Evy Eartice Semiconductor Corporation - <u>LCMXO3L-4300C-6BG400C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	540
Number of Logic Elements/Cells	4320
Total RAM Bits	94208
Number of I/O	335
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	400-LFBGA
Supplier Device Package	400-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3l-4300c-6bg400c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family.

The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E are functionally compatible with each other.

The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

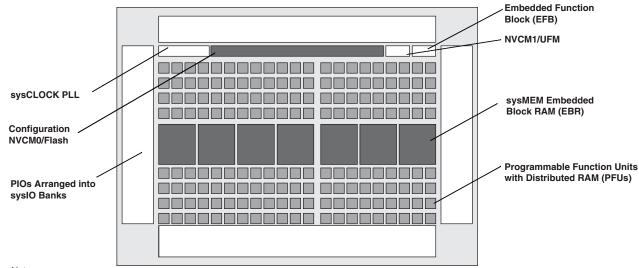
The MachXO3L/LF devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis.

A user-programmable internal oscillator is included in MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines.

The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE[™] modules, including a number of reference designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.


MachXO3 Family Data Sheet Architecture

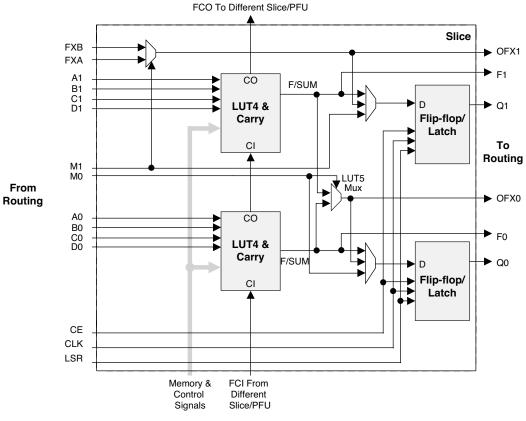
February 2017

Advance Data Sheet DS1047

Architecture Overview

The MachXO3L/LF family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). All logic density devices in this family have sysCLOCK[™] PLLs and blocks of sysMEM Embedded Block RAM (EBRs). Figure 2-1 and Figure 2-2 show the block diagrams of the various family members.

Notes:


MachXO3L/LF-640 is similar to MachXO3L/LF-1300. MachXO3L/LF-640 has a lower LUT count.

MachXO3L devices have NVCM, MachXO3LF devices have Flash.

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-4. Slice Diagram

For Slices 0 and 1, memory control signals are generated from Slice 2 as follows:

- WCK is CLK
 WRE is from LSR
- DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2
- WAD [A:D] is a 4-bit address from slice 2 LUT input

 Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multi-purpose input
Input	Control signal	CE	Clock enable
Input	Control signal	LSR	Local set/reset
Input	Control signal	CLK	System clock
Input	Inter-PFU signal	FCIN	Fast carry in ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Fast carry out ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In Ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/down counter with asynchronous clear
- Up/down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per-slice basis to allow fast arithmetic functions to be constructed by concatenating slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed by using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals.

MachXO3L/LF devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in MachXO3L/LF devices, please see TN1290, Memory Usage Guide for MachXO3 Devices.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR 16x4	PDPR 16x4		
Number of slices	3	3		
Note: SPB = Single Port RAM, PDPB = Pseudo Dual Port RAM				

ote: SPR = Single Port RAM, PDPR = Pseudo Dual

Port Name	Description	Active State
CLK	Clock	Rising Clock Edge
CE	Clock Enable	Active High
OCE ¹	Output Clock Enable	Active High
RST	Reset	Active High
BE ¹	Byte Enable	Active High
WE	Write Enable	Active High
AD	Address Bus	—
DI	Data In	_
DO	Data Out	_
CS	Chip Select	Active High
AFF	FIFO RAM Almost Full Flag	_
FF	FIFO RAM Full Flag	_
AEF	FIFO RAM Almost Empty Flag	_
EF	FIFO RAM Empty Flag	_
RPRST	FIFO RAM Read Pointer Reset	_

Table 2-6. EBR Signal Descriptions

1. Optional signals.

2. For dual port EBR primitives a trailing 'A' or 'B' in the signal name specifies the EBR port A or port B respectively.

3. For FIFO RAM mode primitive, a trailing 'R' or 'W' in the signal name specifies the FIFO read port or write port respectively.

4. For FIFO RAM mode primitive FULLI has the same function as CSW(2) and EMPTYI has the same function as CSR(2).

In FIFO mode, CLKW is the write port clock, CSW is the write port chip select, CLKR is the read port clock, CSR is the read port clock, CSR is the read port clock.

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

FIFO Configuration

The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to max (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width.

The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset

Table 2-11 shows the I/O standards (together with their supply and reference voltages) supported by the MachXO3L/LF devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1280, MachXO3 sysIO Usage Guide.

Table 2-11. Supported Input Standards

		V	CCIO (Ty	p.)	
Input Standard	3.3 V	2.5 V	1.8 V	1.5 V	1.2 V
Single-Ended Interfaces					
LVTTL	Yes				
LVCMOS33	Yes				
LVCMOS25		Yes			
LVCMOS18			Yes		
LVCMOS15				Yes	
LVCMOS12					Yes
PCI	Yes				
Differential Interfaces		•			
LVDS	Yes	Yes			
BLVDS, MLVDS, LVPECL, RSDS	Yes	Yes			
MIPI ¹	Yes	Yes			
LVTTLD	Yes				
LVCMOS33D	Yes				
LVCMOS25D		Yes			
LVCMOS18D			Yes		

1. These interfaces can be emulated with external resistors in all devices.

Figure 2-15. MachXO3L/LF-1300 in 256 Ball Packages, MachXO3L/LF-2100, MachXO3L/LF-4300, MachXO3L/LF-6900 and MachXO3L/LF-9400 Banks

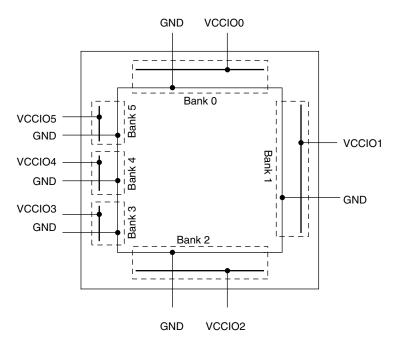
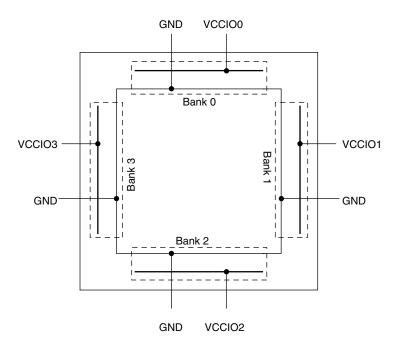



Figure 2-16. MachXO3L/LF-640 and MachXO3L/LF-1300 Banks

Hot Socketing

The MachXO3L/LF devices have been carefully designed to ensure predictable behavior during power-up and power-down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO3L/LF ideal for many multiple power supply and hot-swap applications.

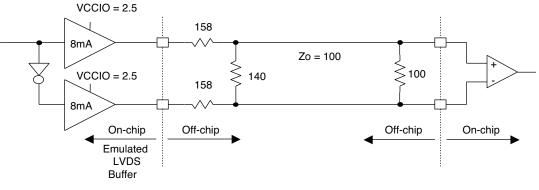
On-chip Oscillator

Every MachXO3L/LF device has an internal CMOS oscillator. The oscillator output can be routed as a clock to the clock tree or as a reference clock to the sysCLOCK PLL using general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit and a user input to enable/disable the oscillator. The oscillator frequency ranges from 2.08 MHz to 133 MHz. The software default value of the Master Clock (MCLK) is nominally 2.08 MHz. When a different MCLK is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal MCLK frequency of 2.08 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The MCLK frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.08 MHz.

Table 2-13 lists all the available MCLK frequencies.


Table 2-13. Available MCLK Frequencies


MCLK (MHz, Nominal)	MCLK (MHz, Nominal)	MCLK (MHz, Nominal)
2.08 (default)	9.17	33.25
2.46	10.23	38
3.17	13.3	44.33
4.29	14.78	53.2
5.54	20.46	66.5
7	26.6	88.67
8.31	29.56	133

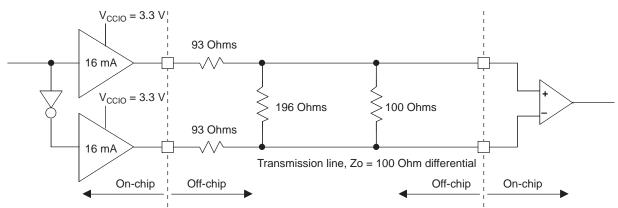
LVDS Emulation

MachXO3L/LF devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Note: All resistors are ±1%.

Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions


Parameter	Parameter Description Typ. Units						
Z _{OUT}	Output impedance	20	Ohms				
R _S	Driver series resistor	158	Ohms				
R _P	Driver parallel resistor	140	Ohms				
R _T	Receiver termination	100	Ohms				
V _{OH}	Output high voltage	1.43	V				
V _{OL}	Output low voltage	1.07	V				
V _{OD}	Output differential voltage	0.35	V				
V _{CM}	Output common mode voltage	1.25	V				
Z _{BACK}	Back impedance	100.5	Ohms				
I _{DC}	DC output current	6.03	mA				

LVPECL

The MachXO3L/LF family supports the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Differential LVPECL is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

Table 3-3. LVPECL DC Conditions¹

Symbol	Description	Nominal	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	93	Ohms
R _P	Driver parallel resistor	196	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	2.05	V
V _{OL}	Output low voltage	1.25	V
V _{OD}	Output differential voltage	0.80	V
V _{CM}	Output common mode voltage	1.65	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	12.11	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

MIPI D-PHY Emulation

MachXO3L/LF devices can support MIPI D-PHY unidirectional HS (High Speed) and bidirectional LP (Low Power) inputs and outputs via emulation. In conjunction with external resistors High Speed IOs use the LVDS25E buffer and Low Power IOs use the LVCMOS buffers. The scheme shown in Figure 3-4 is one possible solution for MIPI D-PHY Receiver implementation. The scheme shown in Figure 3-5 is one possible solution for MIPI D-PHY Transmitter implementation.

Figure 3-4. MIPI D-PHY Input Using External Resistors

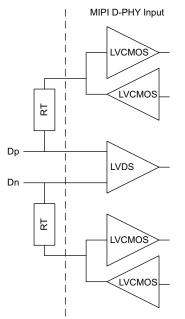


Table 3-4. MIPI DC Conditions¹

	Description	Min.	Тур.	Max.	Units
Receiver		1	1	1	
External Termi	nation				
RT	1% external resistor with VCCIO=2.5 V		50		Ohms
	1% external resistor with VCCIO=3.3 V		50	_	Ohms
High Speed					
VCCIO	VCCIO of the Bank with LVDS Emulated input buffer	_	2.5	_	V
	VCCIO of the Bank with LVDS Emulated input buffer	—	3.3	—	V
VCMRX	Common-mode voltage HS receive mode	150	200	250	mV
VIDTH	Differential input high threshold			100	mV
VIDTL	Differential input low threshold	-100		_	mV
VIHHS	Single-ended input high voltage	_		300	mV
VILHS	Single-ended input low voltage	100		—	mV
ZID	Differential input impedance	80	100	120	Ohms

Table 3-5. MIPI D-PHY Output DC Conditions¹

	Description	Min.	Тур.	Max.	Units
Transmitter					
External Termi	nation				
RL	1% external resistor with VCCIO = 2.5 V		50	—	Ohms
	1% external resistor with VCCIO = 3.3 V		50	—	
RH	1% external resistor with performance up to 800 Mbps or with performance up 900 Mbps when VCCIO = 2.5 V	_	330	—	Ohms
	1% external resistor with performance between 800 Mbps to 900 Mbps when VCCIO = 3.3 V	—	464	_	Ohms
High Speed			•		•
VCCIO	VCCIO of the Bank with LVDS Emulated output buffer		2.5	_	V
	VCCIO of the Bank with LVDS Emulated output buffer	_	3.3	—	V
VCMTX	HS transmit static common mode voltage	150	200	250	mV
VOD	HS transmit differential voltage	140	200	270	mV
VOHHS	HS output high voltage		—	360	V
ZOS	Single ended output impedance		50	—	Ohms
ΔZOS	Single ended output impedance mismatch		_	10	%
Low Power			•		•
VCCIO	VCCIO of the Bank with LVCMOS12D 6 mA drive bidirectional IO buffer	_	1.2	—	V
VOH	Output high level	1.1	1.2	1.3	V
VOL	Output low level	-50	0	50	mV
ZOLP	Output impedance of LP transmitter	110		—	Ohms

1. Over Recommended Operating Conditions

Typical Building Block Function Performance – C/E Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	–6 Timing	Units
Basic Functions		
16-bit decoder	8.9	ns
4:1 MUX	7.5	ns
16:1 MUX	8.3	ns

Register-to-Register Performance

Function	–6 Timing	Units
Basic Functions		
16:1 MUX	412	MHz
16-bit adder	297	MHz
16-bit counter	324	MHz
64-bit counter	161	MHz
Embedded Memory Functions		
1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers)	183	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (one PFU)	500	MHz

 The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

DC and Switching Characteristics MachXO3 Family Data Sheet

			-	6	-5		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Edge Clock without	t PLL)			1		1
		MachXO3L/LF-1300	—	7.53	—	7.76	ns
		MachXO3L/LF-2100	—	7.53	—	7.76	ns
t _{COE}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	7.45		7.68	ns
		MachXO3L/LF-6900	—	7.53		7.76	ns
		MachXO3L/LF-9400	—	8.93	—	9.35	ns
		MachXO3L/LF-1300	-0.19		-0.19	_	ns
		MachXO3L/LF-2100	-0.19		-0.19	_	ns
t _{SUE}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	-0.16	_	-0.16	_	ns
		MachXO3L/LF-6900	-0.19		-0.19	_	ns
		MachXO3L/LF-9400	-0.20	_	-0.20	_	ns
		MachXO3L/LF-1300	1.97	_	2.24	_	ns
		MachXO3L/LF-2100	1.97		2.24		ns
t _{HE}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	1.89		2.16		ns
		MachXO3L/LF-6900	1.97	_	2.24	_	ns
		MachXO3L/LF-9400	1.98		2.25		ns
		MachXO3L/LF-1300	1.56		1.69	_	ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	MachXO3L/LF-2100	1.56		1.69		ns
t _{SU_DELE}		MachXO3L/LF-4300	1.74	_	1.88	_	ns
_		MachXO3L/LF-6900	1.66	_	1.81	_	ns
		MachXO3L/LF-9400	1.71		1.85		ns
		MachXO3L/LF-1300	-0.23	_	-0.23	_	ns
		MachXO3L/LF-2100	-0.23		-0.23		ns
t _{H_DELE}	Clock to Data Hold - PIO Input Register with Input Data Delay	MachXO3L/LF-4300	-0.34		-0.34		ns
	input bata bolay	MachXO3L/LF-6900	-0.29		-0.29		ns
		MachXO3L/LF-9400	-0.30		-0.30		ns
General I/O	Pin Parameters (Using Primary Clock with	PLL)					
		MachXO3L/LF-1300	—	5.98		6.01	ns
		MachXO3L/LF-2100	—	5.98	_	6.01	ns
t _{COPLL}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	5.99	—	6.02	ns
		MachXO3L/LF-6900	—	6.02	_	6.06	ns
		MachXO3L/LF-9400	—	5.55	_	6.13	ns
		MachXO3L/LF-1300	0.36	_	0.36	—	ns
		MachXO3L/LF-2100	0.36		0.36	_	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	0.35		0.35		ns
		MachXO3L/LF-6900	0.34	—	0.34	—	ns
		MachXO3L/LF-9400	0.33		0.33		ns
		MachXO3L/LF-1300	0.42		0.49		ns
		MachXO3L/LF-2100	0.42	—	0.49	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	0.43	—	0.50	_	ns
		MachXO3L/LF-6900	0.46		0.54		ns
		MachXO3L/LF-9400	0.47	—	0.55	—	ns

NVCM/Flash Download Time^{1, 2}

Symbol	Parameter	Device	Тур.	Units
t _{REFRESH}	POR to Device I/O Active	LCMXO3L/LF-640	1.9	ms
		LCMXO3L/LF-1300	1.9	ms
		LCMXO3L/LF-1300 256-Ball Package	1.4	ms
		LCMXO3L/LF-2100	1.4	ms
		LCMXO3L/LF-2100 324-Ball Package	2.4	ms
		LCMXO3L/LF-4300	2.4	ms
		LCMXO3L/LF-4300 400-Ball Package	3.8	ms
		LCMXO3L/LF-6900	3.8	ms
		LCMXO3L/LF-9400C	5.2	ms

1. Assumes sysMEM EBR initialized to an all zero pattern if they are used.

2. The NVCM/Flash download time is measured starting from the maximum voltage of POR trip point.

	MachXO3L/LF-9400C				
	CSFBGA256	CABGA256	CABGA400	CABGA484	
General Purpose IO per Bank				•	
Bank 0	50	50	83	95	
Bank 1	52	52	84	96	
Bank 2	52	52	84	96	
Bank 3	16	16	28	36	
Bank 4	16	16	24	24	
Bank 5	20	20	32	36	
Total General Purpose Single Ended IO	206	206	335	383	
Differential IO per Bank		•		•	
Bank 0	25	25	42	48	
Bank 1	26	26	42	48	
Bank 2	26	26	42	48	
Bank 3	8	8	14	18	
Bank 4	8	8	12	12	
Bank 5	10	10	16	18	
Total General Purpose Differential IO	103	103	168	192	
Dual Function IO	37	37	37	45	
Number 7:1 or 8:1 Gearboxes					
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	20	20	22	24	
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	20	20	22	24	
High-speed Differential Outputs					
Bank 0	20	20	21	24	
VCCIO Pins					
Bank 0	4	4	5	9	
Bank 1	3	4	5	9	
Bank 2	4	4	5	9	
Bank 3	2	1	2	3	
Bank 4	2	2	2	3	
Bank 5	2	1	2	3	
VCC	8	8	10	12	
GND	24	24	33	52	
NC	0	1	0	0	
Reserved for Configuration	1	1	1	1	
Total Count of Bonded Pins	256	256	400	484	

MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-640E-5MG121C	640	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-640E-6MG121C	640	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-640E-5MG121I	640	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-640E-6MG121I	640	1.2 V	6	Halogen-Free csfBGA	121	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-1300E-5UWG36CTR	1300	1.2 V	5	Halogen-Free WLCSP	36	СОМ
LCMXO3L-1300E-5UWG36CTR50	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36CTR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36ITR	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5UWG36ITR50	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5UWG36ITR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5MG121C	1300	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-1300E-6MG121C	1300	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-1300E-5MG1211	1300	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-1300E-6MG121I	1300	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-1300E-5MG256C	1300	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-1300E-6MG256C	1300	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-1300E-5MG256I	1300	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-1300E-6MG256I	1300	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-1300C-5BG256C	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-1300C-6BG256C	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-1300C-5BG256I	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-1300C-6BG256I	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-2100E-5UWG49CTR	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49CTR50	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49CTR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49ITR	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5UWG49ITR50	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5UWG49ITR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5MG121C	2100	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-2100E-6MG121C	2100	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-2100E-5MG121I	2100	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-2100E-6MG121I	2100	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-2100E-5MG256C	2100	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-2100E-6MG256C	2100	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-2100E-5MG256I	2100	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-2100E-6MG256I	2100	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-2100E-5MG324C	2100	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-2100E-6MG324C	2100	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-2100E-5MG324I	2100	1.2 V	5	Halogen-Free csfBGA	324	IND

MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-640E-5MG121C	640	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3LF-640E-6MG121C	640	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3LF-640E-5MG121I	640	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3LF-640E-6MG121I	640	1.2 V	6	Halogen-Free csfBGA	121	IND
	•				•	
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-1300E-5UWG36CTR	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3LF-1300E-5UWG36CTR50	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3LF-1300E-5UWG36CTR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3LF-1300E-5UWG36ITR	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3LF-1300E-5UWG36ITR50	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3LF-1300E-5UWG36ITR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3LF-1300E-5MG121C	1300	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3LF-1300E-6MG121C	1300	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3LF-1300E-5MG121I	1300	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3LF-1300E-6MG121I	1300	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3LF-1300E-5MG256C	1300	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3LF-1300E-6MG256C	1300	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-1300E-5MG256I	1300	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-1300E-6MG256I	1300	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-1300C-5BG256C	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3LF-1300C-6BG256C	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3LF-1300C-5BG256I	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3LF-1300C-6BG256I	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-2100E-5UWG49CTR	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3LF-2100E-5UWG49CTR50	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3LF-2100E-5UWG49CTR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3LF-2100E-5UWG49ITR	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3LF-2100E-5UWG49ITR50	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3LF-2100E-5UWG49ITR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3LF-2100E-5MG121C	2100	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3LF-2100E-6MG121C	2100	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3LF-2100E-5MG121I	2100	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3LF-2100E-6MG121I	2100	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3LF-2100E-5MG256C	2100	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3LF-2100E-6MG256C	2100	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-2100E-5MG256I	2100	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-2100E-6MG256I	2100	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-2100E-5MG324C	2100	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3LF-2100E-6MG324C	2100	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3LF-2100E-5MG324I	2100	1.2 V	5	Halogen-Free csfBGA	324	IND

MachXO3 Family Data Sheet Revision History

February 2017

Advance Data Sheet DS1047

Date	Version	Section	Change Summary
February 2017	1.8	Architecture	Updated Supported Standards section. Corrected "MDVS" to "MLDVS" in Table 2-11, Supported Input Standards.
		DC and Switching Characteristics	Updated ESD Performance section. Added reference to the MachXO2 Product Family Qualification Summary document.
			Updated Static Supply Current – C/E Devices section. Added footnote 7.
			Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. — Populated values for MachXO3L/LF-9400. — Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, corrected "t _{DVB} " to "t _{DIB} " and "t _{DVA} " to "t _{DIA} " and revised their descriptions. — Added Figure 3-6, Receiver GDDR71_RX Waveforms and Figure 3-7, Transmitter GDDR71_TX Waveforms.
		Pinout Information	Updated the Pin Information Summary section. Added MachXO3L/LF- 9600C packages.
May 2016	1.7	DC and Switching Characteristics	Updated Absolute Maximum Ratings section. Modified I/O Tri-state Volt- age Applied and Dedicated Input Voltage Applied footnotes.
			Updated sysIO Recommended Operating Conditions section. — Added standards. — Added V _{REF} (V) — Added footnote 4.
			Updated sysIO Single-Ended DC Electrical Characteristics section. Added I/O standards.
		Ordering Information	Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.
			Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
June 2014	1.0	—	Product name/trademark adjustment.
		Introduction	Updated Features section.
			Updated Table 1-1, MachXO3L Family Selection Guide. Changed fcCSP packages to csfBGA. Adjusted 121-ball csfBGA arrow.
			Introduction section general update.
		Architecture	General update.
		DC and Switching Characteristics	Updated sysIO Recommended Operating Conditions section. Removed V _{REF} (V) column. Added standards.
			Updated Maximum sysIO Buffer Performance section. Added MIPI I/O standard.
			Updated MIPI D-PHY Emulation section. Changed Low Speed to Low Power. Updated Table 3-4, MIPI DC Conditions.
			Updated Table 3-5, MIPI D-PHY Output DC Conditions.
			Updated Maximum sysIO Buffer Performance section.
			Updated MachXO3L External Switching Characteristics – C/E Device section.
May 2014	00.3	Introduction	Updated Features section.
			Updated Table 1-1, MachXO3L Family Selection Guide. Moved 121-ball fcCSP arrow.
			General update of Introduction section.
		Architecture	General update.
		Pinout Information	Updated Pin Information Summary section. Updated or added data on WLCSP49, WLCSP81, CABGA324, and CABGA400 for specific devices.
	Ordering Informatio		Updated MachXO3L Part Number Description section. Updated or added data on WLCSP49, WLCSP81, CABGA324, and CABGA400 for specific devices.
			Updated Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added part numbers.
February 2014	00.2	DC and Switching Characteristics	Updated MachXO3L External Switching Characteristics – C/E Devices table. Removed LPDDR and DDR2 parameters.
	00.1		Initial release.