Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Discontinued at Digi-Key | | Number of LABs/CLBs | 264 | | Number of Logic Elements/Cells | 2112 | | Total RAM Bits | 75776 | | Number of I/O | 38 | | Number of Gates | - | | Voltage - Supply | 1.14V ~ 1.26V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 49-UFBGA, WLCSP | | Supplier Device Package | 49-WLCSP (3.11x3.19) | | Purchase URL | https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3l-2100e-5uwg49itr50 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E are functionally compatible with each other. The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters. The MachXO3L/LF devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis. A user-programmable internal oscillator is included in MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines. The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Figure 2-2. Top View of the MachXO3L/LF-4300 Device Notes: - MachXO3L/LF-1300, MachXO3L/LF-2100, MachXO3L/LF-6900 and MachXO3L/LF-9400 are similar to MachXO3L/LF-4300. MachXO3L/LF-1300 has a lower LUT count, one PLL, and seven EBR blocks. MachXO3L/LF-2100 has a lower LUT count, one PLL, and eight EBR blocks. MachXO3L/LF-6900 has a higher LUT count, two PLLs, and 26 EBR blocks. MachXO3L/LF-9400 has a higher LUT count, two PLLs, and 48 EBR blocks. - MachXO3L devices have NVCM, MachXO3LF devices have Flash. The logic blocks, Programmable Functional Unit (PFU) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each row has either the logic blocks or the EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. In the MachXO3L/LF family, the number of sysIO banks varies by device. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT usage. The MachXO3L/LF registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function. The MachXO3L/LF architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. These blocks are located at the ends of the on-chip NVCM/Flash block. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks. MachXO3L/LF devices provide commonly used hardened functions such as SPI controller, I²C controller and timer/counter. MachXO3LF devices also provide User Flash Memory (UFM). These hardened functions and the UFM interface to the core logic and routing through a WISHBONE interface. The UFM can also be accessed through the SPI, I²C and JTAG ports. Every device in the family has a JTAG port that supports programming and configuration of the device as well as access to the user logic. The MachXO3L/LF devices are available for operation from 3.3 V, 2.5 V and 1.2 V power sup-plies, providing easy integration into the overall system. #### **PFU Blocks** The core of the MachXO3L/LF device consists of PFU blocks, which can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. Each PFU block consists of four interconnected slices numbered 0 to 3 as shown in Figure 2-3. Each slice contains two LUTs and two registers. There are 53 inputs and 25 outputs associated with each PFU block. Figure 2-3. PFU Block Diagram #### **Slices** Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chipselect and wider RAM/ROM functions. Table 2-1. Resources and Modes Available per Slice | | PFU Block | | | | | | |---------|-------------------------|-------------------------|--|--|--|--| | Slice | Resources | Modes | | | | | | Slice 0 | 2 LUT4s and 2 Registers | Logic, Ripple, RAM, ROM | | | | | | Slice 1 | 2 LUT4s and 2 Registers | Logic, Ripple, RAM, ROM | | | | | | Slice 2 | 2 LUT4s and 2 Registers | Logic, Ripple, RAM, ROM | | | | | | Slice 3 | 2 LUT4s and 2 Registers | Logic, Ripple, ROM | | | | | Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3. Figure 2-4. Slice Diagram For Slices 0 and 1, memory control signals are generated from Slice 2 as follows: - WCK is CLK - WRE is from LSR - DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2 - WAD [A:D] is a 4-bit address from slice 2 LUT input Table 2-2. Slice Signal Descriptions | Function | Туре | Signal Names | Description | |----------|------------------|----------------|--| | Input | Data signal | A0, B0, C0, D0 | Inputs to LUT4 | | Input | Data signal | A1, B1, C1, D1 | Inputs to LUT4 | | Input | Multi-purpose | M0/M1 | Multi-purpose input | | Input | Control signal | CE | Clock enable | | Input | Control signal | LSR | Local set/reset | | Input | Control signal | CLK | System clock | | Input | Inter-PFU signal | FCIN | Fast carry in ¹ | | Output | Data signals | F0, F1 | LUT4 output register bypass signals | | Output | Data signals | Q0, Q1 | Register outputs | | Output | Data signals | OFX0 | Output of a LUT5 MUX | | Output | Data signals | OFX1 | Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice | | Output | Inter-PFU signal | FCO | Fast carry out ¹ | - 1. See Figure 2-3 for connection details. - 2. Requires two PFUs. Table 2-5. sysMEM Block Configurations | Memory Mode | Configurations | |------------------|--| | Single Port | 8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9 | | True Dual Port | 8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9 | | Pseudo Dual Port | 8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18 | | FIFO | 8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18 | #### **Bus Size Matching** All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port. #### **RAM Initialization and ROM Operation** If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the NVCM or Configuration Flash. MachXO3LF EBR initialization data can also be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO3LF devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. #### **Memory Cascading** Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs. #### Single, Dual, Pseudo-Dual Port and FIFO Modes Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output. Figure 2-8. sysMEM Memory Primitives Figure 2-14. Output Gearbox More information on the output gearbox is available in TN1281, Implementing High-Speed Interfaces with MachXO3 Devices. Table 2-12. Supported Output Standards | Output Standard | V _{CCIO} (Typ.) | |-------------------------|--------------------------| | Single-Ended Interfaces | | | LVTTL | 3.3 | | LVCMOS33 | 3.3 | | LVCMOS25 | 2.5 | | LVCMOS18 | 1.8 | | LVCMOS15 | 1.5 | | LVCMOS12 | 1.2 | | LVCMOS33, Open Drain | _ | | LVCMOS25, Open Drain | _ | | LVCMOS18, Open Drain | _ | | LVCMOS15, Open Drain | _ | | LVCMOS12, Open Drain | _ | | PCI33 | 3.3 | | Differential Interfaces | | | LVDS ¹ | 2.5, 3.3 | | BLVDS, MLVDS, RSDS 1 | 2.5 | | LVPECL ¹ | 3.3 | | MIPI ¹ | 2.5 | | LVTTLD | 3.3 | | LVCMOS33D | 3.3 | | LVCMOS25D | 2.5 | | LVCMOS18D | 1.8 | ^{1.} These interfaces can be emulated with external resistors in all devices. ### sysIO Buffer Banks The numbers of banks vary between the devices of this family. MachXO3L/LF-1300 in the 256 Ball packages and the MachXO3L/LF-2100 and higher density devices have six I/O banks (one bank on the top, right and bottom side and three banks on the left side). The MachXO3L/LF-1300 and lower density devices have four banks (one bank per side). Figures 2-15 and 2-16 show the sysIO banks and their associated supplies for all devices. # **Hot Socketing** The MachXO3L/LF devices have been carefully designed to ensure predictable behavior during power-up and power-down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO3L/LF ideal for many multiple power supply and hot-swap applications. # **On-chip Oscillator** Every MachXO3L/LF device has an internal CMOS oscillator. The oscillator output can be routed as a clock to the clock tree or as a reference clock to the sysCLOCK PLL using general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit and a user input to enable/disable the oscillator. The oscillator frequency ranges from 2.08 MHz to 133 MHz. The software default value of the Master Clock (MCLK) is nominally 2.08 MHz. When a different MCLK is selected during the design process, the following sequence takes place: - 1. Device powers up with a nominal MCLK frequency of 2.08 MHz. - 2. During configuration, users select a different master clock frequency. - 3. The MCLK frequency changes to the selected frequency once the clock configuration bits are received. - 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.08 MHz. Table 2-13 lists all the available MCLK frequencies. Table 2-13. Available MCLK Frequencies | MCLK (MHz, Nominal) | MCLK (MHz, Nominal) | MCLK (MHz, Nominal) | |---------------------|---------------------|---------------------| | 2.08 (default) | 9.17 | 33.25 | | 2.46 | 10.23 | 38 | | 3.17 | 13.3 | 44.33 | | 4.29 | 14.78 | 53.2 | | 5.54 | 20.46 | 66.5 | | 7 | 26.6 | 88.67 | | 8.31 | 29.56 | 133 | There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes: - TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B) - TN1293, Using Hardened Control Functions in MachXO3 Devices Figure 2-19. SPI Core Block Diagram Table 2-15 describes the signals interfacing with the SPI cores. Table 2-15. SPI Core Signal Description | Signal Name | I/O | Master/Slave | Description | |-------------|-----|--------------|---| | spi_csn[0] | 0 | Master | SPI master chip-select output | | spi_csn[17] | 0 | Master | Additional SPI chip-select outputs (total up to eight slaves) | | spi_scsn | I | Slave | SPI slave chip-select input | | spi_irq | 0 | Master/Slave | Interrupt request | | spi_clk | I/O | Master/Slave | SPI clock. Output in master mode. Input in slave mode. | | spi_miso | I/O | Master/Slave | SPI data. Input in master mode. Output in slave mode. | | spi_mosi | I/O | Master/Slave | SPI data. Output in master mode. Input in slave mode. | | sn | I | Slave | Configuration Slave Chip Select (active low), dedicated for selecting the Configuration Logic. | | cfg_stdby | 0 | Master/Slave | Stand-by signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab. | | cfg_wake | 0 | Master/Slave | Wake-up signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab. | ### **Configuration and Testing** This section describes the configuration and testing features of the MachXO3L/LF family. #### IEEE 1149.1-Compliant Boundary Scan Testability All MachXO3L/LF devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with $V_{\rm CCIO}$ Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards. For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology. #### **Device Configuration** All MachXO3L/LF devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO3L/LF device: - Internal NVCM/Flash Download - 2. JTAG - 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory - 4. System microprocessor to drive a serial slave SPI port (SSPI mode) - 5. Standard I²C Interface to system microprocessor Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly. The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1279, MachXO3 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os. Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO3L/LF devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip NVCM/Flash, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip NVCM/Flash. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide. The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide. #### TransFR (Transparent Field Reconfiguration) TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details. #### **Security and One-Time Programmable Mode (OTP)** For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM-based FPGAs. This is further enhanced by device locking. MachXO3L/LF devices contain security bits that, when set, prevent the readback of the SRAM configuration and NVCM/Flash spaces. The device can be in one of two modes: - 1. Unlocked Readback of the SRAM configuration and NVCM/Flash spaces is allowed. - 2. Permanently Locked The device is permanently locked. Once set, the only way to clear the security bits is to erase the device. To further complement the security of the device, a One Time Programmable (OTP) mode is available. Once the device is set in this mode it is not possible to erase or re-program the NVCM/Flash and SRAM OTP portions of the device. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide. #### **Password** The MachXO3LF supports a password-based security access feature also known as Flash Protect Key. Optionally, the MachXO3L device can be ordered with a custom specification (c-spec) to support this feature. The Flash Protect Key feature provides a method of controlling access to the Configuration and Programming modes of the device. When enabled, the Configuration and Programming edit mode operations (including Write, Verify and Erase operations) are allowed only when coupled with a Flash Protect Key which matches that expected by the device. Without a valid Flash Protect Key, the user can perform only rudimentary non-configuration operations such as Read Device ID. For more details, refer to TN1313, Using Password Security with MachXO3 Devices. #### **Dual Boot** MachXO3L/LF devices can optionally boot from two patterns, a primary bitstream and a golden bitstream. If the primary bitstream is found to be corrupt while being downloaded into the SRAM, the device shall then automatically re-boot from the golden bitstream. Note that the primary bitstream must reside in the external SPI Flash. The golden image MUST reside in an on-chip NVCM/Flash. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide. #### **Soft Error Detection** The SED feature is a CRC check of the SRAM cells after the device is configured. This check ensures that the SRAM cells were configured successfully. This feature is enabled by a configuration bit option. The Soft Error Detection can also be initiated in user mode via an input to the fabric. The clock for the Soft Error Detection circuit is generated using a dedicated divider. The undivided clock from the on-chip oscillator is the input to this divider. For low power applications users can switch off the Soft Error Detection circuit. For more details, refer to TN1292, MachXO3 Soft Error Detection Usage Guide. #### **Soft Error Correction** The MachXO3LF device supports Soft Error Correction (SEC). Optionally, the MachXO3L device can be ordered with a custom specification (c-spec) to support this feature. When BACKGROUND_RECONFIG is enabled using the Lattice Diamond Software in a design, asserting the PROGRAMN pin or issuing the REFRESH sysConfig command refreshes the SRAM array from configuration memory. Only the detected error bit is corrected. No other SRAM cells are changed, allowing the user design to function uninterrupted. During the project design phase, if the overall system cannot guarantee containment of the error or its subsequent effects on downstream data or control paths, Lattice recommends using SED only. The MachXO3 can be then be soft-reset by asserting PROGRAMN or issuing the Refresh command over a sysConfig port in response to SED. Soft-reset additionally erases the SRAM array prior to the SRAM refresh, and asserts internal Reset circuitry to guarantee a known state. For more details, refer to TN1292, MachXO3 Soft Error Detection (SED)/Correction (SEC) Usage Guide. #### **TraceID** Each MachXO3L/LF device contains a unique (per device), TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the EFB WISHBONE interface and can also be accessed through the SPI, I²C, or JTAG interfaces. ## **Density Shifting** The MachXO3L/LF family has been designed to enable density migration within the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. When migrating from lower to higher density or higher to lower density, ensure to review all the power supplies and NC pins of the chosen devices. For more details refer to the MachXO3 migration files. #### **BLVDS** The MachXO3L/LF family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals. Figure 3-2. BLVDS Multi-point Output Example Table 3-2. BLVDS DC Conditions1 #### **Over Recommended Operating Conditions** | | | Non | | | |---------------------|-----------------------------|---------|---------|-------| | Symbol | Description | Zo = 45 | Zo = 90 | Units | | Z _{OUT} | Output impedance | 20 | 20 | Ohms | | R _S | Driver series resistance | 80 | 80 | Ohms | | R _{TLEFT} | Left end termination | 45 | 90 | Ohms | | R _{TRIGHT} | Right end termination | 45 | 90 | Ohms | | V _{OH} | Output high voltage | 1.376 | 1.480 | V | | V _{OL} | Output low voltage | 1.124 | 1.020 | V | | V _{OD} | Output differential voltage | 0.253 | 0.459 | V | | V _{CM} | Output common mode voltage | 1.250 | 1.250 | V | | I _{DC} | DC output current | 11.236 | 10.204 | mA | ^{1.} For input buffer, see LVDS table. | | | | _ | -6 | | 5 | | |--------------------|--|--|-----------|---------|---------|--------|---------------------| | Parameter | Description | Device | Min. | Max. | Min. | Max. | Units | | Generic DDF | RX1 Inputs with Clock and Data Aligned at | □
Pin Using PCLK Pin for Clo | ock Inpu | t – | | | <u> </u> | | GDDRX1_RX | K.SCLK.Aligned ^{8, 9} | | - | | | | | | t _{DVA} | Input Data Valid After CLK | | _ | 0.317 | _ | 0.344 | UI | | t _{DVE} | Input Data Hold After CLK | All MachXO3L/LF
devices. | 0.742 | | 0.702 | _ | UI | | f _{DATA} | DDRX1 Input Data Speed | all sides | _ | 300 | _ | 250 | Mbps | | f _{DDRX1} | DDRX1 SCLK Frequency | | _ | 150 | _ | 125 | MHz | | | RX1 Inputs with Clock and Data Centered
X.SCLK.Centered ^{8, 9} | I at Pin Using PCLK Pin fo | or Clock | Input – | | | | | t _{SU} | Input Data Setup Before CLK | | 0.566 | _ | 0.560 | | ns | | t _{HO} | Input Data Hold After CLK | All MachXO3L/LF | 0.778 | _ | 0.879 | _ | ns | | f _{DATA} | DDRX1 Input Data Speed | devices,
all sides | _ | 300 | _ | | Mbps | | f _{DDRX1} | DDRX1 SCLK Frequency | | _ | 150 | _ | 125 | MHz | | | RX2 Inputs with Clock and Data Aligned a | t Pin Using PCLK Pin for C | clock Inp | out – | | | | | t _{DVA} | Input Data Valid After CLK | | _ | 0.316 | | 0.342 | UI | | t _{DVE} | Input Data Hold After CLK | | 0.710 | _ | 0.675 | _ | UI | | f _{DATA} | DDRX2 Serial Input Data Speed | MachXO3L/LF devices, | | 664 | | 554 | Mbps | | f _{DDRX2} | DDRX2 ECLK Frequency | _bottom side only | | 332 | | 277 | MHz | | f _{SCLK} | SCLK Frequency | | _ | 166 | _ | 139 | MHz | | Generic DDI | RX2 Inputs with Clock and Data Centered X.ECLK.Centered ^{8, 9} | at Pin Using PCLK Pin for | Clock II | nput – | | | | | t _{SU} | Input Data Setup Before CLK | | 0.233 | _ | 0.219 | _ | ns | | t _{HO} | Input Data Hold After CLK | | 0.287 | _ | 0.287 | _ | ns | | f _{DATA} | DDRX2 Serial Input Data Speed | MachXO3L/LF devices, bottom side only | _ | 664 | _ | 554 | Mbps | | f _{DDRX2} | DDRX2 ECLK Frequency | Dottom side only | _ | 332 | _ | 277 | MHz | | f _{SCLK} | SCLK Frequency | | _ | 166 | _ | 139 | MHz | | Generic DDF | R4 Inputs with Clock and Data Aligned at P | in Using PCLK Pin for Cloc | k Input | – GDDR | X4_RX. | ECLK.A | ligned ⁸ | | t _{DVA} | Input Data Valid After ECLK | | _ | 0.307 | _ | 0.320 | UI | | t _{DVE} | Input Data Hold After ECLK | | 0.782 | _ | 0.699 | _ | UI | | f _{DATA} | DDRX4 Serial Input Data Speed | MachXO3L/LF devices,
bottom side only | _ | 800 | _ | 630 | Mbps | | f _{DDRX4} | DDRX4 ECLK Frequency | Bottom side only | _ | 400 | _ | 315 | MHz | | f _{SCLK} | SCLK Frequency | | _ | 100 | _ | 79 | MHz | | Generic DDF | R4 Inputs with Clock and Data Centered at F | Pin Using PCLK Pin for Cloc | k Input | - GDDR | X4_RX.E | CLK.Ce | ntered | | t _{SU} | Input Data Setup Before ECLK | | 0.233 | _ | 0.219 | _ | ns | | t _{HO} | Input Data Hold After ECLK | | 0.287 | _ | 0.287 | _ | ns | | f _{DATA} | DDRX4 Serial Input Data Speed | MachXO3L/LF devices, bottom side only | _ | 800 | _ | 630 | Mbps | | f _{DDRX4} | DDRX4 ECLK Frequency | Dottom side only | _ | 400 | _ | 315 | MHz | | f _{SCLK} | SCLK Frequency | | _ | 100 | _ | 79 | MHz | | | outs (GDDR71_RX.ECLK.7:1)9 | • | 1 | • | | | | | t _{DVA} | Input Data Valid After ECLK | | _ | 0.290 | _ | 0.320 | UI | | t _{DVE} | Input Data Hold After ECLK | | 0.739 | _ | 0.699 | _ | UI | | f _{DATA} | DDR71 Serial Input Data Speed | MachXO3L/LF devices, | _ | 756 | _ | 630 | Mbps | | f _{DDR71} | DDR71 ECLK Frequency | bottom side only | _ | 378 | _ | 315 | MHz | | f _{CLKIN} | 7:1 Input Clock Frequency (SCLK) (minimum limited by PLL) | 1 | _ | 108 | _ | 90 | MHz | # MachXO3 Family Data Sheet Pinout Information February 2017 Advance Data Sheet DS1047 # **Signal Descriptions** | Signal Name | I/O | Descriptions | |--|------------------|--| | General Purpose | | | | | | [Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top). | | | | [Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number. | | | | [A/B/C/D] indicates the PIO within the group to which the pad is connected. | | P[Edge] [Row/Column
Number]_[A/B/C/D] | I/O | Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic. | | | | During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased. | | NC | _ | No connect. | | GND | _ | GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together. | | VCC | _ | V_{CC} – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply. | | VCCIOx | _ | VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that all VCCIOs located in the same bank are tied to the same supply. | | PLL and Clock Function | ons (Us | ed as user-programmable I/O pins when not used for PLL or clock pins) | | [LOC]_GPLL[T, C]_IN | _ | Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement. | | [LOC]_GPLL[T, C]_FB | _ | Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement. | | PCLK [n]_[2:0] | _ | Primary Clock pads. One to three clock pads per side. | | Test and Programming | g (Dual f | unction pins used for test access port and during sysCONFIG™) | | TMS | | Test Mode Select input pin, used to control the 1149.1 state machine. | | TCK | | Test Clock input pin, used to clock the 1149.1 state machine. | | TDI | I | Test Data input pin, used to load data into the device using an 1149.1 state machine. | | TDO | 0 | Output pin – Test Data output pin used to shift data out of the device using 1149.1. | | | | Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then: | | JTAGENB | I | If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O. | | | | If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins. | | | | For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide. | # MachXO3 Family Data Sheet Ordering Information May 2016 Advance Data Sheet DS1047 ## **MachXO3 Part Number Description** # **Ordering Information** MachXO3L/LF devices have top-side markings as shown in the examples below, on the 256-Ball caBGA package with MachXO3-6900 device in Commercial Temperature in Speed Grade 5. Notice that for the MachXO3LF device, *LMXO3LF* is used instead of *LCMXO3LF* as in the Part Number. LCMXO3L-6900C 5BG256C Datecode ## LATTICE LMXO3LF-6900C 5BG256C Datecode Note: LCMXO3LF is marked with LMXO3LF Note: Markings are abbreviated for small packages. # MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging | Part Number | LUTs | Supply Voltage | Speed | Package | Leads | Temp. | |----------------------|------|----------------|-------|---------------------|-------|-------| | LCMXO3L-640E-5MG121C | 640 | 1.2 V | 5 | Halogen-Free csfBGA | 121 | COM | | LCMXO3L-640E-6MG121C | 640 | 1.2 V | 6 | Halogen-Free csfBGA | 121 | COM | | LCMXO3L-640E-5MG121I | 640 | 1.2 V | 5 | Halogen-Free csfBGA | 121 | IND | | LCMXO3L-640E-6MG121I | 640 | 1.2 V | 6 | Halogen-Free csfBGA | 121 | IND | | Part Number | LUTs | Supply Voltage | Speed | Package | Leads | Temp. | |---------------------------|------|----------------|-------|---------------------|-------|-------| | LCMXO3L-1300E-5UWG36CTR | 1300 | 1.2 V | 5 | Halogen-Free WLCSP | 36 | COM | | LCMXO3L-1300E-5UWG36CTR50 | 1300 | 1.2 V | 5 | Halogen-Free WLCSP | 36 | COM | | LCMXO3L-1300E-5UWG36CTR1K | 1300 | 1.2 V | 5 | Halogen-Free WLCSP | 36 | COM | | LCMXO3L-1300E-5UWG36ITR | 1300 | 1.2 V | 5 | Halogen-Free WLCSP | 36 | IND | | LCMXO3L-1300E-5UWG36ITR50 | 1300 | 1.2 V | 5 | Halogen-Free WLCSP | 36 | IND | | LCMXO3L-1300E-5UWG36ITR1K | 1300 | 1.2 V | 5 | Halogen-Free WLCSP | 36 | IND | | LCMXO3L-1300E-5MG121C | 1300 | 1.2 V | 5 | Halogen-Free csfBGA | 121 | COM | | LCMXO3L-1300E-6MG121C | 1300 | 1.2 V | 6 | Halogen-Free csfBGA | 121 | COM | | LCMXO3L-1300E-5MG121I | 1300 | 1.2 V | 5 | Halogen-Free csfBGA | 121 | IND | | LCMXO3L-1300E-6MG121I | 1300 | 1.2 V | 6 | Halogen-Free csfBGA | 121 | IND | | LCMXO3L-1300E-5MG256C | 1300 | 1.2 V | 5 | Halogen-Free csfBGA | 256 | COM | | LCMXO3L-1300E-6MG256C | 1300 | 1.2 V | 6 | Halogen-Free csfBGA | 256 | COM | | LCMXO3L-1300E-5MG256I | 1300 | 1.2 V | 5 | Halogen-Free csfBGA | 256 | IND | | LCMXO3L-1300E-6MG256I | 1300 | 1.2 V | 6 | Halogen-Free csfBGA | 256 | IND | | LCMXO3L-1300C-5BG256C | 1300 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 256 | COM | | LCMXO3L-1300C-6BG256C | 1300 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 256 | COM | | LCMXO3L-1300C-5BG256I | 1300 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 256 | IND | | LCMXO3L-1300C-6BG256I | 1300 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 256 | IND | | Part Number | LUTs | Supply Voltage | Speed | Package | Leads | Temp. | |---------------------------|------|----------------|-------|---------------------|-------|-------| | LCMXO3L-2100E-5UWG49CTR | 2100 | 1.2 V | 5 | Halogen-Free WLCSP | 49 | COM | | LCMXO3L-2100E-5UWG49CTR50 | 2100 | 1.2 V | 5 | Halogen-Free WLCSP | 49 | COM | | LCMXO3L-2100E-5UWG49CTR1K | 2100 | 1.2 V | 5 | Halogen-Free WLCSP | 49 | COM | | LCMXO3L-2100E-5UWG49ITR | 2100 | 1.2 V | 5 | Halogen-Free WLCSP | 49 | IND | | LCMXO3L-2100E-5UWG49ITR50 | 2100 | 1.2 V | 5 | Halogen-Free WLCSP | 49 | IND | | LCMXO3L-2100E-5UWG49ITR1K | 2100 | 1.2 V | 5 | Halogen-Free WLCSP | 49 | IND | | LCMXO3L-2100E-5MG121C | 2100 | 1.2 V | 5 | Halogen-Free csfBGA | 121 | COM | | LCMXO3L-2100E-6MG121C | 2100 | 1.2 V | 6 | Halogen-Free csfBGA | 121 | COM | | LCMXO3L-2100E-5MG121I | 2100 | 1.2 V | 5 | Halogen-Free csfBGA | 121 | IND | | LCMXO3L-2100E-6MG121I | 2100 | 1.2 V | 6 | Halogen-Free csfBGA | 121 | IND | | LCMXO3L-2100E-5MG256C | 2100 | 1.2 V | 5 | Halogen-Free csfBGA | 256 | COM | | LCMXO3L-2100E-6MG256C | 2100 | 1.2 V | 6 | Halogen-Free csfBGA | 256 | COM | | LCMXO3L-2100E-5MG256I | 2100 | 1.2 V | 5 | Halogen-Free csfBGA | 256 | IND | | LCMXO3L-2100E-6MG256I | 2100 | 1.2 V | 6 | Halogen-Free csfBGA | 256 | IND | | LCMXO3L-2100E-5MG324C | 2100 | 1.2 V | 5 | Halogen-Free csfBGA | 324 | COM | | LCMXO3L-2100E-6MG324C | 2100 | 1.2 V | 6 | Halogen-Free csfBGA | 324 | COM | | LCMXO3L-2100E-5MG324I | 2100 | 1.2 V | 5 | Halogen-Free csfBGA | 324 | IND | | Part Number | LUTs | Supply Voltage | Speed | Package | Leads | Temp. | |------------------------|------|----------------|-------|---------------------|-------|-------| | LCMXO3LF-2100E-6MG324I | 2100 | 1.2 V | 6 | Halogen-Free csfBGA | 324 | IND | | LCMXO3LF-2100C-5BG256C | 2100 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 256 | COM | | LCMXO3LF-2100C-6BG256C | 2100 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 256 | COM | | LCMXO3LF-2100C-5BG256I | 2100 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 256 | IND | | LCMXO3LF-2100C-6BG256I | 2100 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 256 | IND | | LCMXO3LF-2100C-5BG324C | 2100 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 324 | COM | | LCMXO3LF-2100C-6BG324C | 2100 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 324 | COM | | LCMXO3LF-2100C-5BG324I | 2100 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 324 | IND | | LCMXO3LF-2100C-6BG324I | 2100 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 324 | IND | | Part Number | LUTs | Supply Voltage | Speed | Package | Leads | Temp. | |----------------------------|------|----------------|-------|---------------------|-------|-------| | LCMXO3LF-4300E-5UWG81CTR | 4300 | 1.2 V | 5 | Halogen-Free WLCSP | 81 | COM | | LCMXO3LF-4300E-5UWG81CTR50 | 4300 | 1.2 V | 5 | Halogen-Free WLCSP | 81 | COM | | LCMXO3LF-4300E-5UWG81CTR1K | 4300 | 1.2 V | 5 | Halogen-Free WLCSP | 81 | COM | | LCMXO3LF-4300E-5UWG81ITR | 4300 | 1.2 V | 5 | Halogen-Free WLCSP | 81 | IND | | LCMXO3LF-4300E-5UWG81ITR50 | 4300 | 1.2 V | 5 | Halogen-Free WLCSP | 81 | IND | | LCMXO3LF-4300E-5UWG81ITR1K | 4300 | 1.2 V | 5 | Halogen-Free WLCSP | 81 | IND | | LCMXO3LF-4300E-5MG121C | 4300 | 1.2 V | 5 | Halogen-Free csfBGA | 121 | COM | | LCMXO3LF-4300E-6MG121C | 4300 | 1.2 V | 6 | Halogen-Free csfBGA | 121 | COM | | LCMXO3LF-4300E-5MG121I | 4300 | 1.2 V | 5 | Halogen-Free csfBGA | 121 | IND | | LCMXO3LF-4300E-6MG121I | 4300 | 1.2 V | 6 | Halogen-Free csfBGA | 121 | IND | | LCMXO3LF-4300E-5MG256C | 4300 | 1.2 V | 5 | Halogen-Free csfBGA | 256 | COM | | LCMXO3LF-4300E-6MG256C | 4300 | 1.2 V | 6 | Halogen-Free csfBGA | 256 | COM | | LCMXO3LF-4300E-5MG256I | 4300 | 1.2 V | 5 | Halogen-Free csfBGA | 256 | IND | | LCMXO3LF-4300E-6MG256I | 4300 | 1.2 V | 6 | Halogen-Free csfBGA | 256 | IND | | LCMXO3LF-4300E-5MG324C | 4300 | 1.2 V | 5 | Halogen-Free csfBGA | 324 | COM | | LCMXO3LF-4300E-6MG324C | 4300 | 1.2 V | 6 | Halogen-Free csfBGA | 324 | COM | | LCMXO3LF-4300E-5MG324I | 4300 | 1.2 V | 5 | Halogen-Free csfBGA | 324 | IND | | LCMXO3LF-4300E-6MG324I | 4300 | 1.2 V | 6 | Halogen-Free csfBGA | 324 | IND | | LCMXO3LF-4300C-5BG256C | 4300 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 256 | COM | | LCMXO3LF-4300C-6BG256C | 4300 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 256 | COM | | LCMXO3LF-4300C-5BG256I | 4300 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 256 | IND | | LCMXO3LF-4300C-6BG256I | 4300 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 256 | IND | | LCMXO3LF-4300C-5BG324C | 4300 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 324 | COM | | LCMXO3LF-4300C-6BG324C | 4300 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 324 | COM | | LCMXO3LF-4300C-5BG324I | 4300 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 324 | IND | | LCMXO3LF-4300C-6BG324I | 4300 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 324 | IND | | LCMXO3LF-4300C-5BG400C 43 | | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 400 | COM | | LCMXO3LF-4300C-6BG400C | 4300 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 400 | COM | | LCMXO3LF-4300C-5BG400I | 4300 | 2.5 V / 3.3 V | 5 | Halogen-Free caBGA | 400 | IND | | LCMXO3LF-4300C-6BG400I | 4300 | 2.5 V / 3.3 V | 6 | Halogen-Free caBGA | 400 | IND | # MachXO3 Family Data Sheet Revision History February 2017 Advance Data Sheet DS1047 | Date | Version | Section | Change Summary | | | | |-------------------|---|--|--|--|--|--| | February 2017 1.8 | | Architecture | Updated Supported Standards section. Corrected "MDVS" to "MLDVS" i Table 2-11, Supported Input Standards. | | | | | | | DC and Switching
Characteristics | Updated ESD Performance section. Added reference to the MachXO2 Product Family Qualification Summary document. | | | | | | | | Updated Static Supply Current – C/E Devices section. Added footnote 7. | | | | | | | | Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. — Populated values for MachXO3L/LF-9400. — Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, corrected "t _{DVB} " to "t _{DIB} " and "t _{DVA} " to "t _{DIA} " and revised their descriptions. — Added Figure 3-6, Receiver GDDR71_RX Waveforms and Figure 3-7, Transmitter GDDR71_TX Waveforms. | | | | | | | Pinout Information | Updated the Pin Information Summary section. Added MachXO3L/LF-9600C packages. | | | | | May 2016 | May 2016 1.7 DC and Switching Characteristics | | Updated Absolute Maximum Ratings section. Modified I/O Tri-state Voltage Applied and Dedicated Input Voltage Applied footnotes. | | | | | | | Updated sysIO Recommended Operating Conditions section. — Added standards. — Added V _{REF} (V) — Added footnote 4. | | | | | | | | | Updated sysIO Single-Ended DC Electrical Characteristics section. Added I/O standards. | | | | | | | Ordering Information | Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers. | | | | | | | | Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers. | | | |