
E ·) Cattlee Semiconductor Corporation - <u>LCMXO3L-9400E-6MG256C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1175
Number of Logic Elements/Cells	9400
Total RAM Bits	442368
Number of I/O	206
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-VFBGA
Supplier Device Package	256-CSFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3l-9400e-6mg256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. MachXO3L/LF Family Selection Guide

Features		MachXO3L-640/ MachXO3LF-640	MachXO3L-1300/ MachXO3LF-1300	MachXO3L-2100/ MachXO3LF-2100	MachXO3L-4300/ MachXO3LF-4300	MachXO3L-6900/ MachXO3LF-6900	MachXO3L-9400/ MachXO3LF-9400
LUTs		640	1300	2100	4300	6900	9400
Distributed RAM (kbits)		5	10	16	34	54	73
EBR SRAM (kbits)		64	64	74	92	240	432
Number of PL	Ls	1	1	1	2	2	2
Hardened I ² C		2	2	2	2	2	2
Functions:	SPI	1	1	1	1	1	1
	Timer/Counter	1	1	1	1	1	1
	Oscillator	1	1	1	1	1	1
MIPI D-PHY	Support	Yes	Yes	Yes	Yes	Yes	Yes
Multi Time Pr NVCM	ogrammable	MachXO3L-640	MachXO3L-1300	MachXO3L-2100	MachXO3L-4300	MachXO3L-6900	MachXO3L-9400
Programmabl	le Flash	MachXO3LF-640	MachXO3LF-1300	MachXO3LF-2100	MachXO3LF-4300	MachXO3LF-6900	MachXO3LF-9400
Packages				ю			
36-ball WLCS (2.5 mm x 2.5	SP ¹ 5 mm, 0.4 mm)		28				
49-ball WLCS (3.2 mm x 3.2	SP ¹ 2 mm, 0.4 mm)			38			
81-ball WLCS (3.8 mm x 3.8	SP ¹ 3 mm, 0.4 mm)				63		
121-ball csfB (6 mm x 6 mr		100	100	100	100		
256-ball csfB (9 mm x 9 mr		2	206	206	206	206	206
324-ball csfB (10 mm x 10				268	268	281	
256-ball caBGA ² (14 mm x 14 mm, 0.8 mm)			206	206	206	206	206
324-ball caB0 (15 mm x 15				279	279	279	
400-ball caB0 (17 mm x 17					335	335	335
484-ball caB0 (19 mm x 19							384

1. Package is only available for E=1.2 V devices.

2. Package is only available for C=2.5 V/3.3 V devices.

Introduction

MachXO3[™] device family is an Ultra-Low Density family that supports the most advanced programmable bridging and IO expansion. It has the breakthrough IO density and the lowest cost per IO. The device IO features have the integrated support for latest industry standard IO.

The MachXO3L/LF family of low power, instant-on, non-volatile PLDs has five devices with densities ranging from 640 to 9400 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. MachXO3LF devices also support User Flash Memory (UFM). These features allow these devices to be used in low cost, high volume consumer and system applications.

The MachXO3L/LF devices are designed on a 65nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In Ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/down counter with asynchronous clear
- Up/down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

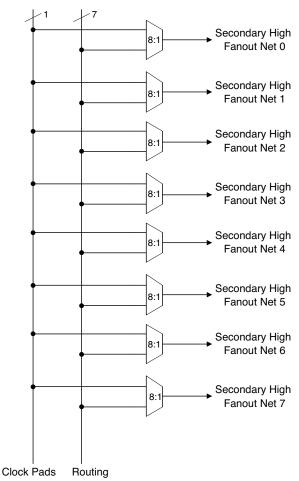
Ripple mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per-slice basis to allow fast arithmetic functions to be constructed by concatenating slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed by using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals.

MachXO3L/LF devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in MachXO3L/LF devices, please see TN1290, Memory Usage Guide for MachXO3 Devices.


Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR 16x4	PDPR 16x4					
Number of slices	3	3					
Note: SPB = Single Port BAM, PDPB = Pseudo Dual Port BAM							

ote: SPR = Single Port RAM, PDPR = Pseudo Dual

Figure 2-6. Secondary High Fanout Nets for MachXO3L/LF Devices

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. All MachXO3L/LF devices have one or more sysCLOCK PLL. CLKI is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. CLKFB is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The MachXO3L/LF sysCLOCK PLLs support high resolution (16-bit) fractional-N synthesis. Fractional-N frequency synthesis allows the user to generate an output clock which is a non-integer multiple of the input frequency. For more information about using the PLL with Fractional-N synthesis, please see TN1282, MachXO3 sysCLOCK PLL Design and Usage Guide.

Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The output dividers may also be cascaded together to generate low frequency clocks. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the MachXO3L/LF clock distribution network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-7.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device wake up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-10. The reset timing rules apply to the RPReset input versus the RE input and the RST input versus the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For more details refer to TN1290, Memory Usage Guide for MachXO3 Devices.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Programmable I/O Cells (PIC)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO3L/LF devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the MachXO3L/LF devices, two adjacent PIOs can be combined to provide a complementary output driver pair.

All PIO pairs can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these devices have on-chip differential termination and also provide PCI support.

Input Gearbox

Each PIC on the bottom edge has a built-in 1:8 input gearbox. Each of these input gearboxes may be programmed as a 1:7 de-serializer or as one IDDRX4 (1:8) gearbox or as two IDDRX2 (1:4) gearboxes. Table 2-9 shows the gearbox signals.

Table 2-9. Input Gearbox Signal List

Name	I/O Type	Description
D	Input	High-speed data input after programmable delay in PIO A input register block
ALIGNWD	Input	Data alignment signal from device core
SCLK	Input	Slow-speed system clock
ECLK[1:0]	Input	High-speed edge clock
RST	Input	Reset
Q[7:0]	Output	Low-speed data to device core: Video RX(1:7): Q[6:0] GDDRX4(1:8): Q[7:0] GDDRX2(1:4)(IOL-A): Q4, Q5, Q6, Q7 GDDRX2(1:4)(IOL-C): Q0, Q1, Q2, Q3

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-13 shows a block diagram of the input gearbox.

Table 2-11 shows the I/O standards (together with their supply and reference voltages) supported by the MachXO3L/LF devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1280, MachXO3 sysIO Usage Guide.

Table 2-11. Supported Input Standards

		V	CCIO (Ty	p.)	
Input Standard	3.3 V	2.5 V	1.8 V	1.5 V	1.2 V
Single-Ended Interfaces					
LVTTL	Yes				
LVCMOS33	Yes				
LVCMOS25		Yes			
LVCMOS18			Yes		
LVCMOS15				Yes	
LVCMOS12					Yes
PCI	Yes				
Differential Interfaces		•			
LVDS	Yes	Yes			
BLVDS, MLVDS, LVPECL, RSDS	Yes	Yes			
MIPI ¹	Yes	Yes			
LVTTLD	Yes				
LVCMOS33D	Yes				
LVCMOS25D		Yes			
LVCMOS18D			Yes		

1. These interfaces can be emulated with external resistors in all devices.

Hardened Timer/Counter

MachXO3L/LF devices provide a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit timer/counter module with independent output compare units and PWM support. The Timer/Counter supports the following functions:

- Supports the following modes of operation:
 - Watchdog timer
 - Clear timer on compare match
 - Fast PWM
 - Phase and Frequency Correct PWM
- Programmable clock input source
- Programmable input clock prescaler
- One static interrupt output to routing
- One wake-up interrupt to on-chip standby mode controller.
- Three independent interrupt sources: overflow, output compare match, and input capture
- Auto reload
- Time-stamping support on the input capture unit
- Waveform generation on the output
- Glitch-free PWM waveform generation with variable PWM period
- Internal WISHBONE bus access to the control and status registers
- · Stand-alone mode with preloaded control registers and direct reset input

Figure 2-20. Timer/Counter Block Diagram

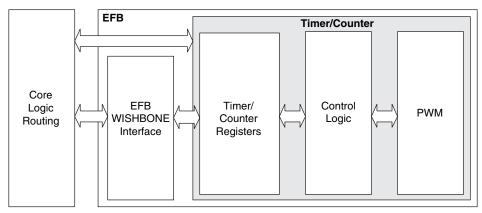


Table 2-16. Timer/Counter Signal Description

Port	I/O	Description
tc_clki	I	Timer/Counter input clock signal
tc_rstn	I	Register tc_rstn_ena is preloaded by configuration to always keep this pin enabled
tc_ic	I	Input capture trigger event, applicable for non-pwm modes with WISHBONE interface. If enabled, a rising edge of this signal will be detected and synchronized to capture tc_cnt value into tc_icr for time-stamping.
tc_int	0	Without WISHBONE – Can be used as overflow flag With WISHBONE – Controlled by three IRQ registers
tc_oc	0	Timer counter output signal

Configuration and Testing

This section describes the configuration and testing features of the MachXO3L/LF family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO3L/LF devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO3L/LF devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO3L/LF device:

- 1. Internal NVCM/Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1279, MachXO3 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO3L/ LF devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip NVCM/Flash, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip NVCM/Flash. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

DC Electrical Characteristics

Parameter	Condition	Min.	Тур.	Max.	Units
	Clamp OFF and $V_{CCIO} < V_{IN} < V_{IH}$ (MAX)		_	+175	μA
	Clamp OFF and $V_{IN} = V_{CCIO}$	-10	_	10	μA
Input or I/O Leakage	Clamp OFF and V _{CCIO} - 0.97 V < V _{IN} < V _{CCIO}	-175		—	μΑ
	Clamp OFF and 0 V < V_{IN} < V_{CCIO} - 0.97 V		_	10	μA
	Clamp OFF and V _{IN} = GND		_	10	μA
	Clamp ON and 0 V < V _{IN} < V _{CCIO}		_	10	μA
I/O Active Pull-up Current	0 < V _{IN} < 0.7 V _{CCIO}	-30		-309	μA
I/O Active Pull-down Current	V _{IL} (MAX) < V _{IN} < V _{CCIO}	30		305	μA
Bus Hold Low sustaining current	$V_{IN} = V_{IL} (MAX)$	30		—	μA
Bus Hold High sustaining current	V _{IN} = 0.7V _{CCIO}	-30	_	_	μΑ
Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{CCIO}$	_	_	305	μΑ
Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{CCIO}$	_	_	-309	μA
Bus Hold Trip Points		V _{IL} (MAX)	_	V _{IH} (MIN)	V
I/O Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, V_{CC} = Typ., V_{IO} = 0 to V_{IH} (MAX)$	3	5	9	pf
Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, V_{CC} = Typ., V_{IO} = 0 to V_{IH} (MAX)$	3	5.5	7	pf
	V _{CCIO} = 3.3 V, Hysteresis = Large		450		mV
	V _{CCIO} = 2.5 V, Hysteresis = Large		250		mV
	V _{CCIO} = 1.8 V, Hysteresis = Large		125		mV
Hysteresis for Schmitt	V _{CCIO} = 1.5 V, Hysteresis = Large		100		mV
Trigger Inputs⁵	V _{CCIO} = 3.3 V, Hysteresis = Small		250		mV
	V _{CCIO} = 2.5 V, Hysteresis = Small		150		mV
	V _{CCIO} = 1.8 V, Hysteresis = Small		60		mV
	V _{CCIO} = 1.5 V, Hysteresis = Small		40		mV
	Input or I/O Leakage I/O Active Pull-up Current I/O Active Pull-down Current Bus Hold Low sustaining current Bus Hold Low sustaining current Bus Hold Low Overdrive current Bus Hold Low Overdrive current Bus Hold High Overdrive current Bus Hold Trip Points I/O Capacitance ² Dedicated Input Capacitance ²	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

 When V_{IH} is higher than V_{CCIO}, a transient current typically of 30 ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For true LVDS output pins in MachXO3L/LF devices, V_{IH} must be less than or equal to V_{CCIO}.

5. With bus keeper circuit turned on. For more details, refer to TN1280, MachXO3 sysIO Usage Guide.

sysIO Single-Ended DC Electrical Characteristics^{1, 2}

Input/Output	V	IL	V	н	V _{OL} Max.	V _{OH} Min.	I _{OL} Max. ⁴	I _{OH} Max.⁴
Standard	Min. (V) ³	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mA)	(mA)
							4	-4
					0.4	V _{CCIO} - 0.4	8	-8
LVCMOS 3.3 LVTTL	-0.3	0.8	2.0	3.6	0.4	VCCIO - 0.4	12	-12
							16	-16
					0.2	V _{CCIO} - 0.2	0.1	-0.1
							4	-4
					0.4	V 0.4	8	-8
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	12	-12
							16	-16
					0.2	V _{CCIO} - 0.2	0.1	-0.1
							4	-4
	0.0		0.651	0.65V _{CCIO} 3.6 0.4 V _{CCIO} - 0	0.4	V _{CCIO} - 0.4	8	-8
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.05V _{CCIO}				12	-12
					0.2	V _{CCIO} - 0.2	0.1	-0.1
	-0.3	0.35V _{CCIO}	0.65V _{CCIO}		0.4	V 04	4	-4
LVCMOS 1.5				3.6	3.6 0.4 V _{CCIO} - 0.	V _{CCIO} - 0.4	8	-8
					0.2	V _{CCIO} - 0.2	0.1	-0.1
		0.35V _{CCIO}	0.65V _{CCIO}		0.4	V 04	4	-2
LVCMOS 1.2	-0.3			0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25R33	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS18R33	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS18R25	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS15R33	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS15R25	-0.3	VREF-0.1	VREF+0.1	3.6	NA	NA	NA	NA
LVCMOS12R33	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain
LVCMOS12R25	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain
LVCMOS10R33	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain
LVCMOS10R25	-0.3	VREF-0.1	VREF+0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain

 MachXO3L/LF devices allow LVCMOS inputs to be placed in I/O banks where V_{CCIO} is different from what is specified in the applicable JEDEC specification. This is referred to as a ratioed input buffer. In a majority of cases this operation follows or exceeds the applicable JEDEC specification. The cases where MachXO3L/LF devices do not meet the relevant JEDEC specification are documented in the table below.

2. MachXO3L/LF devices allow for LVCMOS referenced I/Os which follow applicable JEDEC specifications. For more details about mixed mode operation please refer to please refer to TN1280, MachXO3 sysIO Usage Guide.

3. The dual function I²C pins SCL and SDA are limited to a V_{IL} min of -0.25 V or to -0.3 V with a duration of <10 ns.

4. For electromigration, the average DC current sourced or sinked by I/O pads between two consecutive VCCIO or GND pad connections, or between the last VCCIO or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) shall not exceed a maximum of n * 8 mA. "n" is the number of I/O pads between the two consecutive bank VCCIO or GND connections or between the last VCCIO and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated from the Lattice Diamond software.

sysIO Differential Electrical Characteristics

The LVDS differential output buffers are available on the top side of the MachXO3L/LF PLD family.

LVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V V	Input Voltage	V _{CCIO} = 3.3 V	0	_	2.605	V
V _{INP} V _{INM}		$V_{CCIO} = 2.5 V$	0	_	2.05	V
V _{THD}	Differential Input Threshold		±100	_		mV
V	Input Common Mode Voltage	V _{CCIO} = 3.3 V	0.05		2.6	V
I _{IN} Ir	input common mode voltage	$V_{CCIO} = 2.5 V$	0.05		2.0	V
I _{IN}	Input current	Power on	_	_	±10	μA
V _{OH}	Output high voltage for V _{OP} or V _{OM}	R _T = 100 Ohm	_	1.375	—	V
V _{OL}	Output low voltage for V _{OP} or V _{OM}	R _T = 100 Ohm	0.90	1.025	—	V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV _{OD}	Change in V _{OD} between high and low		_	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_T = 100 \text{ Ohm}$	1.125	1.20	1.395	V
ΔV _{OS}	Change in V _{OS} between H and L		_	_	50	mV
IOSD	Output short circuit current	V _{OD} = 0 V driver outputs shorted	_	—	24	mA

Over Recommended Operating Conditions

Table 3-5. MIPI D-PHY Output DC Conditions¹

	Description	Min.	Тур.	Max.	Units
Transmitter				1	
External Termi	nation				
External Termin RL RH High Speed VCCIO	1% external resistor with VCCIO = 2.5 V		50	—	Ohms
	1% external resistor with VCCIO = 3.3 V		50	—	
RH	1% external resistor with performance up to 800 Mbps or with performance up 900 Mbps when VCCIO = 2.5 V	_	330	—	Ohms
	1% external resistor with performance between 800 Mbps to 900 Mbps when VCCIO = 3.3 V	—	464	_	Ohms
High Speed			•		•
VCCIO	VCCIO of the Bank with LVDS Emulated output buffer	ed output — 3.3 —	V		
	VCCIO of the Bank with LVDS Emulated output buffer	_	3.3	—	V
VCMTX	HS transmit static common mode voltage	150	200	250	mV
VOD	HS transmit differential voltage	140	200	270	mV
VOHHS	HS output high voltage		—	360	V
ZOS	Single ended output impedance		50	—	Ohms
ΔZOS	Single ended output impedance mismatch		_	10	%
Low Power			•		•
VCCIO	VCCIO of the Bank with LVCMOS12D 6 mA drive bidirectional IO buffer	_	1.2	—	V
VOH	Output high level	1.1	1.2	1.3	V
VOL	Output low level	-50	0	50	mV
ZOLP	Output impedance of LP transmitter	110		—	Ohms

1. Over Recommended Operating Conditions

DC and Switching Characteristics MachXO3 Family Data Sheet

			-	6	_	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Edge Clock without	t PLL)			1		1
		MachXO3L/LF-1300	—	7.53	—	7.76	ns
		MachXO3L/LF-2100	—	7.53	—	7.76	ns
t _{COE}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	7.45		7.68	ns
		MachXO3L/LF-6900	—	7.53		7.76	ns
		MachXO3L/LF-9400	—	8.93	—	9.35	ns
		MachXO3L/LF-1300	-0.19		-0.19		ns
		MachXO3L/LF-2100	-0.19		-0.19	_	ns
t _{SUE}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	-0.16	_	-0.16	_	ns
		MachXO3L/LF-6900	-0.19		-0.19		ns
		MachXO3L/LF-9400	-0.20	_	-0.20	_	ns
		MachXO3L/LF-1300	1.97	_	2.24	_	ns
		MachXO3L/LF-2100	1.97		2.24		ns
t _{HE}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	1.89		2.16		ns
		MachXO3L/LF-6900	1.97	_	2.24	_	ns
		MachXO3L/LF-9400	1.98		2.25		ns
		MachXO3L/LF-1300	1.56		1.69	_	ns
		MachXO3L/LF-2100	1.56		1.69		ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	MachXO3L/LF-4300	1.74	_	1.88	_	ns
		MachXO3L/LF-6900	1.66	_	1.81	_	ns
		MachXO3L/LF-9400	1.71		1.85		ns
		MachXO3L/LF-1300	-0.23	_	-0.23	_	ns
		MachXO3L/LF-2100	-0.23		-0.23		ns
t _{H_DELE}	Clock to Data Hold - PIO Input Register with Input Data Delay	MachXO3L/LF-4300	-0.34		-0.34		ns
	input bata bolay	MachXO3L/LF-6900	-0.29		-0.29		ns
		MachXO3L/LF-9400	-0.30		-0.30		ns
General I/O	Pin Parameters (Using Primary Clock with	PLL)					
		MachXO3L/LF-1300	—	5.98		6.01	ns
		MachXO3L/LF-2100	—	5.98	_	6.01	ns
t _{COPLL}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	5.99	—	6.02	ns
		MachXO3L/LF-6900	—	6.02	_	6.06	ns
		MachXO3L/LF-9400	—	5.55	_	6.13	ns
		MachXO3L/LF-1300	0.36	_	0.36	—	ns
		MachXO3L/LF-2100	0.36	_	0.36	_	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	0.35		0.35		ns
		MachXO3L/LF-6900	0.34	—	0.34	—	ns
		MachXO3L/LF-9400	0.33		0.33		ns
		MachXO3L/LF-1300	0.42		0.49		ns
		MachXO3L/LF-2100	0.42	—	0.49	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	0.43	—	0.50	_	ns
		MachXO3L/LF-6900	0.46		0.54		ns
		MachXO3L/LF-9400	0.47	—	0.55	—	ns

DC and Switching Characteristics MachXO3 Family Data Sheet

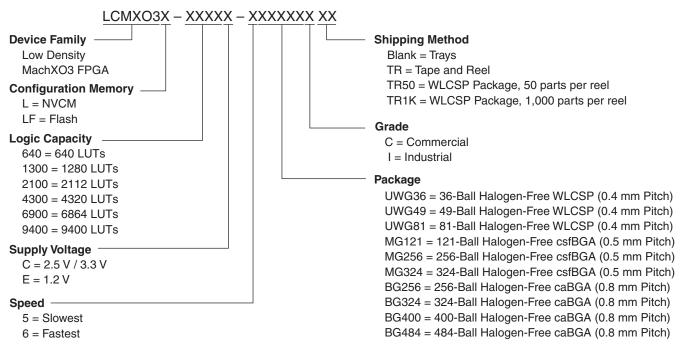
			-	-6		-5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	MachXO3L/LF-1300	2.87	—	3.18	—	ns
		MachXO3L/LF-2100	2.87		3.18	—	ns
		MachXO3L/LF-4300	2.96		3.28	—	ns
		MachXO3L/LF-6900	3.05	_	3.35	—	ns
		MachXO3L/LF-9400	3.06		3.37	—	ns
^t H_DELPLL	Clock to Data Hold - PIO Input Register with Input Data Delay	MachXO3L/LF-1300	-0.83		-0.83	—	ns
		MachXO3L/LF-2100	-0.83		-0.83	—	ns
		MachXO3L/LF-4300	-0.87		-0.87	—	ns
		MachXO3L/LF-6900	-0.91	—	-0.91	—	ns
		MachXO3L/LF-9400	-0.93	—	-0.93	—	ns

sysCONFIG Port Timing Specifications

Symbol	Parameter		Min.	Max.	Units
All Configuration Mo	odes				
t _{PRGM}	PROGRAMN low pul	PROGRAMN low pulse accept		—	ns
t _{PRGMJ}	PROGRAMN low pul	PROGRAMN low pulse rejection		25	ns
t _{INITL}	INITN low time	LCMXO3L/LF-640/ LCMXO3L/LF-1300	—	55	us
		LCMXO3L/LF-1300 256-Ball Package/ LCMXO3L/LF-2100	_	70	us
		LCMXO3L/LF-2100 324-Ball Package/ LCMXO3-4300	_	105	us
		LCMXO3L/LF-4300 400-Ball Package/ LCMXO3-6900	_	130	us
		LCMXO3L/LF-9400C	_	175	us
t _{DPPINIT}	PROGRAMN low to	NITN low	_	150	ns
t _{DPPDONE}	PROGRAMN low to I	DONE low	_	150	ns
t _{IODISS}	PROGRAMN low to	I/O disable	—	120	ns
Slave SPI					
f _{MAX}	CCLK clock frequence	CCLK clock frequency		66	MHz
t _{CCLKH}	CCLK clock pulse wi	CCLK clock pulse width high		—	ns
t _{CCLKL}	CCLK clock pulse wi	CCLK clock pulse width low		—	ns
t _{STSU}	CCLK setup time	CCLK setup time		—	ns
t _{STH}	CCLK hold time	CCLK hold time		—	ns
t _{STCO}	CCLK falling edge to	CCLK falling edge to valid output		10	ns
t _{STOZ}	CCLK falling edge to	CCLK falling edge to valid disable		10	ns
t _{STOV}	CCLK falling edge to	valid enable	_	10	ns
t _{SCS}	Chip select high time	Chip select high time		—	ns
t _{SCSS}	Chip select setup tim	e	3	—	ns
t _{SCSH}	Chip select hold time)	3	—	ns
Master SPI					
f _{MAX}	MCLK clock frequence	MCLK clock frequency		133	MHz
t _{MCLKH}	MCLK clock pulse wi	MCLK clock pulse width high		—	ns
t _{MCLKL}	MCLK clock pulse wi	MCLK clock pulse width low		—	ns
t _{STSU}	MCLK setup time	MCLK setup time		—	ns
t _{STH}	MCLK hold time	MCLK hold time		—	ns
t _{CSSPI}	INITN high to chip se	elect low	100	200	ns
t _{MCLK}	INITN high to first MCLK edge		0.75	1	us

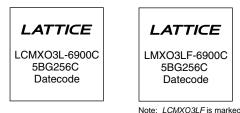
Pin Information Summary

	MachXO3L/LF -640	MachXO3L/LF-1300			
	CSFBGA121	WLCSP36	CSFBGA121	CSFBGA256	CABGA256
General Purpose IO per Bank	•	•	•	•	•
Bank 0	24	15	24	50	50
Bank 1	26	0	26	52	52
Bank 2	26	9	26	52	52
Bank 3	24	4	24	16	16
Bank 4	0	0	0	16	16
Bank 5	0	0	0	20	20
Total General Purpose Single Ended IO	100	28	100	206	206
Differential IO per Bank		1			L
Bank 0	12	8	12	25	25
Bank 1	13	0	13	26	26
Bank 2	13	4	13	26	26
Bank 3	11	2	11	8	8
Bank 4	0	0	0	8	8
Bank 5	0	0	0	10	10
Total General Purpose Differential IO	49	14	49	103	103
Dual Function IO	33	25	33	33	33
Number 7:1 or 8:1 Gearboxes		I.			I
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	7	3	7	14	14
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	7	2	7	14	14
High-speed Differential Outputs		L			L
Bank 0	7	3	7	14	14
VCCIO Pins		L			L
Bank 0	1	1	1	4	4
Bank 1	1	0	1	3	4
Bank 2	1	1	1	4	4
Bank 3	3	1	3	2	1
Bank 4	0	0	0	2	2
Bank 5	0	0	0	2	1
VCC	4	2	4	8	8
GND	10	2	10	24	24
NC	0	0	0	0	1
Reserved for Configuration	1	1	1	1	1
Total Count of Bonded Pins	121	36	121	256	256



MachXO3 Family Data Sheet Ordering Information

May 2016


Advance Data Sheet DS1047

MachXO3 Part Number Description

Ordering Information

MachXO3L/LF devices have top-side markings as shown in the examples below, on the 256-Ball caBGA package with MachXO3-6900 device in Commercial Temperature in Speed Grade 5. Notice that for the MachXO3LF device, *LMXO3LF* is used instead of *LCMXO3LF* as in the Part Number.

with LMXO3LF

Note: Markings are abbreviated for small packages.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LCMXO3L-9400C-6BG4841

484

IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-6900E-5MG256C	6900	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-6MG256C	6900	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-5MG256I	6900	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-6MG256I	6900	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-5MG324C	6900	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-6MG324C	6900	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-5MG324I	6900	1.2 V	5	Halogen-Free csfBGA	324	IND
LCMXO3L-6900E-6MG324I	6900	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3L-6900C-5BG256C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-6BG256C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-5BG256I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-6BG256I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-5BG324C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-6BG324C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-5BG324I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-6BG324I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-5BG400C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-6BG400C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-5BG4001	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-6900C-6BG400I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	IND
			<u> </u>			-
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-9400E-5MG256C	9400	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-9400E-6MG256C	9400	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-9400E-5MG256I	9400	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-9400E-6MG256I	9400	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-9400C-5BG256C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-9400C-6BG256C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-9400C-5BG256I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-6BG256I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-5BG400C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-6BG400C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-5BG400I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-9400C-6BG400I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	IND
LCMXO3L-9400C-5BG484C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-6BG484C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-5BG484I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	IND

2.5 V/3.3 V

6

Halogen-Free caBGA

9400

MachXO3 Family Data Sheet Revision History

February 2017

Advance Data Sheet DS1047

Date	Version	Section	Change Summary
February 2017	1.8	Architecture	Updated Supported Standards section. Corrected "MDVS" to "MLDVS" in Table 2-11, Supported Input Standards.
		DC and Switching Characteristics	Updated ESD Performance section. Added reference to the MachXO2 Product Family Qualification Summary document.
			Updated Static Supply Current – C/E Devices section. Added footnote 7.
			Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. — Populated values for MachXO3L/LF-9400. — Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, corrected "t _{DVB} " to "t _{DIB} " and "t _{DVA} " to "t _{DIA} " and revised their descriptions. — Added Figure 3-6, Receiver GDDR71_RX Waveforms and Figure 3-7, Transmitter GDDR71_TX Waveforms.
		Pinout Information	Updated the Pin Information Summary section. Added MachXO3L/LF- 9600C packages.
May 2016	1.7	DC and Switching Characteristics	Updated Absolute Maximum Ratings section. Modified I/O Tri-state Volt- age Applied and Dedicated Input Voltage Applied footnotes.
			Updated sysIO Recommended Operating Conditions section. — Added standards. — Added V _{REF} (V) — Added footnote 4.
			Updated sysIO Single-Ended DC Electrical Characteristics section. Added I/O standards.
		Ordering Information	Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.
			Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
April 2016	1.6	Introduction	Updated Features section. — Revised logic density range and IO to LUT ratio under Flexible Archi- tecture. — Revised 0.8 mm pitch information under Advanced Packaging. — Added MachXO3L-9400/MachXO3LF-9400 information to Table 1-1, MachXO3L/LF Family Selection Guide.
			Updated Introduction section. — Changed density from 6900 to 9400 LUTs. — Changed caBGA packaging to 19 x 19 mm.
		Architecture	Updated Architecture Overview section. — Changed statement to "All logic density devices in this family" — Updated Figure 2-2 heading and notes.
			Updated sysCLOCK Phase Locked Loops (PLLs) section. — Changed statement to "All MachXO3L/LF devices have one or more sysCLOCK PLL."
			Updated Programmable I/O Cells (PIC) section. — Changed statement to "All PIO pairs can implement differential receiv- ers."
			Updated sysIO Buffer Banks section. Updated Figure 2-5 heading.
			Updated Device Configuration section. Added Password and Soft Error Correction.
		DC and Switching Characteristics	Updated Static Supply Current – C/E Devices section. Added LCMXO3L/ LF-9400C and LCMXO3L/LF-9400E devices.
			Updated Programming and Erase Supply Current – C/E Devices section. — Added LCMXO3L/LF-9400C and LCMXO3L/LF-9400E devices. — Changed LCMXO3L/LF-640E and LCMXO3L/LF-1300E Typ. values.
			Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. Added MachXO3L/LF-9400 devices.
			Updated NVCM/Flash Download Time section. Added LCMXO3L/LF- 9400C device.
			Updated sysCONFIG Port Timing Specifications section. — Added LCMXO3L/LF-9400C device. — Changed t _{INITL} units to from ns to us. — Changed t _{DPPINIT} and t _{DPPDONE} Max. values are per PCN#03A-16.
		Pinout Information	Updated Pin Information Summary section. Added LCMXO3L/LF-9400C device.
		Ordering Information	Updated MachXO3 Part Number Description section. — Added 9400 = 9400 LUTs. — Added BG484 package.
			Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.
			Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.