E · K Fattice Semiconductor Corporation - <u>LCMXO3L-9400C-5BG256I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1175
Number of Logic Elements/Cells	9400
Total RAM Bits	442368
Number of I/O	206
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LFBGA
Supplier Device Package	256-CABGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3l-9400c-5bg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO3 Family Data Sheet Architecture

February 2017

Advance Data Sheet DS1047

Architecture Overview

The MachXO3L/LF family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). All logic density devices in this family have sysCLOCK[™] PLLs and blocks of sysMEM Embedded Block RAM (EBRs). Figure 2-1 and Figure 2-2 show the block diagrams of the various family members.

Notes:

MachXO3L/LF-640 is similar to MachXO3L/LF-1300. MachXO3L/LF-640 has a lower LUT count.

MachXO3L devices have NVCM, MachXO3LF devices have Flash.

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the NVCM or Configuration Flash.

MachXO3LF EBR initialization data can also be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO3LF devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Input Gearbox

Each PIC on the bottom edge has a built-in 1:8 input gearbox. Each of these input gearboxes may be programmed as a 1:7 de-serializer or as one IDDRX4 (1:8) gearbox or as two IDDRX2 (1:4) gearboxes. Table 2-9 shows the gearbox signals.

Table 2-9. Input Gearbox Signal List

Name	I/O Type	Description		
D	Input High-speed data input after programmable delay in input register block			
ALIGNWD	Input	Data alignment signal from device core		
SCLK	Input	Slow-speed system clock		
ECLK[1:0]	Input	High-speed edge clock		
RST	Input	Reset		
Q[7:0]	Output	Low-speed data to device core: Video RX(1:7): Q[6:0] GDDRX4(1:8): Q[7:0] GDDRX2(1:4)(IOL-A): Q4, Q5, Q6, Q7 GDDRX2(1:4)(IOL-C): Q0, Q1, Q2, Q3		

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-13 shows a block diagram of the input gearbox.

Figure 2-13. Input Gearbox

More information on the input gearbox is available in TN1281, Implementing High-Speed Interfaces with MachXO3 Devices.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS, TTL, PCI, LVDS, BLVDS, MLVDS and LVPECL.

Each bank is capable of supporting multiple I/O standards. In the MachXO3L/LF devices, single-ended output buffers, ratioed input buffers (LVTTL, LVCMOS and PCI), differential (LVDS) input buffers are powered using I/O supply voltage (V_{CCIO}). Each sysIO bank has its own V_{CCIO} .

MachXO3L/LF devices contain three types of sysIO buffer pairs.

1. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the left and right of the devices also have differential input buffers.

2. Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the bottom bank of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the bottom also have differential input buffers. Only the I/Os on the bottom banks have programmable PCI clamps and differential input termination. The PCI clamp is enabled after V_{CC} and V_{CCIO} are at valid operating levels and the device has been configured.

3. Top sysIO Buffer Pairs

The sysIO buffer pairs in the top bank of the device consist of two single-ended output drivers and two singleended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the top also have differential I/O buffers. Half of the sysIO buffer pairs on the top edge have true differential outputs. The sysIO buffer pair comprising of the A and B PIOs in every PIC on the top edge have a differential output driver.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCIO0} have reached V_{PORUP} level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pulldown to GND (some pins such as PROGRAMN and the JTAG pins have weak pull-up to V_{CCIO} as the default functionality). The I/O pins will maintain the blank configuration until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached V_{PORUP} levels at which time the I/Os will take on the user-configured settings only after a proper download/configuration.

There are various ways a user can ensure that there are no spurious signals on critical outputs as the device powers up. These are discussed in more detail in TN1280, MachXO3 sysIO Usage Guide.

Supported Standards

The MachXO3L/LF sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL, and PCI. The buffer supports the LVTTL, PCI, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS, MLVDS and LVPECL output emulation is supported on all devices. The MachXO3L/LF devices support on-chip LVDS output buffers on approximately 50% of the I/Os on the top bank. Differential receivers for LVDS, BLVDS, MLVDS and LVPECL are supported on all banks of MachXO3L/LF devices. PCI support is provided in the bottom bank of the MachXO3L/LF devices. Table 2-11 summarizes the I/O characteristics of the MachXO3L/LF PLDs.

Table 2-11 shows the I/O standards (together with their supply and reference voltages) supported by the MachXO3L/LF devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1280, MachXO3 sysIO Usage Guide.

Table 2-11. Supported Input Standards

	VCCIO (Typ.)					
Input Standard	3.3 V	2.5 V	1.8 V	1.5 V	1.2 V	
Single-Ended Interfaces						
LVTTL	Yes					
LVCMOS33	Yes					
LVCMOS25		Yes				
LVCMOS18			Yes			
LVCMOS15				Yes		
LVCMOS12					Yes	
PCI	Yes					
Differential Interfaces						
LVDS	Yes	Yes				
BLVDS, MLVDS, LVPECL, RSDS	Yes	Yes				
MIPI ¹	Yes	Yes				
LVTTLD	Yes					
LVCMOS33D	Yes					
LVCMOS25D		Yes				
LVCMOS18D			Yes			

1. These interfaces can be emulated with external resistors in all devices.

Table 2-12. Supported Output Standards

Output Standard	V _{CCIO} (Typ.)
Single-Ended Interfaces	
LVTTL	3.3
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
LVCMOS15	1.5
LVCMOS12	1.2
LVCMOS33, Open Drain	_
LVCMOS25, Open Drain	_
LVCMOS18, Open Drain	—
LVCMOS15, Open Drain	_
LVCMOS12, Open Drain	_
PCI33	3.3
Differential Interfaces	
LVDS ¹	2.5, 3.3
BLVDS, MLVDS, RSDS ¹	2.5
LVPECL ¹	3.3
MIPI ¹	2.5
LVTTLD	3.3
LVCMOS33D	3.3
LVCMOS25D	2.5
LVCMOS18D	1.8

1. These interfaces can be emulated with external resistors in all devices.

sysIO Buffer Banks

The numbers of banks vary between the devices of this family. MachXO3L/LF-1300 in the 256 Ball packages and the MachXO3L/LF-2100 and higher density devices have six I/O banks (one bank on the top, right and bottom side and three banks on the left side). The MachXO3L/LF-1300 and lower density devices have four banks (one bank per side). Figures 2-15 and 2-16 show the sysIO banks and their associated supplies for all devices.

Figure 2-15. MachXO3L/LF-1300 in 256 Ball Packages, MachXO3L/LF-2100, MachXO3L/LF-4300, MachXO3L/LF-6900 and MachXO3L/LF-9400 Banks

Figure 2-16. MachXO3L/LF-640 and MachXO3L/LF-1300 Banks

Figure 2-18. PC Core Block Diagram

Table 2-14 describes the signals interfacing with the I²C cores.

 Table 2-14. PC Core Signal Description

Signal Name	I/O	Description
i2c_scl	Bi-directional	Bi-directional clock line of the I ² C core. The signal is an output if the I ² C core is in master mode. The signal is an input if the I ² C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO3L/LF device.
i2c_sda	Bi-directional	Bi-directional data line of the l^2C core. The signal is an output when data is transmitted from the l^2C core. The signal is an input when data is received into the l^2C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of l^2C ports in each MachXO3L/LF device.
i2c_irqo	Output	Interrupt request output signal of the I ² C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I ² C register definitions.
cfg_wake	Output	Wake-up signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.
cfg_stdby	Output	Stand-by signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.

Hardened SPI IP Core

Every MachXO3L/LF device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO3L/LF devices supports the following functions:

- Configurable Master and Slave modes
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer
- Interface to custom logic through 8-bit WISHBONE interface

sysIO Recommended Operating Conditions

	V _{CCIO} (V)					
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.465	—	—	—
LVCMOS 2.5	2.375	2.5	2.625	—	—	—
LVCMOS 1.8	1.71	1.8	1.89	—	—	—
LVCMOS 1.5	1.425	1.5	1.575	—	—	—
LVCMOS 1.2	1.14	1.2	1.26	—	—	—
LVTTL	3.135	3.3	3.465	—	—	—
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	—
LVDS33 ^{1, 2}	3.135	3.3	3.465	—	—	—
LVPECL ¹	3.135	3.3	3.465	—	—	—
BLVDS ¹	2.375	2.5	2.625	—	—	—
MIPI ³	2.375	2.5	2.625	—	—	—
MIPI_LP ³	1.14	1.2	1.26	—	—	—
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75
LVCMOS10R33 ⁴	3.135	3.3	3.6	0.35	0.5	0.65
LVCMOS10R25 ^₄	2.375	2.5	2.625	0.35	0.5	0.65

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. For the dedicated LVDS buffers.

3. Requires the addition of external resistors.

4. Supported only for inputs and BIDIs for -6 speed grade devices.

LVDS Emulation

MachXO3L/LF devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Note: All resistors are ±1%.

Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	158	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

Table 3-5. MIPI D-PHY Output DC Conditions¹

	Description	Min.	Тур.	Max.	Units
Transmitter	· · ·			•	
External Termination	on				
RL	1% external resistor with VCCIO = 2.5 V		50		Ohms
	1% external resistor with VCCIO = 3.3 V	—	50	—	
RH	1% external resistor with performance up to 800 Mbps or with performance up 900 Mbps when VCCIO = 2.5 V	—	330	_	Ohms
	1% external resistor with performance between 800 Mbps to 900 Mbps when VCCIO = 3.3 V	_	464	—	Ohms
High Speed	· ·				
VCCIO	VCCIO of the Bank with LVDS Emulated output buffer	_	2.5	_	V
	VCCIO of the Bank with LVDS Emulated output buffer	_	3.3	—	V
VCMTX	HS transmit static common mode voltage	150	200	250	mV
VOD	HS transmit differential voltage		200	270	mV
VOHHS	HS output high voltage	_	—	360	V
ZOS	Single ended output impedance		50	_	Ohms
ΔZOS	Single ended output impedance mismatch		—	10	%
Low Power	· · · ·				
VCCIO	VCCIO of the Bank with LVCMOS12D 6 mA drive bidirectional IO buffer	_	1.2	_	V
VOH	Output high level	1.1	1.2	1.3	V
VOL	Output low level	-50	0	50	mV
ZOLP	Output impedance of LP transmitter 110 — — 0				

1. Over Recommended Operating Conditions

			_6		-5		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
MIPI D-PHY	Inputs with Clock and Data Centered at F	Pin Using PCLK Pin for Clo	ck Input	-			<u> </u>
GDDRX4_R	K.ECLK.Centered ^{10, 11, 12}		1	1	1	1	T
t _{SU} ¹⁵	Input Data Setup Before ECLK		0.200		0.200	—	UI
t _{HO} ¹⁵	Input Data Hold After ECLK	All MachXO3L/LE	0.200	—	0.200	—	UI
f _{DATA} ¹⁴	MIPI D-PHY Input Data Speed	devices, bottom side only		900	—	900	Mbps
f _{DDRX4} ¹⁴	MIPI D-PHY ECLK Frequency		—	450	—	450	MHz
f _{SCLK} ¹⁴	SCLK Frequency		_	112.5	-	112.5	MHz
Generic DD	R Outputs with Clock and Data Aligned at	Pin Using PCLK Pin for Clo	ck Input	– GDDF	RX1_TX.	SCLK.A	ligned ⁸
t _{DIA}	Output Data Invalid After CLK Output		—	0.520	—	0.550	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO3L/LF		0.520	—	0.550	ns
f _{DATA}	DDRX1 Output Data Speed	all sides		300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK frequency			150	—	125	MHz
Generic DDF	Outputs with Clock and Data Centered at	Pin Using PCLK Pin for Clo	ck Input	– GDDR	X1_TX.9	SCLK.Ce	entered ⁸
t _{DVB}	Output Data Valid Before CLK Output		1.210		1.510	—	ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO3L/LF	1.210		1.510	—	ns
f _{DATA}	DDRX1 Output Data Speed	devices,	_	300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)	— all sides	_	150	_	125	MHz
Generic DDF	X2 Outputs with Clock and Data Aligned a	at Pin Using PCLK Pin for Clo	ock Inpu	t – GDD	RX2_TX	ECLK.A	
t _{DIA}	Output Data Invalid After CLK Output		<u> </u>	0.200	—	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output	_		0.200	_	0.215	ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices,		664	_	554	Mbps
foogy2	DDRX2 ECLK frequency	top side only		332	_	277	MHz
fsci k	SCLK Frequency			166	_	139	MHz
Generic DD	RX2 Outputs with Clock and Data Center	ed at Pin Using PCLK Pin fo	or Clock	Input –			
GDDRX2_T	(.ECLK.Centered ^{8, 9}	0		•			
t _{DVB}	Output Data Valid Before CLK Output		0.535	—	0.670	—	ns
t _{DVA}	Output Data Valid After CLK Output		0.535	—	0.670	—	ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices,		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency (minimum limited by PLL)	top side only	_	332	—	277	MHz
f _{SCLK}	SCLK Frequency			166	—	139	MHz
Generic DD GDDRX4_TX	RX4 Outputs with Clock and Data Aligned	d at Pin Using PCLK Pin for	Clock I	nput –			
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	_	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output	7		0.200	_	0.215	ns
f _{DATA}	DDRX4 Serial Output Data Speed	MachXO3L/LF devices,	_	800	_	630	Mbps
f _{DDBX4}	DDRX4 ECLK Frequency		<u> </u>	400	_	315	MHz
fscik	SCLK Frequency		<u> </u>	100		79	MHz

MachXO3 Family Data Sheet Pinout Information

February 2017

Advance Data Sheet DS1047

Signal Descriptions

Signal Name	I/O	Descriptions			
General Purpose					
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).			
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.			
		[A/B/C/D] indicates the PIO within the group to which the pad is connected.			
P[Edge] [Row/Column Number]_[A/B/C/D]	I/O	Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.			
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased.			
NC	—	No connect.			
GND	—	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.			
VCC	_	\dot{CC} – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs re tied to the same supply.			
VCCIOx	_	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that a VCCIOs located in the same bank are tied to the same supply.			
PLL and Clock Functi	ons (Us	ed as user-programmable I/O pins when not used for PLL or clock pins)			
[LOC]_GPLL[T, C]_IN	_[T, C]_IN - Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (PLL) and R (Right PLL). T = true and C = complement.				
[LOC]_GPLL[T, C]_FB	_	Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.			
PCLK [n]_[2:0]	—	Primary Clock pads. One to three clock pads per side.			
Test and Programmin	g (Dual f	function pins used for test access port and during sysCONFIG™)			
TMS	Ι	Test Mode Select input pin, used to control the 1149.1 state machine.			
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.			
TDI	I	Test Data input pin, used to load data into the device using an 1149.1 state machine.			
TDO	0	Output pin – Test Data output pin used to shift data out of the device using 1149.1.			
		Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then:			
JTAGENB	I	If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O.			
		If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins.			
		For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.			

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions			
Configuration (Dual fu	nction pi	ins used during sysCONFIG)			
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up.			
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled.			
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the start-up sequence is in progress.			
MCLK/CCLK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes.			
SN	I	Slave SPI active low chip select input.			
CSSPIN	I/O	Master SPI active low chip select output.			
SI/SPISI	I/O	Slave SPI serial data input and master SPI serial data output.			
SO/SPISO	I/O	Slave SPI serial data output and master SPI serial data input.			
SCL	I/O	Slave I ² C clock input and master I ² C clock output.			
SDA	I/O	Slave I ² C data input and master I ² C data output.			

Pin Information Summary

	MachXO3L/LF -640	MachXO3L/LF-1300			
	CSFBGA121	WLCSP36	CSFBGA121	CSFBGA256	CABGA256
General Purpose IO per Bank					
Bank 0	24	15	24	50	50
Bank 1	26	0	26	52	52
Bank 2	26	9	26	52	52
Bank 3	24	4	24	16	16
Bank 4	0	0	0	16	16
Bank 5	0	0	0	20	20
Total General Purpose Single Ended IO	100	28	100	206	206
Differential IO per Bank	·	•			•
Bank 0	12	8	12	25	25
Bank 1	13	0	13	26	26
Bank 2	13	4	13	26	26
Bank 3	11	2	11	8	8
Bank 4	0	0	0	8	8
Bank 5	0	0	0	10	10
Total General Purpose Differential IO	49	14	49	103	103
Dual Function IO	33	25	33	33	33
Number 7:1 or 8:1 Gearboxes	·	•			•
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	7	3	7	14	14
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	7	2	7	14	14
High-speed Differential Outputs	-				
Bank 0	7	3	7	14	14
VCCIO Pins					
Bank 0	1	1	1	4	4
Bank 1	1	0	1	3	4
Bank 2	1	1	1	4	4
Bank 3	3	1	3	2	1
Bank 4	0	0	0	2	2
Bank 5	0	0	0	2	1
vcc	4	2	4	8	8
GND	10	2	10	24	24
NC	0	0	0	0	1
Reserved for Configuration	1	1	1	1	1
Total Count of Bonded Pins	121	36	121	256	256

	MachXO3L/LF-2100					
	WLCSP49	CSFBGA121	CSFBGA256	CSFBGA324	CABGA256	CABGA324
General Purpose IO per Bank		•	•			
Bank 0	19	24	50	71	50	71
Bank 1	0	26	52	62	52	68
Bank 2	13	26	52	72	52	72
Bank 3	0	7	16	22	16	24
Bank 4	0	7	16	14	16	16
Bank 5	6	10	20	27	20	28
Total General Purpose Single Ended IO	38	100	206	268	206	279
Differential IO per Bank						
Bank 0	10	12	25	36	25	36
Bank 1	0	13	26	30	26	34
Bank 2	6	13	26	36	26	36
Bank 3	0	3	8	10	8	12
Bank 4	0	3	8	6	8	8
Bank 5	3	5	10	13	10	14
Total General Purpose Differential IO	19	49	103	131	103	140
Dual Function IO	25	33	33	37	33	37
Number 7:1 or 8:1 Gearboxes						
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	5	7	14	18	14	18
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	6	13	14	18	14	18
High-speed Differential Outputs						
Bank 0	5	7	14	18	14	18
VCCIO Pins		•	•			
Bank 0	2	1	4	4	4	4
Bank 1	0	1	3	4	4	4
Bank 2	1	1	4	4	4	4
Bank 3	0	1	2	2	1	2
Bank 4	0	1	2	2	2	2
Bank 5	1	1	2	2	1	2
VCC	2	4	8	8	8	10
GND	4	10	24	16	24	16
NC	0	0	0	13	1	0
Reserved for Configuration	1	1	1	1	1	1
Total Count of Bonded Pins	49	121	256	324	256	324

MachXO3 Family Data Sheet Ordering Information

May 2016

Advance Data Sheet DS1047

MachXO3 Part Number Description

Ordering Information

MachXO3L/LF devices have top-side markings as shown in the examples below, on the 256-Ball caBGA package with MachXO3-6900 device in Commercial Temperature in Speed Grade 5. Notice that for the MachXO3LF device, *LMXO3LF* is used instead of *LCMXO3LF* as in the Part Number.

with LMXO3LF

Note: Markings are abbreviated for small packages.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-640E-5MG121C	640	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-640E-6MG121C	640	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-640E-5MG121I	640	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-640E-6MG121I	640	1.2 V	6	Halogen-Free csfBGA	121	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-1300E-5UWG36CTR	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36CTR50	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36CTR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36ITR	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5UWG36ITR50	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5UWG36ITR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5MG121C	1300	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-1300E-6MG121C	1300	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-1300E-5MG1211	1300	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-1300E-6MG1211	1300	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-1300E-5MG256C	1300	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-1300E-6MG256C	1300	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-1300E-5MG256I	1300	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-1300E-6MG256I	1300	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-1300C-5BG256C	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-1300C-6BG256C	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-1300C-5BG256I	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-1300C-6BG256I	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-2100E-5UWG49CTR	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49CTR50	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49CTR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49ITR	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5UWG49ITR50	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5UWG49ITR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5MG121C	2100	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-2100E-6MG121C	2100	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-2100E-5MG121I	2100	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-2100E-6MG1211	2100	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-2100E-5MG256C	2100	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-2100E-6MG256C	2100	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-2100E-5MG256I	2100	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-2100E-6MG256I	2100	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-2100E-5MG324C	2100	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-2100E-6MG324C	2100	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-2100E-5MG324I	2100	1.2 V	5	Halogen-Free csfBGA	324	IND

MachXO3 Family Data Sheet Supplemental Information

January 2016

Advance Data Sheet DS1047

For Further Information

A variety of technical notes for the MachXO3 family are available on the Lattice web site.

- TN1282, MachXO3 sysCLOCK PLL Design and Usage Guide
- TN1281, Implementing High-Speed Interfaces with MachXO3 Devices
- TN1280, MachXO3 sysIO Usage Guide
- TN1279, MachXO3 Programming and Configuration Usage Guide
- TN1074, PCB Layout Recommendations for BGA Packages
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- AN8066, Boundary Scan Testability with Lattice sysIO Capability
- MachXO3 Device Pinout Files
- Thermal Management document
- Lattice design tools

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.