# E • Mathice Semiconductor Corporation - <u>LCMXO3LF-1300E-5UWG36ITR Datasheet</u>



Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                              |
|--------------------------------|-------------------------------------------------------------------------------------|
| Number of LABs/CLBs            | 160                                                                                 |
| Number of Logic Elements/Cells | 1280                                                                                |
| Total RAM Bits                 | 65536                                                                               |
| Number of I/O                  | 28                                                                                  |
| Number of Gates                | -                                                                                   |
| Voltage - Supply               | 1.14V ~ 1.26V                                                                       |
| Mounting Type                  | Surface Mount                                                                       |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                                                  |
| Package / Case                 | 36-UFBGA, WLCSP                                                                     |
| Supplier Device Package        | 36-WLCSP (2.54x2.59)                                                                |
| Purchase URL                   | https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3lf-1300e-5uwg36itr |
|                                |                                                                                     |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# MachXO3 Family Data Sheet Introduction

#### January 2016

## **Features**

### Solutions

- Smallest footprint, lowest power, high data throughput bridging solutions for mobile applications
- Optimized footprint, logic density, IO count, IO performance devices for IO management and logic applications
- High IO/logic, lowest cost/IO, high IO devices for IO expansion applications

## ■ Flexible Architecture

- Logic Density ranging from 640 to 9.4K LUT4
- High IO to LUT ratio with up to 384 IO pins

## Advanced Packaging

- 0.4 mm pitch: 1K to 4K densities in very small footprint WLCSP (2.5 mm x 2.5 mm to 3.8 mm x 3.8 mm) with 28 to 63 IOs
- 0.5 mm pitch: 640 to 6.9K LUT densities in 6 mm x 6 mm to 10 mm x 10 mm BGA packages with up to 281 IOs
- 0.8 mm pitch: 1K to 9.4K densities with up to 384 IOs in BGA packages

## Pre-Engineered Source Synchronous I/O

- DDR registers in I/O cells
- Dedicated gearing logic
- 7:1 Gearing for Display I/Os
- Generic DDR, DDRx2, DDRx4

## High Performance, Flexible I/O Buffer

- Programmable sysIO<sup>™</sup> buffer supports wide range of interfaces:
  - LVCMOS 3.3/2.5/1.8/1.5/1.2
  - LVTTL
  - LVDS, Bus-LVDS, MLVDS, LVPECL
  - MIPI D-PHY Emulated
  - Schmitt trigger inputs, up to 0.5 V hysteresis
- Ideal for IO bridging applications
- I/Os support hot socketing
- On-chip differential termination
- Programmable pull-up or pull-down mode

## ■ Flexible On-Chip Clocking

- · Eight primary clocks
- Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only)
- Up to two analog PLLs per device with fractional-n frequency synthesis
  - Wide input frequency range (7 MHz to 400 MHz)
- Non-volatile, Multi-time Programmable
  - Instant-on
    - Powers up in microseconds
    - · Optional dual boot with external SPI memory
    - Single-chip, secure solution
    - Programmable through JTAG, SPI or I<sup>2</sup>C
    - MachXO3L includes multi-time programmable NVCM
    - MachXO3LF infinitely reconfigurable Flash

       Supports background programming of non-volatile memory

## TransFR Reconfiguration

In-field logic update while IO holds the system state

## Enhanced System Level Support

- On-chip hardened functions: SPI, I<sup>2</sup>C, timer/ counter
- On-chip oscillator with 5.5% accuracy
- Unique TraceID for system tracking
- Single power supply with extended operating range
- IEEE Standard 1149.1 boundary scan
- IEEE 1532 compliant in-system programming

#### Applications

- Consumer Electronics
- Compute and Storage
- Wireless Communications
- Industrial Control Systems
- Automotive System

### Low Cost Migration Path

- Migration from the Flash based MachXO3LF to the NVCM based MachXO3L
- · Pin compatible and equivalent timing

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

### Advance Data Sheet DS1047



## Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

## Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

## **Ripple Mode**

Ripple mode supports the efficient implementation of small arithmetic functions. In Ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/down counter with asynchronous clear
- Up/down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
  - A greater-than-or-equal-to B
  - A not-equal-to B
  - A less-than-or-equal-to B

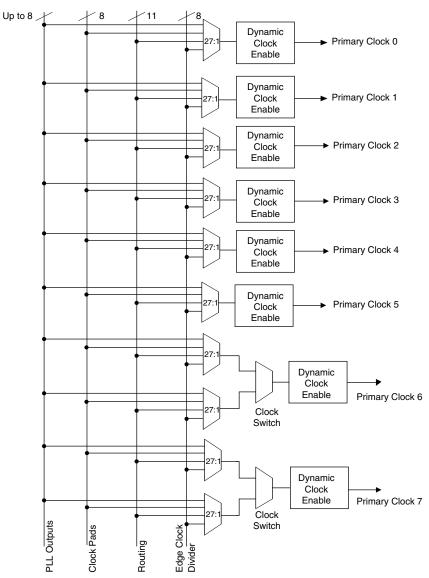
Ripple mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per-slice basis to allow fast arithmetic functions to be constructed by concatenating slices.

## **RAM Mode**

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed by using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals.

MachXO3L/LF devices support distributed memory initialization.

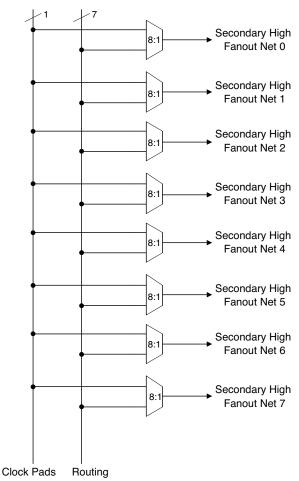
The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in MachXO3L/LF devices, please see TN1290, Memory Usage Guide for MachXO3 Devices.


### Table 2-3. Number of Slices Required For Implementing Distributed RAM

|                            | SPR 16x4         | PDPR 16x4     |
|----------------------------|------------------|---------------|
| Number of slices           | 3                | 3             |
| Note: SPB = Single Port BA | M. PDPR = Pseudo | Dual Port RAM |

ote: SPR = Single Port RAM, PDPR = Pseudo Dual




### Figure 2-5. Primary Clocks for MachXO3L/LF Devices



Eight secondary high fanout nets are generated from eight 8:1 muxes as shown in Figure 2-6. One of the eight inputs to the secondary high fanout net input mux comes from dual function clock pins and the remaining seven come from internal routing. The maximum frequency for the secondary clock network is shown in MachXO3L/LF External Switching Characteristics table.



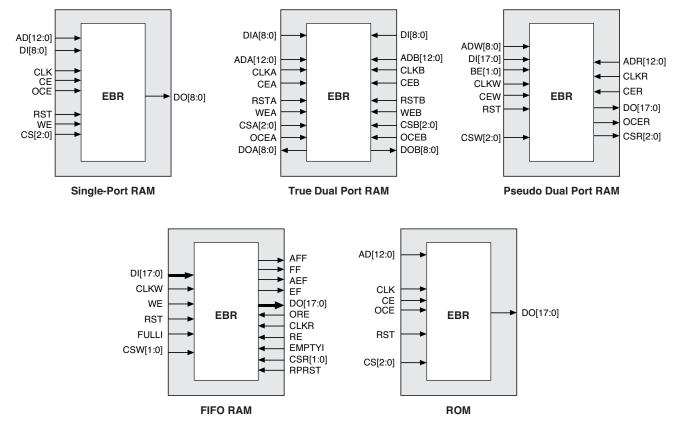
#### Figure 2-6. Secondary High Fanout Nets for MachXO3L/LF Devices



## sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. All MachXO3L/LF devices have one or more sysCLOCK PLL. CLKI is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. CLKFB is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The MachXO3L/LF sysCLOCK PLLs support high resolution (16-bit) fractional-N synthesis. Fractional-N frequency synthesis allows the user to generate an output clock which is a non-integer multiple of the input frequency. For more information about using the PLL with Fractional-N synthesis, please see TN1282, MachXO3 sysCLOCK PLL Design and Usage Guide.


Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The output dividers may also be cascaded together to generate low frequency clocks. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the MachXO3L/LF clock distribution network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-7.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock.



### Figure 2-8. sysMEM Memory Primitives





| Port Name        | Description                 | Active State      |
|------------------|-----------------------------|-------------------|
| CLK              | Clock                       | Rising Clock Edge |
| CE               | Clock Enable                | Active High       |
| OCE <sup>1</sup> | Output Clock Enable         | Active High       |
| RST              | Reset                       | Active High       |
| BE <sup>1</sup>  | Byte Enable                 | Active High       |
| WE               | Write Enable                | Active High       |
| AD               | Address Bus                 | —                 |
| DI               | Data In                     | _                 |
| DO               | Data Out                    | _                 |
| CS               | Chip Select                 | Active High       |
| AFF              | FIFO RAM Almost Full Flag   | _                 |
| FF               | FIFO RAM Full Flag          | _                 |
| AEF              | FIFO RAM Almost Empty Flag  | _                 |
| EF               | FIFO RAM Empty Flag         | _                 |
| RPRST            | FIFO RAM Read Pointer Reset | _                 |

#### Table 2-6. EBR Signal Descriptions

1. Optional signals.

2. For dual port EBR primitives a trailing 'A' or 'B' in the signal name specifies the EBR port A or port B respectively.

3. For FIFO RAM mode primitive, a trailing 'R' or 'W' in the signal name specifies the FIFO read port or write port respectively.

4. For FIFO RAM mode primitive FULLI has the same function as CSW(2) and EMPTYI has the same function as CSR(2).

In FIFO mode, CLKW is the write port clock, CSW is the write port chip select, CLKR is the read port clock, CSR is the read port clock, CSR is the read port clock.

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

#### **FIFO Configuration**

The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

#### Table 2-7. Programmable FIFO Flag Ranges

| Flag Name         Programming Range |                                    |  |  |
|-------------------------------------|------------------------------------|--|--|
| Full (FF)                           | 1 to max (up to 2 <sup>N</sup> -1) |  |  |
| Almost Full (AF)                    | 1 to Full-1                        |  |  |
| Almost Empty (AE)                   | 1 to Full-1                        |  |  |
| Empty (EF)                          | 0                                  |  |  |

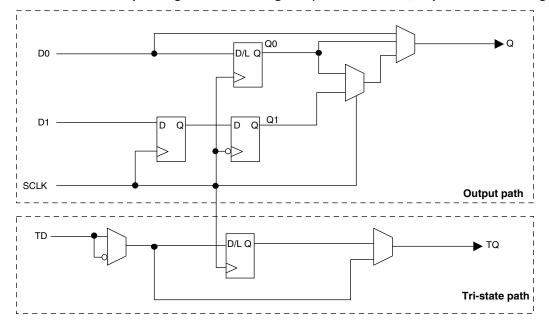
N = Address bit width.

The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset



## **Output Register Block**

The output register block registers signals from the core of the device before they are passed to the sysIO buffers.


## Left, Top, Bottom Edges

In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch.

In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-12 shows the output register block on the left, top and bottom edges.

Figure 2-12. MachXO3L/LF Output Register Block Diagram (PIO on the Left, Top and Bottom Edges)



## Tri-state Register Block

The tri-state register block registers tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation. In SDR, TD input feeds one of the flip-flops that then feeds the output.



Table 2-11 shows the I/O standards (together with their supply and reference voltages) supported by the MachXO3L/LF devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1280, MachXO3 sysIO Usage Guide.

## Table 2-11. Supported Input Standards

|                            | VCCIO (Typ.) |       |       |       |       |
|----------------------------|--------------|-------|-------|-------|-------|
| Input Standard             | 3.3 V        | 2.5 V | 1.8 V | 1.5 V | 1.2 V |
| Single-Ended Interfaces    |              |       |       |       |       |
| LVTTL                      | Yes          |       |       |       |       |
| LVCMOS33                   | Yes          |       |       |       |       |
| LVCMOS25                   |              | Yes   |       |       |       |
| LVCMOS18                   |              |       | Yes   |       |       |
| LVCMOS15                   |              |       |       | Yes   |       |
| LVCMOS12                   |              |       |       |       | Yes   |
| PCI                        | Yes          |       |       |       |       |
| Differential Interfaces    |              | •     |       |       |       |
| LVDS                       | Yes          | Yes   |       |       |       |
| BLVDS, MLVDS, LVPECL, RSDS | Yes          | Yes   |       |       |       |
| MIPI <sup>1</sup>          | Yes          | Yes   |       |       |       |
| LVTTLD                     | Yes          |       |       |       |       |
| LVCMOS33D                  | Yes          |       |       |       |       |
| LVCMOS25D                  |              | Yes   |       |       |       |
| LVCMOS18D                  |              |       | Yes   |       |       |

1. These interfaces can be emulated with external resistors in all devices.



## Hot Socketing

The MachXO3L/LF devices have been carefully designed to ensure predictable behavior during power-up and power-down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO3L/LF ideal for many multiple power supply and hot-swap applications.

## **On-chip Oscillator**

Every MachXO3L/LF device has an internal CMOS oscillator. The oscillator output can be routed as a clock to the clock tree or as a reference clock to the sysCLOCK PLL using general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit and a user input to enable/disable the oscillator. The oscillator frequency ranges from 2.08 MHz to 133 MHz. The software default value of the Master Clock (MCLK) is nominally 2.08 MHz. When a different MCLK is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal MCLK frequency of 2.08 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The MCLK frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.08 MHz.

Table 2-13 lists all the available MCLK frequencies.

### Table 2-13. Available MCLK Frequencies

| MCLK (MHz, Nominal) | MCLK (MHz, Nominal) | MCLK (MHz, Nominal) |
|---------------------|---------------------|---------------------|
| 2.08 (default)      | 9.17                | 33.25               |
| 2.46                | 10.23               | 38                  |
| 3.17                | 13.3                | 44.33               |
| 4.29                | 14.78               | 53.2                |
| 5.54                | 20.46               | 66.5                |
| 7                   | 26.6                | 88.67               |
| 8.31                | 29.56               | 133                 |



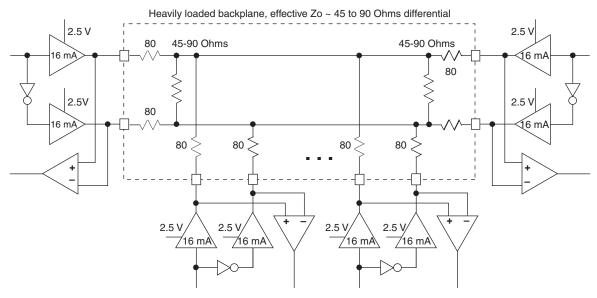
# sysIO Recommended Operating Conditions

|                        |       | V <sub>CCIO</sub> (V) |       |      | V <sub>REF</sub> (V) |      |
|------------------------|-------|-----------------------|-------|------|----------------------|------|
| Standard               | Min.  | Тур.                  | Max.  | Min. | Тур.                 | Max. |
| LVCMOS 3.3             | 3.135 | 3.3                   | 3.465 | —    | —                    | —    |
| LVCMOS 2.5             | 2.375 | 2.5                   | 2.625 | —    | —                    | —    |
| LVCMOS 1.8             | 1.71  | 1.8                   | 1.89  | —    | —                    | —    |
| LVCMOS 1.5             | 1.425 | 1.5                   | 1.575 | —    | —                    | —    |
| LVCMOS 1.2             | 1.14  | 1.2                   | 1.26  | —    | —                    | —    |
| LVTTL                  | 3.135 | 3.3                   | 3.465 | —    | —                    | —    |
| LVDS25 <sup>1, 2</sup> | 2.375 | 2.5                   | 2.625 | —    | —                    | —    |
| LVDS33 <sup>1, 2</sup> | 3.135 | 3.3                   | 3.465 | —    | —                    | —    |
| LVPECL <sup>1</sup>    | 3.135 | 3.3                   | 3.465 | —    | —                    | —    |
| BLVDS <sup>1</sup>     | 2.375 | 2.5                   | 2.625 | —    | —                    | —    |
| MIPI <sup>3</sup>      | 2.375 | 2.5                   | 2.625 | —    | —                    | —    |
| MIPI_LP <sup>3</sup>   | 1.14  | 1.2                   | 1.26  | —    | —                    | _    |
| LVCMOS25R33            | 3.135 | 3.3                   | 3.6   | 1.1  | 1.25                 | 1.4  |
| LVCMOS18R33            | 3.135 | 3.3                   | 3.6   | 0.75 | 0.9                  | 1.05 |
| LVCMOS18R25            | 2.375 | 2.5                   | 2.625 | 0.75 | 0.9                  | 1.05 |
| LVCMOS15R33            | 3.135 | 3.3                   | 3.6   | 0.6  | 0.75                 | 0.9  |
| LVCMOS15R25            | 2.375 | 2.5                   | 2.625 | 0.6  | 0.75                 | 0.9  |
| LVCMOS12R334           | 3.135 | 3.3                   | 3.6   | 0.45 | 0.6                  | 0.75 |
| LVCMOS12R254           | 2.375 | 2.5                   | 2.625 | 0.45 | 0.6                  | 0.75 |
| LVCMOS10R334           | 3.135 | 3.3                   | 3.6   | 0.35 | 0.5                  | 0.65 |
| LVCMOS10R254           | 2.375 | 2.5                   | 2.625 | 0.35 | 0.5                  | 0.65 |

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. For the dedicated LVDS buffers.

3. Requires the addition of external resistors.


4. Supported only for inputs and BIDIs for -6 speed grade devices.



## BLVDS

The MachXO3L/LF family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

## Figure 3-2. BLVDS Multi-point Output Example



### Table 3-2. BLVDS DC Conditions<sup>1</sup>

| <b>Over Recommended</b> | Operating | Conditions  |
|-------------------------|-----------|-------------|
|                         | oporating | 00110110110 |

|                     |                             | Non     | ninal   |       |
|---------------------|-----------------------------|---------|---------|-------|
| Symbol              | Description                 | Zo = 45 | Zo = 90 | Units |
| Z <sub>OUT</sub>    | Output impedance            | 20      | 20      | Ohms  |
| R <sub>S</sub>      | Driver series resistance    | 80      | 80      | Ohms  |
| R <sub>TLEFT</sub>  | Left end termination        | 45      | 90      | Ohms  |
| R <sub>TRIGHT</sub> | Right end termination       | 45      | 90      | Ohms  |
| V <sub>OH</sub>     | Output high voltage         | 1.376   | 1.480   | V     |
| V <sub>OL</sub>     | Output low voltage          | 1.124   | 1.020   | V     |
| V <sub>OD</sub>     | Output differential voltage | 0.253   | 0.459   | V     |
| V <sub>CM</sub>     | Output common mode voltage  | 1.250   | 1.250   | V     |
| I <sub>DC</sub>     | DC output current           | 11.236  | 10.204  | mA    |

1. For input buffer, see LVDS table.



# Maximum sysIO Buffer Performance

| I/O Standard | Max. Speed | Units |
|--------------|------------|-------|
| MIPI         | 450        | MHz   |
| LVDS25       | 400        | MHz   |
| LVDS25E      | 150        | MHz   |
| BLVDS25      | 150        | MHz   |
| BLVDS25E     | 150        | MHz   |
| MLVDS25      | 150        | MHz   |
| MLVDS25E     | 150        | MHz   |
| LVPECL33     | 150        | MHz   |
| LVPECL33E    | 150        | MHz   |
| LVTTL33      | 150        | MHz   |
| LVTTL33D     | 150        | MHz   |
| LVCMOS33     | 150        | MHz   |
| LVCMOS33D    | 150        | MHz   |
| LVCMOS25     | 150        | MHz   |
| LVCMOS25D    | 150        | MHz   |
| LVCMOS18     | 150        | MHz   |
| LVCMOS18D    | 150        | MHz   |
| LVCMOS15     | 150        | MHz   |
| LVCMOS15D    | 150        | MHz   |
| LVCMOS12     | 91         | MHz   |
| LVCMOS12D    | 91         | MHz   |



## DC and Switching Characteristics MachXO3 Family Data Sheet

|                      |                                                                  |                  | -     | 6    | _     | 5                                           |       |
|----------------------|------------------------------------------------------------------|------------------|-------|------|-------|---------------------------------------------|-------|
| Parameter            | Description                                                      | Device           | Min.  | Max. | Min.  | Max.                                        | Units |
| General I/O          | Pin Parameters (Using Edge Clock without                         | t PLL)           |       |      | 1     |                                             | 1     |
|                      |                                                                  | MachXO3L/LF-1300 | —     | 7.53 | —     | 7.76                                        | ns    |
|                      |                                                                  | MachXO3L/LF-2100 | —     | 7.53 | —     | 7.76                                        | ns    |
| t <sub>COE</sub>     | Clock to Output - PIO Output Register                            | MachXO3L/LF-4300 | —     | 7.45 |       | 7.68                                        | ns    |
|                      |                                                                  | MachXO3L/LF-6900 | —     | 7.53 |       | 7.76                                        | ns    |
|                      |                                                                  | MachXO3L/LF-9400 | —     | 8.93 | —     | 9.35                                        | ns    |
|                      |                                                                  | MachXO3L/LF-1300 | -0.19 |      | -0.19 |                                             | ns    |
|                      |                                                                  | MachXO3L/LF-2100 | -0.19 |      | -0.19 | _                                           | ns    |
| t <sub>SUE</sub>     | Clock to Data Setup - PIO Input Register                         | MachXO3L/LF-4300 | -0.16 | _    | -0.16 | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-6900 | -0.19 |      | -0.19 |                                             | ns    |
|                      |                                                                  | MachXO3L/LF-9400 | -0.20 | _    | -0.20 | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-1300 | 1.97  | _    | 2.24  | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-2100 | 1.97  |      | 2.24  |                                             | ns    |
| t <sub>HE</sub>      | Clock to Data Hold - PIO Input Register                          | MachXO3L/LF-4300 | 1.89  |      | 2.16  |                                             | ns    |
|                      |                                                                  | MachXO3L/LF-6900 | 1.97  | _    | 2.24  | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-9400 | 1.98  |      | 2.25  | 7.76         7.76         7.76         9.35 | ns    |
|                      |                                                                  | MachXO3L/LF-1300 | 1.56  |      | 1.69  | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-2100 | 1.56  |      | 1.69  |                                             | ns    |
| t <sub>SU_DELE</sub> | Clock to Data Setup - PIO Input Register with Data Input Delay   | MachXO3L/LF-4300 | 1.74  | _    | 1.88  | _                                           | ns    |
| _                    | with Data input Delay                                            | MachXO3L/LF-6900 | 1.66  | _    | 1.81  | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-9400 | 1.71  |      | 1.85  |                                             | ns    |
|                      |                                                                  | MachXO3L/LF-1300 | -0.23 | _    | -0.23 | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-2100 | -0.23 |      | -0.23 |                                             | ns    |
| t <sub>H_DELE</sub>  | Clock to Data Hold - PIO Input Register with<br>Input Data Delay | MachXO3L/LF-4300 | -0.34 |      | -0.34 |                                             | ns    |
|                      | input bata bolay                                                 | MachXO3L/LF-6900 | -0.29 |      | -0.29 |                                             | ns    |
|                      |                                                                  | MachXO3L/LF-9400 | -0.30 |      | -0.30 |                                             | ns    |
| General I/O          | Pin Parameters (Using Primary Clock with                         | PLL)             |       |      |       |                                             |       |
|                      |                                                                  | MachXO3L/LF-1300 | —     | 5.98 |       | 6.01                                        | ns    |
|                      |                                                                  | MachXO3L/LF-2100 | —     | 5.98 | _     | 6.01                                        | ns    |
| t <sub>COPLL</sub>   | Clock to Output - PIO Output Register                            | MachXO3L/LF-4300 | —     | 5.99 | —     | 6.02                                        | ns    |
|                      |                                                                  | MachXO3L/LF-6900 | —     | 6.02 | _     | 6.06                                        | ns    |
|                      |                                                                  | MachXO3L/LF-9400 | —     | 5.55 | _     | 6.13                                        | ns    |
|                      |                                                                  | MachXO3L/LF-1300 | 0.36  | _    | 0.36  | —                                           | ns    |
|                      |                                                                  | MachXO3L/LF-2100 | 0.36  |      | 0.36  | _                                           | ns    |
| t <sub>SUPLL</sub>   | Clock to Data Setup - PIO Input Register                         | MachXO3L/LF-4300 | 0.35  |      | 0.35  | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-6900 | 0.34  | —    | 0.34  | —                                           | ns    |
|                      |                                                                  | MachXO3L/LF-9400 | 0.33  |      | 0.33  | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-1300 | 0.42  |      | 0.49  | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-2100 | 0.42  | —    | 0.49  | —                                           | ns    |
| t <sub>HPLL</sub>    | Clock to Data Hold - PIO Input Register                          | MachXO3L/LF-4300 | 0.43  | —    | 0.50  | _                                           | ns    |
|                      |                                                                  | MachXO3L/LF-6900 | 0.46  |      | 0.54  |                                             | ns    |
|                      |                                                                  | MachXO3L/LF-9400 | 0.47  | —    | 0.55  | —                                           | ns    |



## DC and Switching Characteristics MachXO3 Family Data Sheet

|                                  |                                                                                    |                                       | -        | -6      | -     | 5     |       |
|----------------------------------|------------------------------------------------------------------------------------|---------------------------------------|----------|---------|-------|-------|-------|
| Parameter                        | Description                                                                        | Device                                | Min.     | Max.    | Min.  | Max.  | Units |
|                                  | DRX4 Outputs with Clock and Data Centere X.ECLK.Centered <sup>8, 9</sup>           | d at Pin Using PCLK Pin f             | or Clock | Input – |       |       |       |
| t <sub>DVB</sub>                 | Output Data Valid Before CLK Output                                                |                                       | 0.455    | —       | 0.570 |       | ns    |
| t <sub>DVA</sub>                 | Output Data Valid After CLK Output                                                 | MachXO3L/LF devices,<br>top side only | 0.455    | —       | 0.570 | —     | ns    |
| f <sub>DATA</sub>                | DDRX4 Serial Output Data Speed                                                     |                                       | —        | 800     |       | 630   | Mbps  |
| f <sub>DDRX4</sub>               | DDRX4 ECLK Frequency<br>(minimum limited by PLL)                                   |                                       | _        | 400     | _     | 315   | MHz   |
| f <sub>SCLK</sub>                | SCLK Frequency                                                                     |                                       | _        | 100     | —     | 79    | MHz   |
| 7:1 LVDS 0                       | outputs – GDDR71_TX.ECLK.7:1 <sup>8,9</sup>                                        |                                       | •        | •       |       |       |       |
| t <sub>DIB</sub>                 | Output Data Invalid Before CLK Output                                              |                                       | —        | 0.160   |       | 0.180 | ns    |
| t <sub>DIA</sub>                 | Output Data Invalid After CLK Output                                               | _                                     | —        | 0.160   | —     | 0.180 | ns    |
| f <sub>DATA</sub>                | DDR71 Serial Output Data Speed                                                     | MachXO3L/LF devices,                  | —        | 756     | —     | 630   | Mbps  |
| f <sub>DDR71</sub>               | DDR71 ECLK Frequency                                                               | top side only                         | —        | 378     |       | 315   | MHz   |
| f <sub>CLKOUT</sub>              | 7:1 Output Clock Frequency (SCLK) (mini-<br>mum limited by PLL)                    | -                                     | _        | 108     | _     | 90    | MHz   |
|                                  | Outputs with Clock and Data Centered at F<br>X.ECLK.Centered <sup>10, 11, 12</sup> | in Using PCLK Pin for Clo             | ck Input | -       |       |       |       |
| t <sub>DVB</sub>                 | Output Data Valid Before CLK Output                                                |                                       | 0.200    | —       | 0.200 |       | UI    |
| t <sub>DVA</sub>                 | Output Data Valid After CLK Output                                                 |                                       | 0.200    | —       | 0.200 |       | UI    |
| f <sub>DATA</sub> <sup>14</sup>  | MIPI D-PHY Output Data Speed                                                       | All MachXO3L/LF                       | —        | 900     |       | 900   | Mbps  |
| f <sub>DDRX4</sub> <sup>14</sup> | MIPI D-PHY ECLK Frequency (minimum limited by PLL)                                 | devices, top side only                | _        | 450     | —     | 450   | MHz   |
| f <sub>SCLK</sub> <sup>14</sup>  | SCLK Frequency                                                                     | 1                                     | —        | 112.5   | —     | 112.5 | MHz   |

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

5. For Generic DDRX1 mode  $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$ .

6. The t<sub>SU DEL</sub> and t<sub>H DEL</sub> values use the SCLK\_ZERHOLD default step size. Each step is 105 ps (-6), 113 ps (-5), 120 ps (-4).

7. This number for general purpose usage. Duty cycle tolerance is +/-10%.

8. Duty cycle is  $\pm -5\%$  for system usage.

9. Performance is calculated with 0.225 UI.

10. Performance is calculated with 0.20 UI.

11. Performance for Industrial devices are only supported with VCC between 1.16 V to 1.24 V.

12. Performance for Industrial devices and -5 devices are not modeled in the Diamond design tool.

13. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

14. Above 800 Mbps is only supported with WLCSP and csfBGA packages

15. Between 800 Mbps to 900 Mbps:

a. VIDTH exceeds the MIPI D-PHY Input DC Conditions Table 3-4 and can be calculated with the equation tSU or tH = -0.0005\*VIDTH + 0.3284

b. Example calculations

i. tSU and tHO = 0.28 with VIDTH = 100 mV

ii. tSU and tHO = 0.25 with VIDTH = 170 mV

iii. tSU and tHO = 0.20 with VIDTH = 270 mV



## Figure 3-6. Receiver GDDR71\_RX. Waveforms

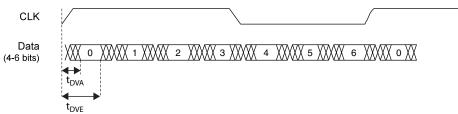
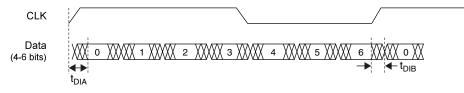




Figure 3-7. Transmitter GDDR71\_TX. Waveforms





# Signal Descriptions (Cont.)

| Signal Name                                              | I/O | Descriptions                                                                                                                                                 |  |
|----------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Configuration (Dual function pins used during sysCONFIG) |     |                                                                                                                                                              |  |
| PROGRAMN                                                 | I   | Initiates configuration sequence when asserted low. This pin always has an active pull-up.                                                                   |  |
| INITN                                                    | I/O | Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled.                                                    |  |
| DONE                                                     | I/O | Open Drain pin. Indicates that the configuration sequence is complete, and the start-up sequence is in progress.                                             |  |
| MCLK/CCLK                                                | I/O | Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes. |  |
| SN                                                       | I   | Slave SPI active low chip select input.                                                                                                                      |  |
| CSSPIN                                                   | I/O | Master SPI active low chip select output.                                                                                                                    |  |
| SI/SPISI                                                 | I/O | Slave SPI serial data input and master SPI serial data output.                                                                                               |  |
| SO/SPISO                                                 | I/O | Slave SPI serial data output and master SPI serial data input.                                                                                               |  |
| SCL                                                      | I/O | Slave I <sup>2</sup> C clock input and master I <sup>2</sup> C clock output.                                                                                 |  |
| SDA                                                      | I/O | Slave I <sup>2</sup> C data input and master I <sup>2</sup> C data output.                                                                                   |  |



|                                                        | MachXO3L/LF-6900 |           |          |          |          |
|--------------------------------------------------------|------------------|-----------|----------|----------|----------|
|                                                        | CSFBGA256        | CSFBGA324 | CABGA256 | CABGA324 | CABGA400 |
| General Purpose IO per Bank                            |                  |           | 1        | I        |          |
| Bank 0                                                 | 50               | 73        | 50       | 71       | 83       |
| Bank 1                                                 | 52               | 68        | 52       | 68       | 84       |
| Bank 2                                                 | 52               | 72        | 52       | 72       | 84       |
| Bank 3                                                 | 16               | 24        | 16       | 24       | 28       |
| Bank 4                                                 | 16               | 16        | 16       | 16       | 24       |
| Bank 5                                                 | 20               | 28        | 20       | 28       | 32       |
| Total General Purpose Single Ended IO                  | 206              | 281       | 206      | 279      | 335      |
| Differential IO per Bank                               |                  | •         | •        | •        |          |
| Bank 0                                                 | 25               | 36        | 25       | 36       | 42       |
| Bank 1                                                 | 26               | 34        | 26       | 34       | 42       |
| Bank 2                                                 | 26               | 36        | 26       | 36       | 42       |
| Bank 3                                                 | 8                | 12        | 8        | 12       | 14       |
| Bank 4                                                 | 8                | 8         | 8        | 8        | 12       |
| Bank 5                                                 | 10               | 14        | 10       | 14       | 16       |
| Total General Purpose Differential IO                  | 103              | 140       | 103      | 140      | 168      |
| Dual Function IO                                       | 37               | 37        | 37       | 37       | 37       |
| Number 7:1 or 8:1 Gearboxes                            | •                | •         | •        | •        | •        |
| Number of 7:1 or 8:1 Output Gearbox Available (Bank 0) | 20               | 21        | 20       | 21       | 21       |
| Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)  | 20               | 21        | 20       | 21       | 21       |
| High-speed Differential Outputs                        |                  |           |          |          |          |
| Bank 0                                                 | 20               | 21        | 20       | 21       | 21       |
| VCCIO Pins                                             |                  | •         | •        | •        |          |
| Bank 0                                                 | 4                | 4         | 4        | 4        | 5        |
| Bank 1                                                 | 3                | 4         | 4        | 4        | 5        |
| Bank 2                                                 | 4                | 4         | 4        | 4        | 5        |
| Bank 3                                                 | 2                | 2         | 1        | 2        | 2        |
| Bank 4                                                 | 2                | 2         | 2        | 2        | 2        |
| Bank 5                                                 | 2                | 2         | 1        | 2        | 2        |
| VCC                                                    | 8                | 8         | 8        | 10       | 10       |
| GND                                                    | 24               | 16        | 24       | 16       | 33       |
| NC                                                     | 0                | 0         | 1        | 0        | 0        |
| Reserved for Configuration                             | 1                | 1         | 1        | 1        | 1        |
| Total Count of Bonded Pins                             | 256              | 324       | 256      | 324      | 400      |



|                                                        | MachXO3L/LF-9400C |          |          |          |
|--------------------------------------------------------|-------------------|----------|----------|----------|
|                                                        | CSFBGA256         | CABGA256 | CABGA400 | CABGA484 |
| General Purpose IO per Bank                            |                   | •        |          | •        |
| Bank 0                                                 | 50                | 50       | 83       | 95       |
| Bank 1                                                 | 52                | 52       | 84       | 96       |
| Bank 2                                                 | 52                | 52       | 84       | 96       |
| Bank 3                                                 | 16                | 16       | 28       | 36       |
| Bank 4                                                 | 16                | 16       | 24       | 24       |
| Bank 5                                                 | 20                | 20       | 32       | 36       |
| Total General Purpose Single Ended IO                  | 206               | 206      | 335      | 383      |
| Differential IO per Bank                               |                   | •        |          | •        |
| Bank 0                                                 | 25                | 25       | 42       | 48       |
| Bank 1                                                 | 26                | 26       | 42       | 48       |
| Bank 2                                                 | 26                | 26       | 42       | 48       |
| Bank 3                                                 | 8                 | 8        | 14       | 18       |
| Bank 4                                                 | 8                 | 8        | 12       | 12       |
| Bank 5                                                 | 10                | 10       | 16       | 18       |
| Total General Purpose Differential IO                  | 103               | 103      | 168      | 192      |
| Dual Function IO                                       | 37                | 37       | 37       | 45       |
| Number 7:1 or 8:1 Gearboxes                            | •                 |          |          | •        |
| Number of 7:1 or 8:1 Output Gearbox Available (Bank 0) | 20                | 20       | 22       | 24       |
| Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)  | 20                | 20       | 22       | 24       |
| High-speed Differential Outputs                        | •                 |          |          | •        |
| Bank 0                                                 | 20                | 20       | 21       | 24       |
| VCCIO Pins                                             | •                 |          |          | •        |
| Bank 0                                                 | 4                 | 4        | 5        | 9        |
| Bank 1                                                 | 3                 | 4        | 5        | 9        |
| Bank 2                                                 | 4                 | 4        | 5        | 9        |
| Bank 3                                                 | 2                 | 1        | 2        | 3        |
| Bank 4                                                 | 2                 | 2        | 2        | 3        |
| Bank 5                                                 | 2                 | 1        | 2        | 3        |
| VCC                                                    | 8                 | 8        | 10       | 12       |
| GND                                                    | 24                | 24       | 33       | 52       |
| NC                                                     | 0                 | 1        | 0        | 0        |
| Reserved for Configuration                             | 1                 | 1        | 1        | 1        |
| Total Count of Bonded Pins                             | 256               | 256      | 400      | 484      |



| Date       | Version | Section                             | Change Summary                                                                                                                                                                                                                                                                            |
|------------|---------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| April 2016 | 1.6     | Introduction                        | Updated Features section.<br>— Revised logic density range and IO to LUT ratio under Flexible Archi-<br>tecture.<br>— Revised 0.8 mm pitch information under Advanced Packaging.<br>— Added MachXO3L-9400/MachXO3LF-9400 information to Table 1-1,<br>MachXO3L/LF Family Selection Guide. |
|            |         |                                     | Updated Introduction section.<br>— Changed density from 6900 to 9400 LUTs.<br>— Changed caBGA packaging to 19 x 19 mm.                                                                                                                                                                    |
|            |         | Architecture                        | Updated Architecture Overview section.<br>— Changed statement to "All logic density devices in this family"<br>— Updated Figure 2-2 heading and notes.                                                                                                                                    |
|            |         |                                     | Updated sysCLOCK Phase Locked Loops (PLLs) section.<br>— Changed statement to "All MachXO3L/LF devices have one or more<br>sysCLOCK PLL."                                                                                                                                                 |
|            |         |                                     | Updated Programmable I/O Cells (PIC) section.<br>— Changed statement to "All PIO pairs can implement differential receiv-<br>ers."                                                                                                                                                        |
|            |         |                                     | Updated sysIO Buffer Banks section. Updated Figure 2-5 heading.                                                                                                                                                                                                                           |
|            |         |                                     | Updated Device Configuration section. Added Password and Soft Error Correction.                                                                                                                                                                                                           |
|            |         | DC and Switching<br>Characteristics | Updated Static Supply Current – C/E Devices section. Added LCMXO3L/<br>LF-9400C and LCMXO3L/LF-9400E devices.                                                                                                                                                                             |
|            |         |                                     | Updated Programming and Erase Supply Current – C/E Devices section.<br>— Added LCMXO3L/LF-9400C and LCMXO3L/LF-9400E devices.<br>— Changed LCMXO3L/LF-640E and LCMXO3L/LF-1300E Typ. values.                                                                                              |
|            |         |                                     | Updated MachXO3L/LF External Switching Characteristics – C/E<br>Devices section. Added MachXO3L/LF-9400 devices.                                                                                                                                                                          |
|            |         |                                     | Updated NVCM/Flash Download Time section. Added LCMXO3L/LF-<br>9400C device.                                                                                                                                                                                                              |
|            |         |                                     | Updated sysCONFIG Port Timing Specifications section.<br>— Added LCMXO3L/LF-9400C device.<br>— Changed t <sub>INITL</sub> units to from ns to us.<br>— Changed t <sub>DPPINIT</sub> and t <sub>DPPDONE</sub> Max. values are per PCN#03A-16.                                              |
|            |         | Pinout Information                  | Updated Pin Information Summary section. Added LCMXO3L/LF-9400C device.                                                                                                                                                                                                                   |
|            |         | Ordering Information                | Updated MachXO3 Part Number Description section.<br>— Added 9400 = 9400 LUTs.<br>— Added BG484 package.                                                                                                                                                                                   |
|            |         |                                     | Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.                                                                                                                                        |
|            |         |                                     | Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.                                                                                                                                       |



| Date               | Version | Section                             | Change Summary                                                                                                                                                        |
|--------------------|---------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| September 2015 1.5 |         | DC and Switching<br>Characteristics | Updated the MIPI D-PHY Emulation section. Revised Table 3-5, MIPI D-<br>PHY Output DC Conditions.<br>— Revised RL Typ. value.<br>— Revised RH description and values. |
|                    |         |                                     | Updated the Maximum sysIO Buffer Performance section. Revised MIPI Max. Speed value.                                                                                  |
|                    |         |                                     | Updated the MachXO3L/LF External Switching Characteristics – C/E Devices section. Added footnotes 14 and 15.                                                          |
| August 2015        | 1.4     | Architecture                        | Updated the Device Configuration section. Added JTAGENB to TAP dual purpose pins.                                                                                     |
|                    |         | Ordering Information                | Updated the top side markings section to indicate the use of LMXO3LF for the LCMXO3LF device.                                                                         |
| March 2015         | 1.3     | All                                 | General update. Added MachXO3LF devices.                                                                                                                              |
| October 2014       | 1.2     | Introduction                        | Updated Table 1-1, MachXO3L Family Selection Guide. Revised XO3L-<br>2100 and XO3L-4300 IO for 324-ball csfBGA package.                                               |
|                    |         | Architecture                        | Updated the Dual Boot section. Corrected information on where the pri-<br>mary bitstream and the golden image must reside.                                            |
|                    |         | Pinout Information                  | Updated the Pin Information Summary section.                                                                                                                          |
|                    |         |                                     | Changed General Purpose IO Bank 5 values for MachXO3L-2100 and MachXO3L-4300 CSFBGA 324 package.                                                                      |
|                    |         |                                     | Changed Number 7:1 or 8:1 Gearboxes for MachXO3L-640 and MachXO3L-1300.                                                                                               |
|                    |         |                                     | Removed DQS Groups (Bank 1) section.                                                                                                                                  |
|                    |         |                                     | Changed VCCIO Pins Bank 1 values for MachXO3L-1300, MachXO3L-<br>2100, MachXO3L-4300 and MachXO3L-6900 CSFBGA 256 package.                                            |
|                    |         |                                     | Changed GND values for MachXO3L-1300, MachXO3L-2100,<br>MachXO3L-4300 and MachXO3L-6900 CSFBGA 256 package.                                                           |
|                    |         |                                     | Changed NC values for MachXO3L-2100 and MachXO3L-4300 CSF-<br>BGA 324 package.                                                                                        |
|                    |         | DC and Switching<br>Characteristics | Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition.                                                                  |
|                    |         |                                     | Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition.                                                                 |
|                    |         |                                     | Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values.                                                                              |
| July 2014          | 1.1     | DC and Switching<br>Characteristics | Updated the Static Supply Current – C/E Devices section. Added devices.                                                                                               |
|                    |         |                                     | Updated the Programming and Erase Supply Current – C/E Device section. Added devices.                                                                                 |
|                    |         |                                     | Updated the sysIO Single-Ended DC Electrical Characteristics section.<br>Revised footnote 4.                                                                          |
|                    |         |                                     | Added the NVCM Download Time section.                                                                                                                                 |
|                    |         |                                     | Updated the Typical Building Block Function Performance – C/E Devices section. Added information to footnote.                                                         |
|                    |         | Pinout Information                  | Updated the Pin Information Summary section.                                                                                                                          |
|                    |         | Ordering Information                | Updated the MachXO3L Part Number Description section. Added pack-<br>ages.                                                                                            |
|                    |         |                                     | Updated the Ordering Information section. General update.                                                                                                             |