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 3 \\ 0 \leq b \leq 7 \end{array}$	1			
Operation:	skip if (f) = 0			
Status Affected:	None				
Encoding:	0110	bbbf	ffff		
Description:	If bit 'b' in register 'f' is 0 then the next instruction is skipped. If bit 'b' is 0 then the next instruc- tion fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2-cycle instruction				
Words:	1				
Cycles:	1(2)				
Example:	HERE FALSE TRUE	BTFSC GOTO • •	FLAG,1 PROCESS	S_CODE	
Before Instru	ction				
PC After Instructi if FLAG< PC if FLAG< PC	= (1> = (1> = (1> = =	address 0, address (1, address (1	(HERE) TRUE); FALSE)		

BTFSS	Bit Test f, Skip if Set			
Syntax:	[label] BTFSS f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$			
Operation:	skip if (f) = 1			
Status Affected:	None			
Encoding:	0111 bbbf ffff			
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2-cycle instruction.	-		
Words:	1			
Cycles:	1(2)			
Example:	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODI TRUE • •	Ξ		
Before Instr	ruction			
PC	= address (HERE)			
After Instruc	ction			
	< i > = 0, = address (FALSE)			
if FLAG<	<1> = 1.			
PC	= address (TRUE)			

TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC12CXXX	PIC14000	PIC16C5X	X92912I9	PIC16CXXX	PIC16F62X	XTOBIOI9	XX7O91OI9	78291219	PIC16F8XX	PIC16C9XX	PIC17C4X	XXTOTIOI9	PIC18CXX2	PIC18FXXX	63CXX 52CXX/ 54CXX/	нсаххх	мскеххх	MCP2510
MPLAB® Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB® C17 C Compiler												>	>						
MPLAB [®] C18 C Compiler														>	>				
MPASM TM Assembler/ MPLINK TM Object Linker	~	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	<	>	>	>	>	**`	>	>	>	>	>	>	>	~	>				
ICEPICTM In-Circuit Emulator	~		>	>	>		>	>	>		>								
et MPLAB® ICD In-Circuit Debugger Debugger				*>			*			>					>				
ଥିତ PICSTART® Plus Entry Level ଅପିତ Development Programmer	<	>	>	>	>	**`	>	~	>	>	>	>	>	>	>				
ମୁମ୍ବ PRO MATE® II Do Universal Device Programmer ଦ	>	>	>	>	>	** ⁄	>	>	>	>	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board			>		>		* +		>			>							
PICDEM TM 2 Demonstration Board				≁			^ +							>	>				
PICDEM TM 3 Demonstration Board											>								
PICDEM TM 14A Demonstration Board		>																	
☐ PICDEM™ 17 Demonstration Board													>						
KEELOQ® Evaluation Kit																	~		
KEELoa® Transponder Kit																	>		
n microlD™ Programmer's Kit																		>	
⊕ 125 kHz microID™ Developer's Kit																		>	
125 kHz Anticollision microlD [™] Developer's Kit																		>	
13.56 MHz Anticollision microlD TM Developer's Kit																		>	
MCP2510 CAN Developer's Kit																			>
* Contact the Microchip Technology In ** Contact Microchip Technology Inc. ft [†] Development tool is available on selv	ic. web : or avails lect dev	site at w ability dɛ ices.	ww.mic ate.	rochip.cc	om for inf	ormation	on how 1	to use the	9 MPLAB	lCD In	Circuit I	Debuggi	er (DV16	4001) w	ith PIC10	6C62, 63,	64, 65, 7	2, 73, 74,	, 76, 77.

© 1997-2013 Microchip Technology Inc.

13.1 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)

PIC16LC PIC16LC (Commo	R54A-04 R54A-04I ercial, Indus	trial)	Stand Opera	ard Oper ting Tem	perature	ondition 0° -40°	s (unless otherwise specified) $C \le TA \le +70^{\circ}C$ for commercial $C \le TA \le +85^{\circ}C$ for industrial
PIC16CR PIC16CR (Comm	54A-04, 10 54A-04I, 10 ercial, Indus	, 20 I, 20I strial)	Stand Opera	ard Oper ting Temp	ating C	ondition 0° –40°	s (unless otherwise specified) $C \le TA \le +70^{\circ}C$ for commercial $C \le TA \le +85^{\circ}C$ for industrial
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions
	IPD	Power-down Current ⁽²⁾					
D006		PIC16LCR54A-Commercial		1.0 2.0 3.0 5.0	6.0 8.0* 15 25	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled
D006A		PIC16CR54A-Commercial		1.0 2.0 3.0 5.0	6.0 8.0* 15 25	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled
D007		PIC16LCR54A-Industrial		1.0 2.0 3.0 3.0 5.0	8.0 10* 20* 18 45	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 4.0V, WDT enabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled
D007A		PIC16CR54A-Industrial		1.0 2.0 3.0 3.0 5.0	8.0 10* 20* 18 45	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 4.0V, WDT enabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled

Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

PIC16C5X

15.6 Timing Diagrams and Specifications

FIGURE 15-2: EXTERNAL CLOCK TIMING - PIC16C54A

TABLE 15-1:	EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A

AC Chara	acteristics	Standard Operating Con Operating Temperature	dition: 0°(-40°(-20°(-40°(s (unless o $C \le TA \le +7$ $C \le TA \le +8$ $C \le TA \le +8$ $C \le TA \le +1$	otherwise 0°C for c 5°C for in 5°C for in 25°C for for	e speci commer ndustria ndustria extend	i fied) rcial al al - PIC16LV54A-02I ed
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Fre-	DC		4.0	MHz	XT OSC mode
		quency ⁽¹⁾	DC	—	2.0	MHz	XT osc mode (PIC16LV54A)
			DC	—	4.0	MHz	HS osc mode (04)
			DC	—	10	MHz	HS osc mode (10)
			DC	—	20	MHz	HS osc mode (20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency ⁽¹⁾	DC	_	4.0	MHz	RC osc mode
			DC	—	2.0	MHz	RC osc mode (PIC16LV54A)
			0.1	—	4.0	MHz	XT osc mode
			0.1	—	2.0	MHz	XT osc mode (PIC16LV54A)
			4.0	—	4.0	MHz	HS osc mode (04)
			4.0	—	10	MHz	HS osc mode (10)
			4.0	—	20	MHz	HS osc mode (20)
			5.0		200	kHz	LP osc mode

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - Instruction cycle period (TcY) equals four times the input oscillator time base period.

16.0 DEVICE CHARACTERIZATION - PIC16C54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

FIGURE 16-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

TABLE 16-1: RC OSCILLATOR FREQUENCIES

Сехт	Rext	Ave Fosc @	rage 5 V, 25°C
20 pF	3.3K	5 MHz	± 27%
	5K	3.8 MHz	± 21%
	10K	2.2 MHz	± 21%
	100K	262 kHz	± 31%
100 pF	3.3K	1.6 MHz	± 13%
	5K	1.2 MHz	± 13%
	10K	684 kHz	± 18%
	100K	71 kHz	± 25%
300 pF	3.3K	660 kHz	± 10%
	5.0K	484 kHz	± 14%
	10K	267 kHz	± 15%
	100K	29 kHz	± 19%

The frequencies are measured on DIP packages.

The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

PIC16C5X

FIGURE 16-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)

Typical: statistical mean @ 25°C. Maximum: mean - 3 s (-40°C to 125°C) Minimum: mean

FIGURE 16-14: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 300 PF, 25°C)

FIGURE 16-15: MAXIMUM IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 300 PF, -40°C to +85°C)

17.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended) PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)

PIC160 PIC160 (Exter	54C/C55/ R54C/CR nded)	A/C56A/C57C/C58B-04E, 20E 56A/CR57C/CR58B-04E, 20E	Standa Operat	ard Ope ing Tem	rating peratu	re –4	tions (unless otherwise specified) $10^{\circ}C \le TA \le +125^{\circ}C$ for extended
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0 4.5		5.5 5.5	V V	RC, XT, LP, and HS mode from 0 - 10 MHz from 10 - 20 MHz
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset
D010	IDD	Supply Current ⁽²⁾ XT and RC ⁽³⁾ modes HS mode	_	1.8 9.0	3.3 20	mA mA	Fosc = 4.0 MHz, Vdd = 5.5V Fosc = 20 MHz, Vdd = 5.5V
D020	IPD	Power-down Current ⁽²⁾		0.3 10 12 4.8 18 26	17 50* 60* 31* 68* 90*	μΑ μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled VDD = 4.5V, WDT disabled VDD = 5.5V, WDT disabled VDD = 3.0V, WDT enabled VDD = 4.5V, WDT enabled VDD = 5.5V, WDT enabled

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

19.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

DC CH	ARACTER	RISTICS	Standard Ope Operating Terr	erating	Conditions re 0°C ≤	s (unles TA ≤ +7	ss otherwise specified) 0°C for commercial
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions
D030	VIL	Input Low Voltage I/O Ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	Vss Vss Vss Vss		0.8 0.15 Vdd 0.15 Vdd 0.2 Vdd	V V V V	4.5V <vdd <math="">\leq 5.5V HS, 20 MHz \leq Fosc \leq 40 MHz</vdd>
D040	Viн	Input High Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	2.0 0.85 Vdd 0.85 Vdd 0.85 Vdd		Vdd Vdd Vdd Vdd	V V V V	4.5V < VDD ≤ 5.5V HS, 20 MHz ≤ Fosc ≤ 40 MHz
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	—	V	
D060	ΙιL	Input Leakage Current ^(2,3) I/O ports MCLR MCLR	-1.0 -5.0 —	0.5 — 0.5	+1.0 +5.0 +3.0	μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD
		T0CKI OSC1	-3.0 -3.0	0.5 0.5	+3.0	μA μA	$\begin{array}{l} Vss \leq VPIN \leq VDD \\ Vss \leq VPIN \leq VDD, \textbf{HS} \end{array}$
D080	Vol	Output Low Voltage I/O ports	_	_	0.6	V	IOL = 8.7 mA, VDD = 4.5V
D090	Vон	Output High Voltage ⁽³⁾ I/O ports	Vdd - 0.7	_	_	V	Iон = -5.4 mA, Vdd = 4.5V

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected and HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 17.3.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

3: Negative current is defined as coming out of the pin.

28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

в

	Units		INCHES*		N	IILLIMETERS	
Dimension L	imits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

eВ

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.

JEDEC Equivalent: MO-095

Drawing No. C04-070

- p -

Notes:

APPENDIX A: COMPATIBILITY

To convert code written for PIC16CXX to PIC16C5X, the user should take the following steps:

- 1. Check any CALL, GOTO or instructions that modify the PC to determine if any program memory page select operations (PA2, PA1, PA0 bits) need to be made.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any special function register page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to proper value for processor used.
- 6. Remove any use of the ADDLW, RETURN and SUBLW instructions.
- 7. Rewrite any code segments that use interrupts.

APPENDIX B: REVISION HISTORY

Revision KE (January 2013)

Added a note to each package outline drawing.