

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	100
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	121-VFBGA, CSPBGA
Supplier Device Package	121-CSFBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3l-1300e-6mg121i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO3 Family Data Sheet Introduction

January 2016

Features

Solutions

- Smallest footprint, lowest power, high data throughput bridging solutions for mobile applications
- Optimized footprint, logic density, IO count, IO performance devices for IO management and logic applications
- High IO/logic, lowest cost/IO, high IO devices for IO expansion applications

■ Flexible Architecture

- Logic Density ranging from 640 to 9.4K LUT4
- High IO to LUT ratio with up to 384 IO pins

Advanced Packaging

- 0.4 mm pitch: 1K to 4K densities in very small footprint WLCSP (2.5 mm x 2.5 mm to 3.8 mm x 3.8 mm) with 28 to 63 IOs
- 0.5 mm pitch: 640 to 6.9K LUT densities in 6 mm x 6 mm to 10 mm x 10 mm BGA packages with up to 281 IOs
- 0.8 mm pitch: 1K to 9.4K densities with up to 384 IOs in BGA packages

Pre-Engineered Source Synchronous I/O

- DDR registers in I/O cells
- Dedicated gearing logic
- 7:1 Gearing for Display I/Os
- Generic DDR, DDRx2, DDRx4

High Performance, Flexible I/O Buffer

- Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - LVDS, Bus-LVDS, MLVDS, LVPECL
 - MIPI D-PHY Emulated
 - Schmitt trigger inputs, up to 0.5 V hysteresis
- Ideal for IO bridging applications
- I/Os support hot socketing
- On-chip differential termination
- Programmable pull-up or pull-down mode

■ Flexible On-Chip Clocking

- · Eight primary clocks
- Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only)
- Up to two analog PLLs per device with fractional-n frequency synthesis
 - Wide input frequency range (7 MHz to 400 MHz)
- Non-volatile, Multi-time Programmable
 - Instant-on
 - Powers up in microseconds
 - · Optional dual boot with external SPI memory
 - Single-chip, secure solution
 - Programmable through JTAG, SPI or I²C
 - MachXO3L includes multi-time programmable NVCM
 - MachXO3LF infinitely reconfigurable Flash

 Supports background programming of non-volatile memory

■ TransFR Reconfiguration

In-field logic update while IO holds the system state

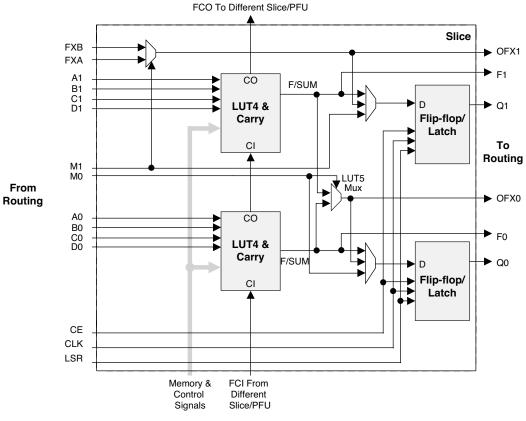
Enhanced System Level Support

- On-chip hardened functions: SPI, I²C, timer/ counter
- On-chip oscillator with 5.5% accuracy
- Unique TraceID for system tracking
- Single power supply with extended operating range
- IEEE Standard 1149.1 boundary scan
- IEEE 1532 compliant in-system programming

Applications

- Consumer Electronics
- Compute and Storage
- Wireless Communications
- Industrial Control Systems
- Automotive System

Low Cost Migration Path


- Migration from the Flash based MachXO3LF to the NVCM based MachXO3L
- · Pin compatible and equivalent timing

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Advance Data Sheet DS1047

Figure 2-4. Slice Diagram

For Slices 0 and 1, memory control signals are generated from Slice 2 as follows:

- WCK is CLK
 WRE is from LSR
- DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2
- WAD [A:D] is a 4-bit address from slice 2 LUT input

 Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multi-purpose input
Input	Control signal	CE	Clock enable
Input	Control signal	LSR	Local set/reset
Input	Control signal	CLK	System clock
Input	Inter-PFU signal	FCIN	Fast carry in ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Fast carry out ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In Ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/down counter with asynchronous clear
- Up/down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

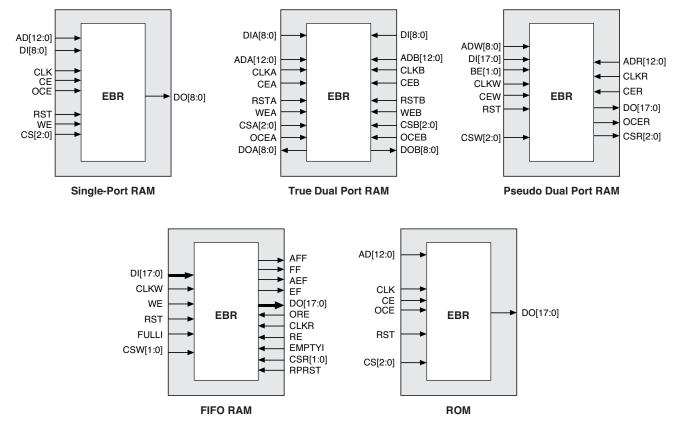
Ripple mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per-slice basis to allow fast arithmetic functions to be constructed by concatenating slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed by using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals.

MachXO3L/LF devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in MachXO3L/LF devices, please see TN1290, Memory Usage Guide for MachXO3 Devices.


Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR 16x4	PDPR 16x4					
Number of slices	3	3					
Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM							

ote: SPR = Single Port RAM, PDPR = Pseudo Dual

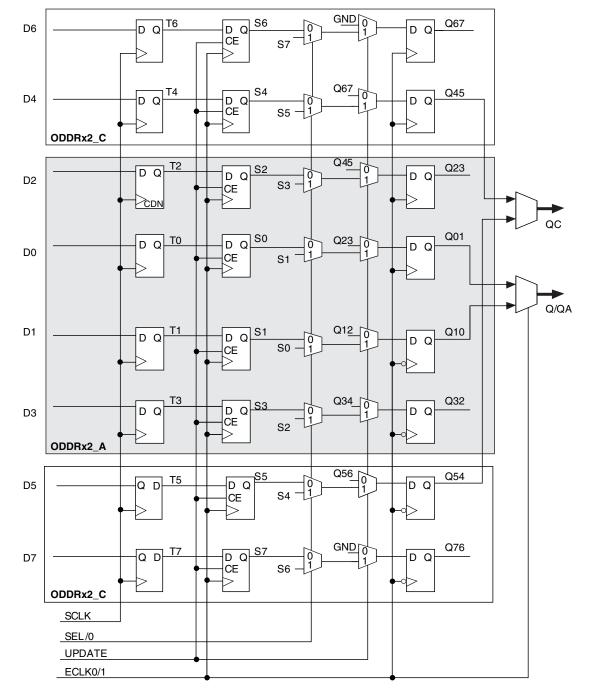
Figure 2-8. sysMEM Memory Primitives

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device wake up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-10. The reset timing rules apply to the RPReset input versus the RE input and the RST input versus the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For more details refer to TN1290, Memory Usage Guide for MachXO3 Devices.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Programmable I/O Cells (PIC)


The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO3L/LF devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the MachXO3L/LF devices, two adjacent PIOs can be combined to provide a complementary output driver pair.

All PIO pairs can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these devices have on-chip differential termination and also provide PCI support.

Figure 2-14. Output Gearbox

More information on the output gearbox is available in TN1281, Implementing High-Speed Interfaces with MachXO3 Devices.

Figure 2-15. MachXO3L/LF-1300 in 256 Ball Packages, MachXO3L/LF-2100, MachXO3L/LF-4300, MachXO3L/LF-6900 and MachXO3L/LF-9400 Banks

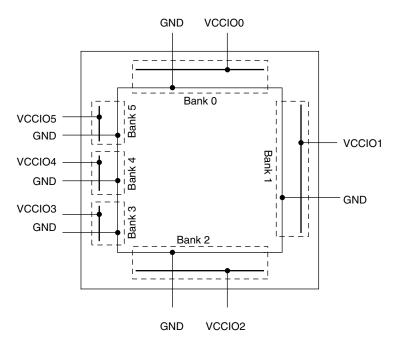
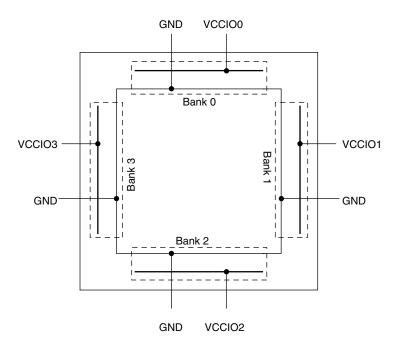



Figure 2-16. MachXO3L/LF-640 and MachXO3L/LF-1300 Banks

For more details on these embedded functions, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

User Flash Memory (UFM)

MachXO3LF devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I2C and SPI interfaces of the device. The UFM block offers the following features:

- Non-volatile storage up to 256 kbits
- 100K write cycles
- Write access is performed page-wise; each page has 128 bits (16 bytes)
- Auto-increment addressing
- WISHBONE interface

For more information on the UFM, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

Standby Mode and Power Saving Options

MachXO3L/LF devices are available in two options, the C and E devices. The C devices have a built-in voltage regulator to allow for 2.5 V V_{CC} and 3.3 V V_{CC} while the E devices operate at 1.2 V V_{CC}.

MachXO3L/LF devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO3L/LF devices support a low power Stand-by mode.

In the stand-by mode the MachXO3L/LF devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I²C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned "off" or go into a low power consumption state to save power when the device enters this state. Note that the MachXO3L/LF devices are powered on when in standby mode and all power supplies should remain in the Recommended Operating Conditions.

Power-On-Reset Voltage Levels^{1, 2, 3, 4, 5}

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{PORUP}	Power-On-Reset ramp up trip point (band gap based circuit monitoring V_{CCINT} and $V_{CCIO0})$	0.9	_	1.06	V
V _{PORUPEXT}	Power-On-Reset ramp up trip point (band gap based circuit monitoring external V_{CC} power supply)	1.5	_	2.1	V
V _{PORDNBG}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{\mbox{CCINT}})$	0.75	_	0.93	V
V _{PORDNBGEXT}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{CC})$	0.98	_	1.33	V
V _{PORDNSRAM}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CCINT})	_	0.6	_	V
VPORDNSRAMEXT	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CC})	_	0.96	_	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

2. For devices without voltage regulators V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage.

3. Note that V_{PORUP} (min.) and V_{PORDNBG} (max.) are in different process corners. For any given process corner V_{PORDNBG} (max.) is always 12.0 mV below V_{PORUP} (min.).

4. V_{PORUPEXT} is for C devices only. In these devices a separate POR circuit monitors the external V_{CC} power supply.

5. V_{CCIO0} does not have a Power-On-Reset ramp down trip point. V_{CCIO0} must remain within the Recommended Operating Conditions to ensure proper operation.

Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Max.	Units
I _{DK}	Input or I/O leakage Current	$0 < V_{IN} < V_{IH}$ (MAX)	+/-1000	μΑ

1. Insensitive to sequence of V_{CC} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCIO} .

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCIO} < V_{CCIO}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

ESD Performance

Please refer to the MachXO2 Product Family Qualification Summary for complete qualification data, including ESD performance.

Programming and Erase Supply Current – C/E Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁴	Units
I _{CC}	Core Power Supply	LCMXO3L/LF-1300C 256 Ball Package	22.1	mA
		LCMXO3L/LF-2100C	22.1	mA
		LCMXO3L/LF-2100C 324 Ball Package	26.8	mA
		LCMXO3L/LF-4300C	26.8	mA
		LCMXO3L/LF-4300C 400 Ball Package	33.2	mA
		LCMXO3L/LF-6900C	33.2	mA
		LCMXO3L/LF-9400C	39.6	mA
		LCMXO3L/LF-640E	17.7	mA
		LCMXO3L/LF-1300E	17.7	mA
		LCMXO3L/LF-1300E 256 Ball Package	18.3	mA
		LCMXO3L/LF-2100E	18.3	mA
		LCMXO3L/LF-2100E 324 Ball Package	20.4	mA
		LCMXO3L/LF-4300E	20.4	mA
		LCMXO3L/LF-6900E	23.9	mA
		LCMXO3L/LF-9400E	28.5	mA
I _{CCIO}	Bank Power Supply⁵ VCCIO = 2.5 V	All devices	0	mA

1. For further information on supply current, please refer to TN1289, Power Estimation and Management for MachXO3 Devices.

2. Assumes all inputs are held at $V_{\mbox{\scriptsize CCIO}}$ or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. $T_J = 25$ °C, power supplies at nominal voltage.

6. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up/pull-down.

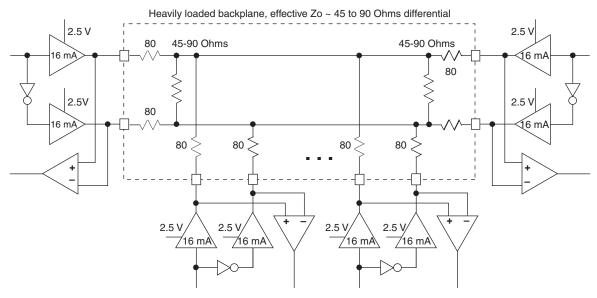
sysIO Single-Ended DC Electrical Characteristics^{1, 2}

Input/Output	V	IL	V	н	V _{OL} Max.	V _{OH} Min.	I _{OL} Max. ⁴	I _{OH} Max.⁴
Standard	Min. (V) ³	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mA)	(mA)
							4	-4
					0.4	V _{CCIO} - 0.4	8	-8
LVCMOS 3.3 LVTTL	-0.3	0.8	2.0	3.6	0.4	VCCIO - 0.4	12	-12
							16	-16
					0.2	V _{CCIO} - 0.2	0.1	-0.1
							4	-4
					0.4	V 0.4	8	-8
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	12	-12
							16	-16
					0.2	V _{CCIO} - 0.2	0.1	-0.1
							4	-4
	0.0	0.35V _{CCIO}	0.051/	0.4	V _{CCIO} - 0.4	8	-8	
LVCMOS 1.8	-0.3		0.65V _{CCIO}	3.6			12	-12
					0.2	V _{CCIO} - 0.2	0.1	-0.1
			0.65V _{CCIO}		0.4	V 04	4	-4
LVCMOS 1.5	-0.3	0.35V _{CCIO}		0.65V _{CCIO} 3.6 0.4 V _{CCIO} - 0.4	V _{CCIO} - 0.4	8	-8	
					0.2	V _{CCIO} - 0.2	0.1	-0.1
		0.35V _{CCIO}			0.4	V 04	4	-2
LVCMOS 1.2	-0.3		0.65V _{CCIO}	.65V _{CCIO} 3.6	0.4	V _{CCIO} - 0.4	8	-6
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25R33	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS18R33	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS18R25	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS15R33	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS15R25	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS12R33	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain
LVCMOS12R25	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain
LVCMOS10R33	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain
LVCMOS10R25	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain

 MachXO3L/LF devices allow LVCMOS inputs to be placed in I/O banks where V_{CCIO} is different from what is specified in the applicable JEDEC specification. This is referred to as a ratioed input buffer. In a majority of cases this operation follows or exceeds the applicable JEDEC specification. The cases where MachXO3L/LF devices do not meet the relevant JEDEC specification are documented in the table below.

2. MachXO3L/LF devices allow for LVCMOS referenced I/Os which follow applicable JEDEC specifications. For more details about mixed mode operation please refer to please refer to TN1280, MachXO3 sysIO Usage Guide.

3. The dual function I²C pins SCL and SDA are limited to a V_{IL} min of -0.25 V or to -0.3 V with a duration of <10 ns.


4. For electromigration, the average DC current sourced or sinked by I/O pads between two consecutive VCCIO or GND pad connections, or between the last VCCIO or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) shall not exceed a maximum of n * 8 mA. "n" is the number of I/O pads between the two consecutive bank VCCIO or GND connections or between the last VCCIO and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated from the Lattice Diamond software.

BLVDS

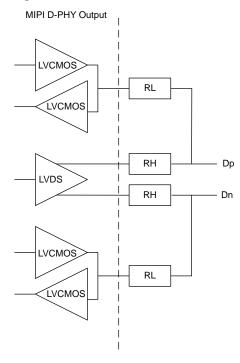
The MachXO3L/LF family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

Over Recommended	Operating	Conditions
	oporating	00110110110

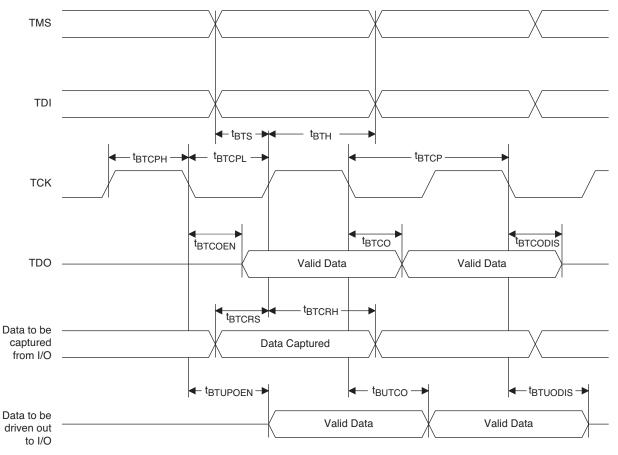
		Non	ninal	
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	20	20	Ohms
R _S	Driver series resistance	80	80	Ohms
R _{TLEFT}	Left end termination	45	90	Ohms
R _{TRIGHT}	Right end termination	45	90	Ohms
V _{OH}	Output high voltage	1.376	1.480	V
V _{OL}	Output low voltage	1.124	1.020	V
V _{OD}	Output differential voltage	0.253	0.459	V
V _{CM}	Output common mode voltage	1.250	1.250	V
I _{DC}	DC output current	11.236	10.204	mA


1. For input buffer, see LVDS table.

	Description	Min.	Тур.	Max.	Units
Low Power					
VCCIO	VCCIO of the Bank with LVCMOS12D 6 mA drive bidirectional IO buffer		1.2		V
VIH	Logic 1 input voltage	—	_	0.88	V
VIL	Logic 0 input voltage, not in ULP State	0.55	_	_	V
VHYST	Input hysteresis	25	—	—	mV

1. Over Recommended Operating Conditions

Figure 3-5. MIPI D-PHY Output Using External Resistors


			_	-6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
MIPI D-PHY	Inputs with Clock and Data Centered at P	in Using PCLK Pin for Cloo	k Input	-			
	X.ÈCLK.Centered ^{10, 11, 12}		1	I	I		
t _{SU} ¹⁵	Input Data Setup Before ECLK		0.200	—	0.200	—	UI
t _{HO} ¹⁵	Input Data Hold After ECLK	All MachXO3L/LF	0.200	—	0.200		UI
f _{DATA} ¹⁴	MIPI D-PHY Input Data Speed	devices, bottom side only	—	900	—	900	Mbps
f _{DDRX4} ¹⁴	MIPI D-PHY ECLK Frequency	_	—	450	—	450	MHz
f _{SCLK} ¹⁴	SCLK Frequency			112.5	—	112.5	MHz
Generic DD	R Outputs with Clock and Data Aligned at I	Pin Using PCLK Pin for Clo	ck Input	– GDDF	RX1_TX.	SCLK.A	ligned ⁸
t _{DIA}	Output Data Invalid After CLK Output			0.520	—	0.550	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO3L/LF devices.		0.520	—	0.550	ns
f _{DATA}	DDRX1 Output Data Speed	all sides		300	_	250	Mbps
f _{DDRX1}	DDRX1 SCLK frequency			150	—	125	MHz
Generic DDR Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX1_TX.SCLK.Centered ⁸							
t _{DVB}	Output Data Valid Before CLK Output		1.210		1.510	_	ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO3L/LF devices, all sides	1.210		1.510	_	ns
f _{DATA}	DDRX1 Output Data Speed			300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)		_	150	_	125	MHz
Generic DDF	RX2 Outputs with Clock and Data Aligned a	t Pin Using PCLK Pin for Clo	ock Inpu	t – GDD	RX2_TX	ECLK.A	ligned ⁸
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	—	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output			0.200	—	0.215	ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices, top side only		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK frequency			332	—	277	MHz
f _{SCLK}	SCLK Frequency			166	—	139	MHz
	RX2 Outputs with Clock and Data Centere X.ECLK.Centered ^{8, 9}	ed at Pin Using PCLK Pin fo	or Clock	Input –			
t _{DVB}	Output Data Valid Before CLK Output		0.535		0.670	_	ns
t _{DVA}	Output Data Valid After CLK Output	-	0.535		0.670		ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices,		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency (minimum limited by PLL)	top side only	_	332	_	277	MHz
f _{SCLK}	SCLK Frequency	-		166	—	139	MHz
Generic DD	RX4 Outputs with Clock and Data Aligned K.ECLK.Aligned ^{8, 9}	at Pin Using PCLK Pin for	Clock I	nput –	1		
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	—	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output			0.200	_	0.215	ns
f _{DATA}	DDRX4 Serial Output Data Speed	MachXO3L/LF devices,		800	_	630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	top side only		400	_	315	MHz
f _{SCLK}	SCLK Frequency	-		100		79	MHz
JOLIN					1	-	-

JTAG Port Timing Specifications

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK clock frequency		25	MHz
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	10	_	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTCO}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	_	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	—	ns
t _{BTCRH}	BSCAN test capture register hold time	20	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

Figure 3-8. JTAG Port Timing Waveforms

sysCONFIG Port Timing Specifications

Symbol	Parameter		Min.	Max.	Units
All Configuration Mo	odes				
t _{PRGM}	PROGRAMN low pul	PROGRAMN low pulse accept		—	ns
t _{PRGMJ}	PROGRAMN low pul	PROGRAMN low pulse rejection			ns
t _{INITL}	INITN low time	LCMXO3L/LF-640/ LCMXO3L/LF-1300	— 55		us
		LCMXO3L/LF-1300 256-Ball Package/ LCMXO3L/LF-2100	_	70	us
		LCMXO3L/LF-2100 324-Ball Package/ LCMXO3-4300	_	105	us
		LCMXO3L/LF-4300 400-Ball Package/ LCMXO3-6900	_	130	us
		LCMXO3L/LF-9400C	_	175	us
t _{DPPINIT}	PROGRAMN low to	NITN low	_	150	ns
t _{DPPDONE}	PROGRAMN low to I	DONE low	_	150	ns
t _{IODISS}	PROGRAMN low to	I/O disable	—	120	ns
Slave SPI					
f _{MAX}	CCLK clock frequence	CCLK clock frequency			MHz
t _{CCLKH}	CCLK clock pulse wi	CCLK clock pulse width high			ns
t _{CCLKL}	CCLK clock pulse wi	CCLK clock pulse width low			ns
t _{STSU}	CCLK setup time	CCLK setup time			ns
t _{STH}	CCLK hold time	CCLK hold time			ns
t _{STCO}	CCLK falling edge to	CCLK falling edge to valid output			ns
t _{STOZ}	CCLK falling edge to	CCLK falling edge to valid disable			ns
t _{STOV}	CCLK falling edge to	valid enable	_	10	ns
t _{SCS}	Chip select high time)	25	—	ns
t _{SCSS}	Chip select setup tim	e	3	—	ns
t _{SCSH}	Chip select hold time)	3	—	ns
Master SPI					
f _{MAX}	MCLK clock frequence	MCLK clock frequency		133	MHz
t _{MCLKH}	MCLK clock pulse wi	MCLK clock pulse width high			ns
t _{MCLKL}	MCLK clock pulse wi	MCLK clock pulse width low			ns
t _{STSU}	MCLK setup time	MCLK setup time			ns
t _{STH}	MCLK hold time	MCLK hold time			ns
t _{CSSPI}	INITN high to chip se	INITN high to chip select low			ns
t _{MCLK}	INITN high to first MO	INITN high to first MCLK edge			us

	MachXO3L/LF-4300						
	WLCSP81	CSFBGA121	CSFBGA256	CSFBGA324	CABGA256	CABGA324	CABGA400
General Purpose IO per Bank							
Bank 0	29	24	50	71	50	71	83
Bank 1	0	26	52	62	52	68	84
Bank 2	20	26	52	72	52	72	84
Bank 3	7	7	16	22	16	24	28
Bank 4	0	7	16	14	16	16	24
Bank 5	7	10	20	27	20	28	32
Total General Purpose Single Ended IO	63	100	206	268	206	279	335
Differential IO per Bank	•	•				•	
Bank 0	15	12	25	36	25	36	42
Bank 1	0	13	26	30	26	34	42
Bank 2	10	13	26	36	26	36	42
Bank 3	3	3	8	10	8	12	14
Bank 4	0	3	8	6	8	8	12
Bank 5	3	5	10	13	10	14	16
Total General Purpose Differential IO	31	49	103	131	103	140	168
Dual Function IO	25	37	37	37	37	37	37
Number 7:1 or 8:1 Gearboxes	•	•				•	
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	10	7	18	18	18	18	21
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	10	13	18	18	18	18	21
High-speed Differential Outputs							
Bank 0	10	7	18	18	18	18	21
VCCIO Pins							
Bank 0	3	1	4	4	4	4	5
Bank 1	0	1	3	4	4	4	5
Bank 2	2	1	4	4	4	4	5
Bank 3	1	1	2	2	1	2	2
Bank 4	0	1	2	2	2	2	2
Bank 5	1	1	2	2	1	2	2
VCC	4	4	8	8	8	10	10
GND	6	10	24	16	24	16	33
NC	0	0	0	13	1	0	0
Reserved for Configuration	1	1	1	1	1	1	1
Total Count of Bonded Pins	81	121	256	324	256	324	400

LCMXO3L-9400C-6BG4841

484

IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-6900E-5MG256C	6900	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-6MG256C	6900	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-5MG256I	6900	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-6MG256I	6900	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-5MG324C	6900	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-6MG324C	6900	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-5MG324I	6900	1.2 V	5	Halogen-Free csfBGA	324	IND
LCMXO3L-6900E-6MG324I	6900	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3L-6900C-5BG256C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-6BG256C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-5BG256I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-6BG256I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-5BG324C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-6BG324C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-5BG324I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-6BG324I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-5BG400C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-6BG400C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-5BG400I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-6900C-6BG400I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	IND
Devt Newshare		O	0	Destant	Landa	.
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-9400E-5MG256C LCMXO3L-9400E-6MG256C	9400 9400	1.2 V 1.2 V	5	Halogen-Free csfBGA	256	COM COM
LCMX03L-9400E-5MG256I		1.2 V 1.2 V	6 5	Halogen-Free csfBGA Halogen-Free csfBGA	256	IND
	9400				256	
LCMXO3L-9400E-6MG256I	9400	1.2 V	6	Halogen-Free csfBGA	256	
LCMXO3L-9400C-5BG256C LCMXO3L-9400C-6BG256C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	COM COM
	9400	2.5 V/3.3 V 2.5 V/3.3 V	6	Halogen-Free caBGA	256	
LCMXO3L-9400C-5BG256I	9400		5	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-6BG256I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-5BG400C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-6BG400C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-5BG400I	9400	2.5 V/3.3 V 2.5 V/3.3 V	5	Halogen-Free caBGA Halogen-Free caBGA	400	
LCMXO3L-9400C-6BG400I	9400		6		400	
LCMXO3L-9400C-5BG484C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-6BG484C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-5BG484I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	IND

2.5 V/3.3 V

6

Halogen-Free caBGA

9400

MachXO3 Family Data Sheet Revision History

February 2017

Advance Data Sheet DS1047

Date	Version	Section	Change Summary
February 2017	1.8	Architecture	Updated Supported Standards section. Corrected "MDVS" to "MLDVS" in Table 2-11, Supported Input Standards.
		DC and Switching Characteristics	Updated ESD Performance section. Added reference to the MachXO2 Product Family Qualification Summary document.
			Updated Static Supply Current – C/E Devices section. Added footnote 7.
			Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. — Populated values for MachXO3L/LF-9400. — Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, corrected "t _{DVB} " to "t _{DIB} " and "t _{DVA} " to "t _{DIA} " and revised their descriptions. — Added Figure 3-6, Receiver GDDR71_RX Waveforms and Figure 3-7, Transmitter GDDR71_TX Waveforms.
		Pinout Information	Updated the Pin Information Summary section. Added MachXO3L/LF- 9600C packages.
May 2016	1.7	DC and Switching Characteristics	Updated Absolute Maximum Ratings section. Modified I/O Tri-state Volt- age Applied and Dedicated Input Voltage Applied footnotes.
			Updated sysIO Recommended Operating Conditions section. — Added standards. — Added V _{REF} (V) — Added footnote 4.
			Updated sysIO Single-Ended DC Electrical Characteristics section. Added I/O standards.
		Ordering Information	Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.
			Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
April 2016	1.6	Introduction	Updated Features section. — Revised logic density range and IO to LUT ratio under Flexible Archi- tecture. — Revised 0.8 mm pitch information under Advanced Packaging. — Added MachXO3L-9400/MachXO3LF-9400 information to Table 1-1, MachXO3L/LF Family Selection Guide.
			Updated Introduction section. — Changed density from 6900 to 9400 LUTs. — Changed caBGA packaging to 19 x 19 mm.
		Architecture	Updated Architecture Overview section. — Changed statement to "All logic density devices in this family" — Updated Figure 2-2 heading and notes.
			Updated sysCLOCK Phase Locked Loops (PLLs) section. — Changed statement to "All MachXO3L/LF devices have one or more sysCLOCK PLL."
			Updated Programmable I/O Cells (PIC) section. — Changed statement to "All PIO pairs can implement differential receiv- ers."
			Updated sysIO Buffer Banks section. Updated Figure 2-5 heading.
			Updated Device Configuration section. Added Password and Soft Error Correction.
		DC and Switching Characteristics	Updated Static Supply Current – C/E Devices section. Added LCMXO3L/ LF-9400C and LCMXO3L/LF-9400E devices.
			Updated Programming and Erase Supply Current – C/E Devices section. — Added LCMXO3L/LF-9400C and LCMXO3L/LF-9400E devices. — Changed LCMXO3L/LF-640E and LCMXO3L/LF-1300E Typ. values.
			Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. Added MachXO3L/LF-9400 devices.
			Updated NVCM/Flash Download Time section. Added LCMXO3L/LF- 9400C device.
			Updated sysCONFIG Port Timing Specifications section. — Added LCMXO3L/LF-9400C device. — Changed t _{INITL} units to from ns to us. — Changed t _{DPPINIT} and t _{DPPDONE} Max. values are per PCN#03A-16.
		Pinout Information	Updated Pin Information Summary section. Added LCMXO3L/LF-9400C device.
		Ordering Information	Updated MachXO3 Part Number Description section. — Added 9400 = 9400 LUTs. — Added BG484 package.
			Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.
			Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.