E · Cartice Semiconductor Corporation - <u>LCMXO3L-4300E-5UWG81CTR Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	540
Number of Logic Elements/Cells	4320
Total RAM Bits	94208
Number of I/O	63
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	81-UFBGA, WLCSP
Supplier Device Package	81-WLCSP (3.80x3.69)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3l-4300e-5uwg81ctr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO3 Family Data Sheet Introduction

January 2016

Features

Solutions

- Smallest footprint, lowest power, high data throughput bridging solutions for mobile applications
- Optimized footprint, logic density, IO count, IO performance devices for IO management and logic applications
- High IO/logic, lowest cost/IO, high IO devices for IO expansion applications

■ Flexible Architecture

- Logic Density ranging from 640 to 9.4K LUT4
- High IO to LUT ratio with up to 384 IO pins

Advanced Packaging

- 0.4 mm pitch: 1K to 4K densities in very small footprint WLCSP (2.5 mm x 2.5 mm to 3.8 mm x 3.8 mm) with 28 to 63 IOs
- 0.5 mm pitch: 640 to 6.9K LUT densities in 6 mm x 6 mm to 10 mm x 10 mm BGA packages with up to 281 IOs
- 0.8 mm pitch: 1K to 9.4K densities with up to 384 IOs in BGA packages

Pre-Engineered Source Synchronous I/O

- DDR registers in I/O cells
- Dedicated gearing logic
- 7:1 Gearing for Display I/Os
- Generic DDR, DDRx2, DDRx4

High Performance, Flexible I/O Buffer

- Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - LVDS, Bus-LVDS, MLVDS, LVPECL
 - MIPI D-PHY Emulated
 - Schmitt trigger inputs, up to 0.5 V hysteresis
- Ideal for IO bridging applications
- I/Os support hot socketing
- On-chip differential termination
- Programmable pull-up or pull-down mode

■ Flexible On-Chip Clocking

- · Eight primary clocks
- Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only)
- Up to two analog PLLs per device with fractional-n frequency synthesis
 - Wide input frequency range (7 MHz to 400 MHz)
- Non-volatile, Multi-time Programmable
 - Instant-on
 - Powers up in microseconds
 - · Optional dual boot with external SPI memory
 - Single-chip, secure solution
 - Programmable through JTAG, SPI or I²C
 - MachXO3L includes multi-time programmable NVCM
 - MachXO3LF infinitely reconfigurable Flash

 Supports background programming of non-volatile memory

TransFR Reconfiguration

In-field logic update while IO holds the system state

Enhanced System Level Support

- On-chip hardened functions: SPI, I²C, timer/ counter
- On-chip oscillator with 5.5% accuracy
- Unique TraceID for system tracking
- Single power supply with extended operating range
- IEEE Standard 1149.1 boundary scan
- IEEE 1532 compliant in-system programming

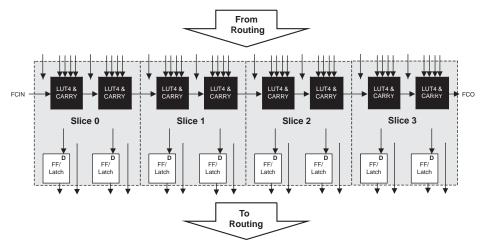
Applications

- Consumer Electronics
- Compute and Storage
- Wireless Communications
- Industrial Control Systems
- Automotive System

Low Cost Migration Path

- Migration from the Flash based MachXO3LF to the NVCM based MachXO3L
- · Pin compatible and equivalent timing

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


Advance Data Sheet DS1047

PFU Blocks

The core of the MachXO3L/LF device consists of PFU blocks, which can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. Each PFU block consists of four interconnected slices numbered 0 to 3 as shown in Figure 2-3. Each slice contains two LUTs and two registers. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-3. PFU Block Diagram

Slices

Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

Table 2-1. Resources and Modes Available per Slice

	PFU Block					
Slice	Resources Modes					
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM				

Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3.

ROM Mode

ROM mode uses the LUT logic; hence, slices 0-3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information on the RAM and ROM modes, please refer to TN1290, Memory Usage Guide for MachXO3 Devices.

Routing

There are many resources provided in the MachXO3L/LF devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.

The design tools take the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

Each MachXO3L/LF device has eight clock inputs (PCLK [T, C] [Banknum]_[2..0]) – three pins on the left side, two pins each on the bottom and top sides and one pin on the right side. These clock inputs drive the clock nets. These eight inputs can be differential or single-ended and may be used as general purpose I/O if they are not used to drive the clock nets. When using a single ended clock input, only the PCLKT input can drive the clock tree directly.

The MachXO3L/LF architecture has three types of clocking resources: edge clocks, primary clocks and secondary high fanout nets. MachXO3L/LF devices have two edge clocks each on the top and bottom edges. Edge clocks are used to clock I/O registers and have low injection time and skew. Edge clock inputs are from PLL outputs, primary clock pads, edge clock bridge outputs and CIB sources.

The eight primary clock lines in the primary clock network drive throughout the entire device and can provide clocks for all resources within the device including PFUs, EBRs and PICs. In addition to the primary clock signals, MachXO3L/LF devices also have eight secondary high fanout signals which can be used for global control signals, such as clock enables, synchronous or asynchronous clears, presets, output enables, etc. Internal logic can drive the global clock network for internally-generated global clocks and control signals.

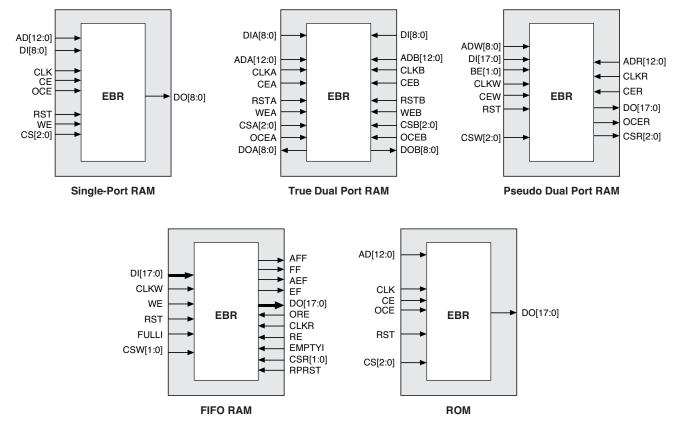
The maximum frequency for the primary clock network is shown in the MachXO3L/LF External Switching Characteristics table.

Primary clock signals for the MachXO3L/LF-1300 and larger devices are generated from eight 27:1 muxes The available clock sources include eight I/O sources, 11 routing inputs, eight clock divider inputs and up to eight sys-CLOCK PLL outputs.

Table 2-4. PLL Signal Descriptions (Continued)

Port Name I/O		Description
CLKOP	0	Primary PLL output clock (with phase shift adjustment)
CLKOS	0	Secondary PLL output clock (with phase shift adjust)
CLKOS2	0	Secondary PLL output clock2 (with phase shift adjust)
CLKOS3	0	Secondary PLL output clock3 (with phase shift adjust)
LOCK	0	PLL LOCK, asynchronous signal. Active high indicates PLL is locked to input and feed- back signals.
DPHSRC	0	Dynamic Phase source – ports or WISHBONE is active
STDBY	I	Standby signal to power down the PLL
RST	I	PLL reset without resetting the M-divider. Active high reset.
RESETM	I	PLL reset - includes resetting the M-divider. Active high reset.
RESETC	I	Reset for CLKOS2 output divider only. Active high reset.
RESETD	I	Reset for CLKOS3 output divider only. Active high reset.
ENCLKOP	I	Enable PLL output CLKOP
ENCLKOS	I	Enable PLL output CLKOS when port is active
ENCLKOS2	I	Enable PLL output CLKOS2 when port is active
ENCLKOS3	I	Enable PLL output CLKOS3 when port is active
PLLCLK	I	PLL data bus clock input signal
PLLRST	I	PLL data bus reset. This resets only the data bus not any register values.
PLLSTB	I	PLL data bus strobe signal
PLLWE	I	PLL data bus write enable signal
PLLADDR [4:0]	I	PLL data bus address
PLLDATI [7:0]	ļ	PLL data bus data input
PLLDATO [7:0]	0	PLL data bus data output
PLLACK	0	PLL data bus acknowledge signal

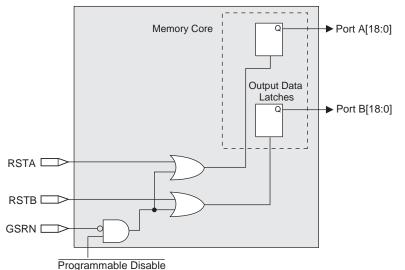
sysMEM Embedded Block RAM Memory


The MachXO3L/LF devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers. This memory can be used for a wide variety of purposes including data buffering, PROM for the soft processor and FIFO.

sysMEM Memory Block

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-5.

Figure 2-8. sysMEM Memory Primitives



state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

Figure 2-9. Memory Core Reset

For further information on the sysMEM EBR block, please refer to TN1290, Memory Usage Guide for MachXO3 Devices.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous.

Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

Figure 2-18. PC Core Block Diagram

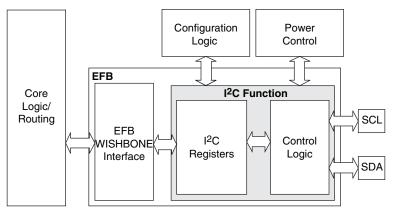


Table 2-14 describes the signals interfacing with the I²C cores.

 Table 2-14. PC Core Signal Description

Signal Name	I/O	Description
i2c_scl	Bi-directional	Bi-directional clock line of the I ² C core. The signal is an output if the I ² C core is in master mode. The signal is an input if the I ² C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO3L/LF device.
i2c_sda	Bi-directional	Bi-directional data line of the I ² C core. The signal is an output when data is transmitted from the I ² C core. The signal is an input when data is received into the I ² C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO3L/LF device.
i2c_irqo	Output	Interrupt request output signal of the I ² C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I ² C register definitions.
cfg_wake	Output	Wake-up signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.
cfg_stdby	Output	Stand-by signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.

Hardened SPI IP Core

Every MachXO3L/LF device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO3L/LF devices supports the following functions:

- Configurable Master and Slave modes
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer
- Interface to custom logic through 8-bit WISHBONE interface

There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes:

- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B)
- TN1293, Using Hardened Control Functions in MachXO3 Devices

Figure 2-19. SPI Core Block Diagram

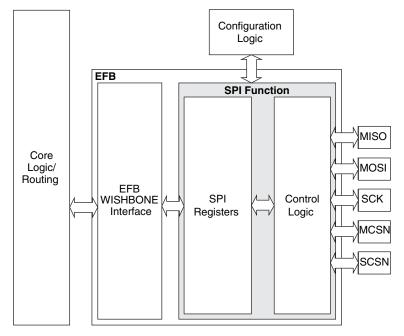


Table 2-15 describes the signals interfacing with the SPI cores.

Table 2-15. SPI Core Signal Description

Signal Name	I/O	Master/Slave	Description
spi_csn[0]	0	Master	SPI master chip-select output
spi_csn[17]	0	Master	Additional SPI chip-select outputs (total up to eight slaves)
spi_scsn	I	Slave	SPI slave chip-select input
spi_irq	0	Master/Slave	Interrupt request
spi_clk	I/O	Master/Slave	SPI clock. Output in master mode. Input in slave mode.
spi_miso	I/O	Master/Slave	SPI data. Input in master mode. Output in slave mode.
spi_mosi	I/O	Master/Slave	SPI data. Output in master mode. Input in slave mode.
sn	I	Slave	Configuration Slave Chip Select (active low), dedicated for selecting the Con- figuration Logic.
cfg_stdby	0	Master/Slave	Stand-by signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.
cfg_wake	О	Master/Slave	Wake-up signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.

Hardened Timer/Counter

MachXO3L/LF devices provide a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit timer/counter module with independent output compare units and PWM support. The Timer/Counter supports the following functions:

- Supports the following modes of operation:
 - Watchdog timer
 - Clear timer on compare match
 - Fast PWM
 - Phase and Frequency Correct PWM
- Programmable clock input source
- Programmable input clock prescaler
- One static interrupt output to routing
- One wake-up interrupt to on-chip standby mode controller.
- Three independent interrupt sources: overflow, output compare match, and input capture
- Auto reload
- Time-stamping support on the input capture unit
- Waveform generation on the output
- Glitch-free PWM waveform generation with variable PWM period
- Internal WISHBONE bus access to the control and status registers
- · Stand-alone mode with preloaded control registers and direct reset input

Figure 2-20. Timer/Counter Block Diagram

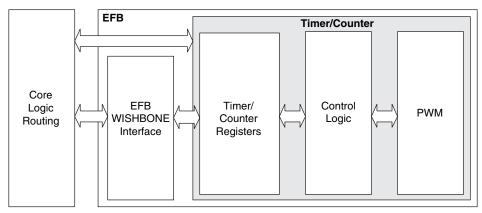


Table 2-16. Timer/Counter Signal Description

Port	I/O	Description
tc_clki	I	Timer/Counter input clock signal
tc_rstn	I	Register tc_rstn_ena is preloaded by configuration to always keep this pin enabled
tc_ic	I	Input capture trigger event, applicable for non-pwm modes with WISHBONE interface. If enabled, a rising edge of this signal will be detected and synchronized to capture tc_cnt value into tc_icr for time-stamping.
tc_int	0	Without WISHBONE – Can be used as overflow flag With WISHBONE – Controlled by three IRQ registers
tc_oc	0	Timer counter output signal

For more details on these embedded functions, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

User Flash Memory (UFM)

MachXO3LF devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I2C and SPI interfaces of the device. The UFM block offers the following features:

- Non-volatile storage up to 256 kbits
- 100K write cycles
- Write access is performed page-wise; each page has 128 bits (16 bytes)
- Auto-increment addressing
- WISHBONE interface

For more information on the UFM, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

Standby Mode and Power Saving Options

MachXO3L/LF devices are available in two options, the C and E devices. The C devices have a built-in voltage regulator to allow for 2.5 V V_{CC} and 3.3 V V_{CC} while the E devices operate at 1.2 V V_{CC}.

MachXO3L/LF devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO3L/LF devices support a low power Stand-by mode.

In the stand-by mode the MachXO3L/LF devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I²C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned "off" or go into a low power consumption state to save power when the device enters this state. Note that the MachXO3L/LF devices are powered on when in standby mode and all power supplies should remain in the Recommended Operating Conditions.

DC Electrical Characteristics

Parameter	Condition	Min.	Тур.	Max.	Units
	Clamp OFF and $V_{CCIO} < V_{IN} < V_{IH}$ (MAX)		_	+175	μA
	Clamp OFF and $V_{IN} = V_{CCIO}$	-10	_	10	μA
Input or I/O Leakage	Clamp OFF and V _{CCIO} - 0.97 V < V _{IN} < V _{CCIO}	-175		—	μΑ
	Clamp OFF and 0 V < V_{IN} < V_{CCIO} - 0.97 V		_	10	μA
	Clamp OFF and V _{IN} = GND		_	10	μA
	Clamp ON and 0 V < V _{IN} < V _{CCIO}		_	10	μA
I/O Active Pull-up Current	0 < V _{IN} < 0.7 V _{CCIO}	-30		-309	μA
I/O Active Pull-down Current	V _{IL} (MAX) < V _{IN} < V _{CCIO}	30		305	μA
Bus Hold Low sustaining current	$V_{IN} = V_{IL} (MAX)$	30		—	μA
Bus Hold High sustaining current	V _{IN} = 0.7V _{CCIO}	-30	_	_	μΑ
Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{CCIO}$	_	_	305	μΑ
Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{CCIO}$	_	_	-309	μA
Bus Hold Trip Points		V _{IL} (MAX)	_	V _{IH} (MIN)	V
I/O Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, V_{CC} = Typ., V_{IO} = 0 to V_{IH} (MAX)$	3	5	9	pf
Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, V_{CC} = Typ., V_{IO} = 0 to V_{IH} (MAX)$	3	5.5	7	pf
	V _{CCIO} = 3.3 V, Hysteresis = Large		450		mV
	V _{CCIO} = 2.5 V, Hysteresis = Large		250		mV
	V _{CCIO} = 1.8 V, Hysteresis = Large		125		mV
Hysteresis for Schmitt	V _{CCIO} = 1.5 V, Hysteresis = Large		100		mV
Trigger Inputs⁵	V _{CCIO} = 3.3 V, Hysteresis = Small		250		mV
	V _{CCIO} = 2.5 V, Hysteresis = Small		150		mV
	V _{CCIO} = 1.8 V, Hysteresis = Small		60		mV
	V _{CCIO} = 1.5 V, Hysteresis = Small		40		mV
	Input or I/O Leakage I/O Active Pull-up Current I/O Active Pull-down Current Bus Hold Low sustaining current Bus Hold Low sustaining current Bus Hold Low Overdrive current Bus Hold Low Overdrive current Bus Hold High Overdrive current Bus Hold Trip Points I/O Capacitance ² Dedicated Input Capacitance ²	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

 When V_{IH} is higher than V_{CCIO}, a transient current typically of 30 ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For true LVDS output pins in MachXO3L/LF devices, V_{IH} must be less than or equal to V_{CCIO}.

5. With bus keeper circuit turned on. For more details, refer to TN1280, MachXO3 sysIO Usage Guide.

sysIO Single-Ended DC Electrical Characteristics^{1, 2}

Input/Output	V	V _{IL}		V _{IH}		V _{OH} Min.	I _{OL} Max.⁴	l _{OH} Max.⁴
Standard	Min. (V) ³	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	(V)	(mA)	(mA)
							4	-4
					0.4	V _{CCIO} - 0.4	8	-8
LVCMOS 3.3 LVTTL	-0.3	0.8	2.0	3.6	0.4	CCIO - 0.4	12	-12
							16	-16
					0.2	V _{CCIO} - 0.2	0.1	-0.1
							4	-4
					0.4	V _{CCIO} - 0.4	8	-8
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	VCCIO - 0.4	12	-12
							16	-16
					0.2	V _{CCIO} - 0.2	0.1	-0.1
							4	-4
LVCMOS 1.8	0.2	0.251/	0.651/	3.6	0.4	V _{CCIO} - 0.4	8	-8
	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.0			12	-12
					0.2	V _{CCIO} - 0.2	0.1	-0.1
					0.4	V 04	4	-4
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8	-8
					0.2	V _{CCIO} - 0.2	0.1	-0.1
					0.4	V 0.4	4	-2
LVCMOS 1.2 –0.3 0.35V _{CCIO} 0.65V _{CCIO}	$0.65V_{CCIO}$	3.6 0.4 V _C		V _{CCIO} - 0.4	8	-6		
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25R33	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS18R33	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS18R25	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS15R33	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS15R25	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS12R33	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain
LVCMOS12R25	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain
LVCMOS10R33	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain
LVCMOS10R25	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain

 MachXO3L/LF devices allow LVCMOS inputs to be placed in I/O banks where V_{CCIO} is different from what is specified in the applicable JEDEC specification. This is referred to as a ratioed input buffer. In a majority of cases this operation follows or exceeds the applicable JEDEC specification. The cases where MachXO3L/LF devices do not meet the relevant JEDEC specification are documented in the table below.

2. MachXO3L/LF devices allow for LVCMOS referenced I/Os which follow applicable JEDEC specifications. For more details about mixed mode operation please refer to please refer to TN1280, MachXO3 sysIO Usage Guide.

3. The dual function I²C pins SCL and SDA are limited to a V_{IL} min of -0.25 V or to -0.3 V with a duration of <10 ns.

4. For electromigration, the average DC current sourced or sinked by I/O pads between two consecutive VCCIO or GND pad connections, or between the last VCCIO or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) shall not exceed a maximum of n * 8 mA. "n" is the number of I/O pads between the two consecutive bank VCCIO or GND connections or between the last VCCIO and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated from the Lattice Diamond software.

sysIO Differential Electrical Characteristics

The LVDS differential output buffers are available on the top side of the MachXO3L/LF PLD family.

LVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V V	Input Voltage	V _{CCIO} = 3.3 V	0	_	2.605	V
V _{INP} V _{INM}		$V_{CCIO} = 2.5 V$	0		2.05	V
V _{THD}	Differential Input Threshold		±100			mV
M	Innut Common Made Voltage	$V_{CCIO} = 3.3 V$	0.05	_	2.6	V
V _{CM}	Input Common Mode Voltage	$V_{CCIO} = 2.5 V$	0.05		2.0	V
I _{IN}	Input current	Power on	_	_	±10	μA
V _{OH}	Output high voltage for V _{OP} or V _{OM}	R _T = 100 Ohm	_	1.375	—	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.90	1.025	—	V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV _{OD}	Change in V _{OD} between high and low		_	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_{T} = 100 \text{ Ohm}$	1.125	1.20	1.395	V
ΔV _{OS}	Change in V _{OS} between H and L		_	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0 V driver outputs shorted	_	_	24	mA

Over Recommended Operating Conditions

DC and Switching Characteristics MachXO3 Family Data Sheet

			-	6	_	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Edge Clock without	t PLL)			1		1
		MachXO3L/LF-1300	—	7.53	—	7.76	ns
		MachXO3L/LF-2100	—	7.53	—	7.76	ns
t _{COE}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	7.45		7.68	ns
		MachXO3L/LF-6900	—	7.53		7.76	ns
		MachXO3L/LF-9400	—	8.93	—	9.35	ns
		MachXO3L/LF-1300	-0.19		-0.19	_	ns
		MachXO3L/LF-2100	-0.19		-0.19	_	ns
t _{SUE}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	-0.16	_	-0.16	_	ns
		MachXO3L/LF-6900	-0.19		-0.19	_	ns
		MachXO3L/LF-9400	-0.20	_	-0.20	_	ns
		MachXO3L/LF-1300	1.97	_	2.24	_	ns
		MachXO3L/LF-2100	1.97		2.24	_	ns
t _{HE}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	1.89		2.16	_	ns
		MachXO3L/LF-6900	1.97	_	2.24	_	ns
		MachXO3L/LF-9400	1.98		2.25	_	ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	MachXO3L/LF-1300	1.56		1.69	_	ns
		MachXO3L/LF-2100	1.56		1.69		ns
t _{SU_DELE}		MachXO3L/LF-4300	1.74	_	1.88	_	ns
•SU_DELE		MachXO3L/LF-6900	1.66	_	1.81	_	ns
		MachXO3L/LF-9400	1.71		1.85		ns
		MachXO3L/LF-1300	-0.23	_	-0.23	_	ns
		MachXO3L/LF-2100	-0.23		-0.23		ns
t _{H_DELE}	Clock to Data Hold - PIO Input Register with Input Data Delay	MachXO3L/LF-4300	-0.34		-0.34		ns
	input bata bolay	MachXO3L/LF-6900	-0.29		-0.29		ns
		MachXO3L/LF-9400	-0.30		-0.30		ns
General I/O	Pin Parameters (Using Primary Clock with	PLL)					
		MachXO3L/LF-1300	—	5.98		6.01	ns
		MachXO3L/LF-2100	—	5.98	_	6.01	ns
t _{COPLL}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	5.99	—	6.02	ns
		MachXO3L/LF-6900	—	6.02	_	6.06	ns
		MachXO3L/LF-9400	—	5.55	_	6.13	ns
		MachXO3L/LF-1300	0.36	_	0.36	—	ns
		MachXO3L/LF-2100	0.36		0.36	_	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	0.35		0.35		ns
		MachXO3L/LF-6900	0.34	—	0.34	—	ns
		MachXO3L/LF-9400	0.33		0.33		ns
		MachXO3L/LF-1300	0.42		0.49		ns
		MachXO3L/LF-2100	0.42	—	0.49	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	0.43	—	0.50	_	ns
		MachXO3L/LF-6900	0.46		0.54		ns
		MachXO3L/LF-9400	0.47	—	0.55	—	ns

			-	-6	-5		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
Generic DDF	RX1 Inputs with Clock and Data Aligned at	Pin Using PCLK Pin for Cl	ock Inpu	it —			
GDDRX1_RX	K.SCLK.Aligned ^{8, 9}	-	-				
t _{DVA}	Input Data Valid After CLK			0.317	—	0.344	UI
t _{DVE}	Input Data Hold After CLK	All MachXO3L/LF devices,	0.742	—	0.702		UI
f _{DATA}	DDRX1 Input Data Speed	all sides	—	300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		—	150	—	125	MHz
Generic DD GDDRX1_R	RX1 Inputs with Clock and Data Centered X.SCLK.Centered ^{8, 9}	d at Pin Using PCLK Pin fo	or Clock	Input –			
t _{SU}	Input Data Setup Before CLK		0.566	—	0.560		ns
t _{HO}	Input Data Hold After CLK	All MachXO3L/LF	0.778	—	0.879	—	ns
f _{DATA}	DDRX1 Input Data Speed	devices, all sides		300	—		Mbps
f _{DDRX1}	DDRX1 SCLK Frequency			150	—	125	MHz
	RX2 Inputs with Clock and Data Aligned a K.ECLK.Aligned ^{8,9}	t Pin Using PCLK Pin for 0	Clock Inp	out –	1	ı	
t _{DVA}	Input Data Valid After CLK		—	0.316	—	0.342	UI
t _{DVE}	Input Data Hold After CLK	_	0.710		0.675		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO3L/LF devices,		664		554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	_bottom side only		332	_	277	MHz
f _{SCLK}	SCLK Frequency	_		166		139	MHz
	RX2 Inputs with Clock and Data Centered	at Pin Using PCLK Pin for	Clock II	nput –			
	K.ECLK.Centered ^{8,9}	Ū		•			
t _{SU}	Input Data Setup Before CLK		0.233	—	0.219		ns
t _{HO}	Input Data Hold After CLK		0.287	—	0.287		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO3L/LF devices, bottom side only		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	,		332	—	277	MHz
f _{SCLK}	SCLK Frequency			166	—	139	MHz
Generic DDF	R4 Inputs with Clock and Data Aligned at F	in Using PCLK Pin for Cloo	k Input	– GDDR	X4_RX.	ECLK.A	ligned ⁸
t _{DVA}	Input Data Valid After ECLK			0.307	—	0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.782		0.699		UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO3L/LF devices, bottom side only	—	800	—	630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency			400	—	315	MHz
f _{SCLK}	SCLK Frequency			100	—	79	MHz
Generic DDF	4 Inputs with Clock and Data Centered at I	Pin Using PCLK Pin for Cloo	k Input	- GDDR	X4_RX.E	CLK.Ce	entered ⁸
t _{SU}	Input Data Setup Before ECLK		0.233		0.219		ns
t _{HO}	Input Data Hold After ECLK		0.287		0.287		ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO3L/LF devices, bottom side only		800	—	630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency			400	—	315	MHz
f _{SCLK}	SCLK Frequency		_	100	—	79	MHz
	outs (GDDR71_RX.ECLK.7:1) ⁹	•					
t _{DVA}	Input Data Valid After ECLK		_	0.290		0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.739		0.699		UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO3L/LF devices,	—	756	—	630	Mbps
f _{DDR71}	DDR71 ECLK Frequency	bottom side only	<u> </u>	378	 	315	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (mini- mum limited by PLL)	i-		108	_	90	MHz

Figure 3-6. Receiver GDDR71_RX. Waveforms

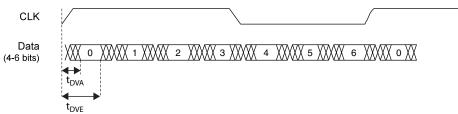
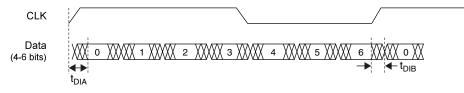
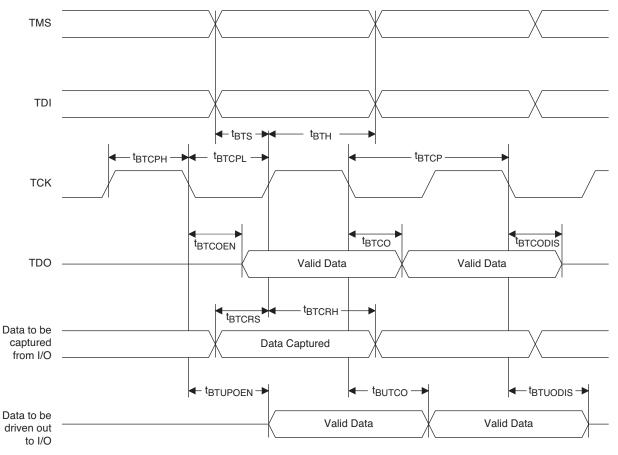



Figure 3-7. Transmitter GDDR71_TX. Waveforms



JTAG Port Timing Specifications

Symbol	Parameter		Max.	Units
f _{MAX}	TCK clock frequency		25	MHz
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	10	_	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTCO}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable		10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	_	ns
t _{BTCRH}	BSCAN test capture register hold time	20	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

Figure 3-8. JTAG Port Timing Waveforms

MachXO3 Family Data Sheet Pinout Information

February 2017

Advance Data Sheet DS1047

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
		[A/B/C/D] indicates the PIO within the group to which the pad is connected.
P[Edge] [Row/Column Number]_[A/B/C/D]	I/O	Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased.
NC	_	No connect.
GND	_	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.
VCC	_	V_{CC} – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
		VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that all VCCIOs located in the same bank are tied to the same supply.
PLL and Clock Function	ons (Us	ed as user-programmable I/O pins when not used for PLL or clock pins)
		Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
[LOC]_GPLL[T, C]_FB	_	Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
PCLK [n]_[2:0]		Primary Clock pads. One to three clock pads per side.
Test and Programming	g (Dual i	function pins used for test access port and during sysCONFIG™)
TMS	Ι	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	Ι	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	Ι	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	O Output pin – Test Data output pin used to shift data out of the device using 1149.1.	
		Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then:
JTAGENB	Ι	If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O.
		If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins.
		For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-640E-5MG121C	640	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-640E-6MG121C	640	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-640E-5MG121I	640	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-640E-6MG121I	640	1.2 V	6	Halogen-Free csfBGA	121	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-1300E-5UWG36CTR	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36CTR50	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36CTR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36ITR	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5UWG36ITR50	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5UWG36ITR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5MG121C	1300	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-1300E-6MG121C	1300	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-1300E-5MG1211	1300	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-1300E-6MG121I	1300	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-1300E-5MG256C	1300	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-1300E-6MG256C	1300	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-1300E-5MG256I	1300	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-1300E-6MG256I	1300	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-1300C-5BG256C	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-1300C-6BG256C	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-1300C-5BG256I	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-1300C-6BG256I	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-2100E-5UWG49CTR	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49CTR50	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49CTR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49ITR	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5UWG49ITR50	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5UWG49ITR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5MG121C	2100	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-2100E-6MG121C	2100	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-2100E-5MG121I	2100	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-2100E-6MG121I	2100	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-2100E-5MG256C	2100	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-2100E-6MG256C	2100	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-2100E-5MG256I	2100	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-2100E-6MG256I	2100	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-2100E-5MG324C	2100	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-2100E-6MG324C	2100	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-2100E-5MG324I	2100	1.2 V	5	Halogen-Free csfBGA	324	IND

Date	Version	Section	Change Summary
September 2015	1.5	DC and Switching Characteristics	Updated the MIPI D-PHY Emulation section. Revised Table 3-5, MIPI D- PHY Output DC Conditions. — Revised RL Typ. value. — Revised RH description and values.
			Updated the Maximum sysIO Buffer Performance section. Revised MIPI Max. Speed value.
			Updated the MachXO3L/LF External Switching Characteristics – C/E Devices section. Added footnotes 14 and 15.
August 2015	1.4	Architecture	Updated the Device Configuration section. Added JTAGENB to TAP dual purpose pins.
		Ordering Information	Updated the top side markings section to indicate the use of LMXO3LF for the LCMXO3LF device.
March 2015	1.3	All	General update. Added MachXO3LF devices.
October 2014	1.2	Introduction	Updated Table 1-1, MachXO3L Family Selection Guide. Revised XO3L- 2100 and XO3L-4300 IO for 324-ball csfBGA package.
		Architecture	Updated the Dual Boot section. Corrected information on where the pri- mary bitstream and the golden image must reside.
		Pinout Information	Updated the Pin Information Summary section.
			Changed General Purpose IO Bank 5 values for MachXO3L-2100 and MachXO3L-4300 CSFBGA 324 package.
			Changed Number 7:1 or 8:1 Gearboxes for MachXO3L-640 and MachXO3L-1300.
			Removed DQS Groups (Bank 1) section.
			Changed VCCIO Pins Bank 1 values for MachXO3L-1300, MachXO3L- 2100, MachXO3L-4300 and MachXO3L-6900 CSFBGA 256 package.
			Changed GND values for MachXO3L-1300, MachXO3L-2100, MachXO3L-4300 and MachXO3L-6900 CSFBGA 256 package.
			Changed NC values for MachXO3L-2100 and MachXO3L-4300 CSF- BGA 324 package.
		DC and Switching Characteristics	Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition.
			Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition.
			Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values.
July 2014	1.1	DC and Switching Characteristics	Updated the Static Supply Current – C/E Devices section. Added devices.
			Updated the Programming and Erase Supply Current – C/E Device section. Added devices.
			Updated the sysIO Single-Ended DC Electrical Characteristics section. Revised footnote 4.
			Added the NVCM Download Time section.
			Updated the Typical Building Block Function Performance – C/E Devices section. Added information to footnote.
		Pinout Information	Updated the Pin Information Summary section.
		Ordering Information	Updated the MachXO3L Part Number Description section. Added pack- ages.
			Updated the Ordering Information section. General update.