E Lattice Seniconductor Corporation - <u>LCMXO3LF-1300E-5UWG36ITR1K Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

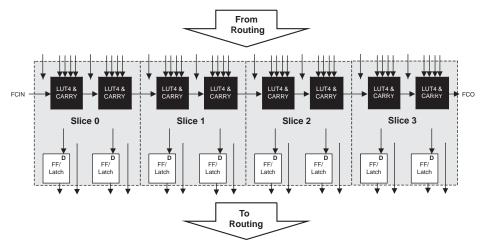
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	28
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	36-UFBGA, WLCSP
Supplier Device Package	36-WLCSP (2.54x2.59)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3lf-1300e-5uwg36itr1k

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PFU Blocks

The core of the MachXO3L/LF device consists of PFU blocks, which can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. Each PFU block consists of four interconnected slices numbered 0 to 3 as shown in Figure 2-3. Each slice contains two LUTs and two registers. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-3. PFU Block Diagram

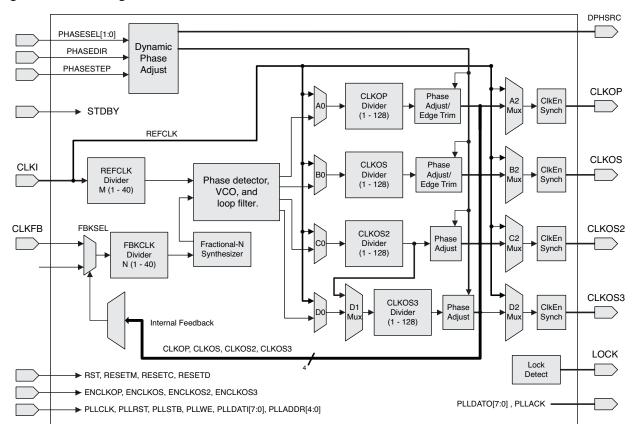
Slices

Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

Table 2-1. Resources and Modes Available per Slice

	PFU Block		
Slice	Resources	Modes	
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM	

Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3.



This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the $t_{I,OCK}$ parameter has been satisfied.

The MachXO3L/LF also has a feature that allows the user to select between two different reference clock sources dynamically. This feature is implemented using the PLLREFCS primitive. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

The MachXO3L/LF PLL contains a WISHBONE port feature that allows the PLL settings, including divider values, to be dynamically changed from the user logic. When using this feature the EFB block must also be instantiated in the design to allow access to the WISHBONE ports. Similar to the dynamic phase adjustment, when PLL settings are updated through the WISHBONE port the PLL may lose lock and not relock until the t_{LOCK} parameter has been satisfied. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

For more details on the PLL and the WISHBONE interface, see TN1282, MachXO3 sysCLOCK PLL Design and Usage Guide.

Figure 2-7. PLL Diagram

Table 2-4 provides signal descriptions of the PLL block.

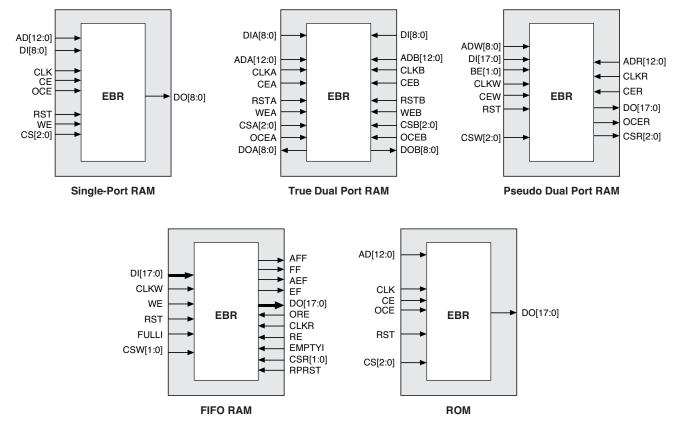
Table 2-4. PLL Signal	Descriptions
-----------------------	--------------

Port Name	I/O	Description	
CLKI	I	Input clock to PLL	
CLKFB	I	Feedback clock	
PHASESEL[1:0]	I	elect which output is affected by Dynamic Phase adjustment ports	
PHASEDIR	I	Dynamic Phase adjustment direction	
PHASESTEP	I	ynamic Phase step – toggle shifts VCO phase adjust by one step.	

Table 2-4. PLL Signal Descriptions (Continued)

Port Name	I/O	Description	
CLKOP	0	Primary PLL output clock (with phase shift adjustment)	
CLKOS	0	Secondary PLL output clock (with phase shift adjust)	
CLKOS2	0	Secondary PLL output clock2 (with phase shift adjust)	
CLKOS3	0	Secondary PLL output clock3 (with phase shift adjust)	
LOCK	0	PLL LOCK, asynchronous signal. Active high indicates PLL is locked to input and feed- back signals.	
DPHSRC	0	Dynamic Phase source – ports or WISHBONE is active	
STDBY	I	Standby signal to power down the PLL	
RST	I	PLL reset without resetting the M-divider. Active high reset.	
RESETM	I	PLL reset - includes resetting the M-divider. Active high reset.	
RESETC	I	Reset for CLKOS2 output divider only. Active high reset.	
RESETD	I	Reset for CLKOS3 output divider only. Active high reset.	
ENCLKOP	I	Enable PLL output CLKOP	
ENCLKOS	I	Enable PLL output CLKOS when port is active	
ENCLKOS2	I	Enable PLL output CLKOS2 when port is active	
ENCLKOS3	I	Enable PLL output CLKOS3 when port is active	
PLLCLK	I	PLL data bus clock input signal	
PLLRST	I	PLL data bus reset. This resets only the data bus not any register values.	
PLLSTB	I	PLL data bus strobe signal	
PLLWE	I	PLL data bus write enable signal	
PLLADDR [4:0]	I	PLL data bus address	
PLLDATI [7:0]	ļ	PLL data bus data input	
PLLDATO [7:0]	0	PLL data bus data output	
PLLACK	0	PLL data bus acknowledge signal	

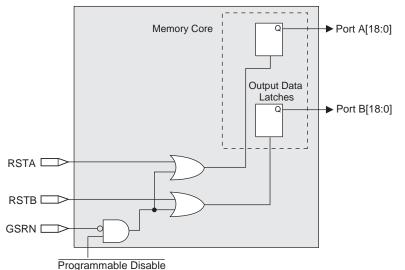
sysMEM Embedded Block RAM Memory


The MachXO3L/LF devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers. This memory can be used for a wide variety of purposes including data buffering, PROM for the soft processor and FIFO.

sysMEM Memory Block

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-5.

Figure 2-8. sysMEM Memory Primitives



state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

Figure 2-9. Memory Core Reset

For further information on the sysMEM EBR block, please refer to TN1290, Memory Usage Guide for MachXO3 Devices.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous.

Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

PIO

The PIO contains three blocks: an input register block, output register block and tri-state register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

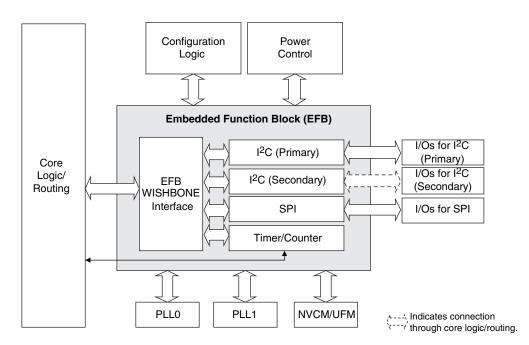
Table	2-8.	ΡΙΟ	Signal	List
			e.ga.	

Pin Name	I/О Туре	Description
CE	Input	Clock Enable
D	Input	Pin input from sysIO buffer.
INDD	Output	Register bypassed input.
INCK	Output	Clock input
Q0	Output	DDR positive edge input
Q1	Output	Registered input/DDR negative edge input
D0	Input	Output signal from the core (SDR and DDR)
D1	Input	Output signal from the core (DDR)
TD	Input	Tri-state signal from the core
Q	Output	Data output signals to sysIO Buffer
TQ	Output	Tri-state output signals to sysIO Buffer
SCLK	Input	System clock for input and output/tri-state blocks.
RST	Input	Local set reset signal

Input Register Block

The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core.

Left, Top, Bottom Edges


Input signals are fed from the sysIO buffer to the input register block (as signal D). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), and a clock (INCK). If an input delay is desired, users can select a fixed delay. I/Os on the bottom edge also have a dynamic delay, DEL[4:0]. The delay, if selected, reduces input register hold time requirements when using a global clock. The input block allows two modes of operation. In single data rate (SDR) the data is registered with the system clock (SCLK) by one of the registers in the single data rate sync register block. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock (SCLK) signal, creating two data streams.

Embedded Hardened IP Functions

All MachXO3L/LF devices provide embedded hardened functions such as SPI, I²C and Timer/Counter. MachXO3LF devices also provide User Flash Memory (UFM). These embedded blocks interface through the WISHBONE interface with routing as shown in Figure 2-17.

Figure 2-17. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO3L/LF device contains two I^2C IP cores. These are the primary and secondary I^2C IP cores. Either of the two cores can be configured either as an I^2C master or as an I^2C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I^2C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

For more details on these embedded functions, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

User Flash Memory (UFM)

MachXO3LF devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I2C and SPI interfaces of the device. The UFM block offers the following features:

- Non-volatile storage up to 256 kbits
- 100K write cycles
- Write access is performed page-wise; each page has 128 bits (16 bytes)
- Auto-increment addressing
- WISHBONE interface

For more information on the UFM, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

Standby Mode and Power Saving Options

MachXO3L/LF devices are available in two options, the C and E devices. The C devices have a built-in voltage regulator to allow for 2.5 V V_{CC} and 3.3 V V_{CC} while the E devices operate at 1.2 V V_{CC}.

MachXO3L/LF devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO3L/LF devices support a low power Stand-by mode.

In the stand-by mode the MachXO3L/LF devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I²C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned "off" or go into a low power consumption state to save power when the device enters this state. Note that the MachXO3L/LF devices are powered on when in standby mode and all power supplies should remain in the Recommended Operating Conditions.

Table 2-17. MachXO3L/LF Power Saving Features Description

Device Subsystem	Feature Description
Bandgap	The bandgap can be turned off in standby mode. When the Bandgap is turned off, ana- log circuitry such as the POR, PLLs, on-chip oscillator, and differential I/O buffers are also turned off. Bandgap can only be turned off for 1.2 V devices.
Power-On-Reset (POR)	The POR can be turned off in standby mode. This monitors VCC levels. In the event of unsafe V_{CC} drops, this circuit reconfigures the device. When the POR circuitry is turned off, limited power detector circuitry is still active. This option is only recommended for applications in which the power supply rails are reliable.
On-Chip Oscillator	The on-chip oscillator has two power saving features. It may be switched off if it is not needed in your design. It can also be turned off in Standby mode.
PLL	Similar to the on-chip oscillator, the PLL also has two power saving features. It can be statically switched off if it is not needed in a design. It can also be turned off in Standby mode. The PLL will wait until all output clocks from the PLL are driven low before powering off.
I/O Bank Controller	Differential I/O buffers (used to implement standards such as LVDS) consume more than ratioed single-ended I/Os such as LVCMOS and LVTTL. The I/O bank controller allows the user to turn these I/Os off dynamically on a per bank selection.
Dynamic Clock Enable for Primary Clock Nets	Each primary clock net can be dynamically disabled to save power.
Power Guard	Power Guard is a feature implemented in input buffers. This feature allows users to switch off the input buffer when it is not needed. This feature can be used in both clock and data paths. Its biggest impact is that in the standby mode it can be used to switch off clock inputs that are distributed using general routing resources.

For more details on the standby mode refer to TN1289, Power Estimation and Management for MachXO3 Devices.

Power On Reset

MachXO3L/LF devices have power-on reset circuitry to monitor V_{CCINT} and V_{CCIO} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CCINT} and V_{CCIO} (controls configuration) voltage levels. It then triggers download from the on-chip configuration NVCM/Flash memory after reaching the V_{PORUP} level specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. For "E" devices without voltage regulators, V_{CCINT} is the same as the V_{CC} supply voltage. For "C" devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage. From this voltage reference, the time taken for configuration and entry into user mode is specified as NVCM/Flash Download Time ($t_{REFRESH}$) in the DC and Switching Characteristics section of this data sheet. Before and during configuration. Note that for "C" devices, a separate POR circuit monitors external V_{CC} voltage in addition to the POR circuit that monitors the internal post-regulated power supply voltage level.

Once the device enters into user mode, the POR circuitry can optionally continue to monitor V_{CCINT} levels. If V_{CCINT} drops below $V_{PORDNBG}$ level (with the bandgap circuitry switched on) or below $V_{PORDNSRAM}$ level (with the bandgap circuitry switched off to conserve power) device functionality cannot be guaranteed. In such a situation the POR issues a reset and begins monitoring the V_{CCINT} and V_{CCIO} voltage levels. $V_{PORDNBG}$ and $V_{PORDNSRAM}$ are both specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet.

Note that once an "E" device enters user mode, users can switch off the bandgap to conserve power. When the bandgap circuitry is switched off, the POR circuitry also shuts down. The device is designed such that a mini-mal, low power POR circuit is still operational (this corresponds to the $V_{PORDNSRAM}$ reset point described in the paragraph above). However this circuit is not as accurate as the one that operates when the bandgap is switched on. The low power POR circuit emulates an SRAM cell and is biased to trip before the vast majority of SRAM cells flip. If users are concerned about the V_{CC} supply dropping below V_{CC} (min) they should not shut down the bandgap or POR circuit.

TraceID

Each MachXO3L/LF device contains a unique (per device), TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the EFB WISHBONE interface and can also be accessed through the SPI, I²C, or JTAG interfaces.

Density Shifting

The MachXO3L/LF family has been designed to enable density migration within the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. When migrating from lower to higher density or higher to lower density, ensure to review all the power supplies and NC pins of the chosen devices. For more details refer to the MachXO3 migration files.

DC Electrical Characteristics

Parameter	Condition	Min.	Тур.	Max.	Units
	Clamp OFF and $V_{CCIO} < V_{IN} < V_{IH}$ (MAX)		_	+175	μA
	Clamp OFF and $V_{IN} = V_{CCIO}$	-10	_	10	μA
Input or I/O Leakage	Clamp OFF and V _{CCIO} - 0.97 V < V _{IN} < V _{CCIO}	-175		—	μΑ
	Clamp OFF and 0 V < V_{IN} < V_{CCIO} - 0.97 V		_	10	μA
	Clamp OFF and V _{IN} = GND		_	10	μA
	Clamp ON and 0 V < V _{IN} < V _{CCIO}		_	10	μA
I/O Active Pull-up Current	0 < V _{IN} < 0.7 V _{CCIO}	-30		-309	μA
I/O Active Pull-down Current	V _{IL} (MAX) < V _{IN} < V _{CCIO}	30		305	μA
Bus Hold Low sustaining current	$V_{IN} = V_{IL} (MAX)$	30		—	μA
Bus Hold High sustaining current	V _{IN} = 0.7V _{CCIO}	-30	_	_	μΑ
Bus Hold Low Overdrive current	$0 \leq V_{IN} \leq V_{CCIO}$	_	_	305	μΑ
Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{CCIO}$	_	_	-309	μA
Bus Hold Trip Points		V _{IL} (MAX)	_	V _{IH} (MIN)	V
I/O Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, V_{CC} = Typ., V_{IO} = 0 to V_{IH} (MAX)$	3	5	9	pf
Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, V_{CC} = Typ., V_{IO} = 0 to V_{IH} (MAX)$	3	5.5	7	pf
	V _{CCIO} = 3.3 V, Hysteresis = Large		450		mV
	V _{CCIO} = 2.5 V, Hysteresis = Large		250		mV
	V _{CCIO} = 1.8 V, Hysteresis = Large		125		mV
Hysteresis for Schmitt	V _{CCIO} = 1.5 V, Hysteresis = Large		100		mV
Trigger Inputs ⁵	V _{CCIO} = 3.3 V, Hysteresis = Small		250		mV
	V _{CCIO} = 2.5 V, Hysteresis = Small		150		mV
	V _{CCIO} = 1.8 V, Hysteresis = Small		60		mV
	V _{CCIO} = 1.5 V, Hysteresis = Small		40		mV
	Input or I/O Leakage I/O Active Pull-up Current I/O Active Pull-down Current Bus Hold Low sustaining current Bus Hold Low sustaining current Bus Hold Low Overdrive current Bus Hold Low Overdrive current Bus Hold Trip Points I/O Capacitance ² Dedicated Input Capacitance ² Hysteresis for Schmitt	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

 When V_{IH} is higher than V_{CCIO}, a transient current typically of 30 ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For true LVDS output pins in MachXO3L/LF devices, V_{IH} must be less than or equal to V_{CCIO}.

5. With bus keeper circuit turned on. For more details, refer to TN1280, MachXO3 sysIO Usage Guide.

Programming and Erase Supply Current – C/E Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁴	Units
I _{CC}	Core Power Supply	LCMXO3L/LF-1300C 256 Ball Package	22.1	mA
		LCMXO3L/LF-2100C	22.1	mA
		LCMXO3L/LF-2100C 324 Ball Package	26.8	mA
		LCMXO3L/LF-4300C	26.8	mA
		LCMXO3L/LF-4300C 400 Ball Package	33.2	mA
		LCMXO3L/LF-6900C	33.2	mA
		LCMXO3L/LF-9400C	39.6	mA
		LCMXO3L/LF-640E	17.7	mA
		LCMXO3L/LF-1300E	17.7	mA
		LCMXO3L/LF-1300E 256 Ball Package	18.3	mA
		LCMXO3L/LF-2100E	18.3	mA
		LCMXO3L/LF-2100E 324 Ball Package	20.4	mA
		LCMXO3L/LF-4300E	20.4	mA
		LCMXO3L/LF-6900E	23.9	mA
		LCMXO3L/LF-9400E	28.5	mA
I _{CCIO}	Bank Power Supply⁵ VCCIO = 2.5 V	All devices	0	mA

1. For further information on supply current, please refer to TN1289, Power Estimation and Management for MachXO3 Devices.

2. Assumes all inputs are held at $V_{\mbox{\scriptsize CCIO}}$ or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. $T_J = 25$ °C, power supplies at nominal voltage.

6. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up/pull-down.

sysIO Recommended Operating Conditions

		V _{CCIO} (V)			V _{REF} (V)	
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.465	—	—	—
LVCMOS 2.5	2.375	2.5	2.625	—	—	—
LVCMOS 1.8	1.71	1.8	1.89	—	—	—
LVCMOS 1.5	1.425	1.5	1.575	—	—	—
LVCMOS 1.2	1.14	1.2	1.26	—	—	—
LVTTL	3.135	3.3	3.465	—	—	—
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	—
LVDS33 ^{1, 2}	3.135	3.3	3.465	—	—	—
LVPECL ¹	3.135	3.3	3.465	—	—	—
BLVDS ¹	2.375	2.5	2.625	—	—	—
MIPI ³	2.375	2.5	2.625	—	—	—
MIPI_LP ³	1.14	1.2	1.26	—	—	—
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75
LVCMOS10R334	3.135	3.3	3.6	0.35	0.5	0.65
LVCMOS10R254	2.375	2.5	2.625	0.35	0.5	0.65

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. For the dedicated LVDS buffers.

3. Requires the addition of external resistors.

4. Supported only for inputs and BIDIs for -6 speed grade devices.

Table 3-5. MIPI D-PHY Output DC Conditions¹

	Description	Min.	Тур.	Max.	Units
Transmitter					
External Termi	nation				
RL	1% external resistor with VCCIO = 2.5 V		50	—	Ohms
1% external resistor with VCCIO = 3.3 V			50	—	
RH	1% external resistor with performance up to 800 Mbps or with performance up 900 Mbps when VCCIO = 2.5 V	_	330	—	Ohms
	1% external resistor with performance between 800 Mbps to 900 Mbps when VCCIO = 3.3 V	—	464	_	Ohms
High Speed			•		•
VCCIO	VCCIO of the Bank with LVDS Emulated output buffer		2.5	_	V
	VCCIO of the Bank with LVDS Emulated output buffer	_	3.3	—	V
VCMTX	HS transmit static common mode voltage	150	200	250	mV
VOD	HS transmit differential voltage	140	200	270	mV
VOHHS	HS output high voltage		—	360	V
ZOS	Single ended output impedance		50	—	Ohms
ΔZOS	Single ended output impedance mismatch		_	10	%
Low Power			•		•
VCCIO	VCCIO of the Bank with LVCMOS12D 6 mA drive bidirectional IO buffer		1.2	_	V
VOH	Output high level	1.1	1.2	1.3	V
VOL	Output low level	-50	0	50	mV
ZOLP	Output impedance of LP transmitter	110		—	Ohms

1. Over Recommended Operating Conditions

MachXO3L/LF External Switching Characteristics – C/E Devices^{1, 2, 3, 4, 5, 6, 10}

			_	6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
Clocks		I					
Primary Clo	ocks						
f _{MAX_PRI} ⁷	Frequency for Primary Clock Tree	All MachXO3L/LF devices		388	—	323	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO3L/LF devices	0.5	_	0.6		ns
		MachXO3L/LF-1300	_	867	—	897	ps
		MachXO3L/LF-2100		867	_	897	ps
t _{SKEW_PRI}	Primary Clock Skew Within a Device	MachXO3L/LF-4300	_	865	—	892	ps
0.12.1		MachXO3L/LF-6900		902	_	942	ps
		MachXO3L/LF-9400	_	908	_	950	ps
Edge Clock							
f _{MAX_EDGE} ⁷	Frequency for Edge Clock	MachXO3L/LF	_	400	_	333	MHz
_	n Propagation Delay						
t _{PD}	Best case propagation delay through one LUT-4	All MachXO3L/LF devices	_	6.72	_	6.96	ns
General I/O	Pin Parameters (Using Primary Clock with	out PLL)		I			I
		MachXO3L/LF-1300	—	7.46	_	7.66	ns
		MachXO3L/LF-2100	_	7.46	—	7.66	ns
	Clock to Output - PIO Output Register	MachXO3L/LF-4300	_	7.51	_	7.71	ns
		MachXO3L/LF-6900	_	7.54	_	7.75	ns
		MachXO3L/LF-9400	_	7.53	_	7.83	ns
		MachXO3L/LF-1300	-0.20	_	-0.20	_	ns
		MachXO3L/LF-2100	-0.20		-0.20	—	ns
t _{SU}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	-0.23		-0.23	—	ns
		MachXO3L/LF-6900	-0.23		-0.23	_	ns
		MachXO3L/LF-9400	-0.24		-0.24	_	ns
		MachXO3L/LF-1300	1.89		2.13	_	ns
		MachXO3L/LF-2100	1.89		2.13		ns
t _H	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	1.94		2.18		ns
		MachXO3L/LF-6900	1.98		2.23	_	ns
		MachXO3L/LF-9400	1.99		2.24		ns
		MachXO3L/LF-1300	1.61		1.76		ns
		MachXO3L/LF-2100	1.61		1.76		ns
t _{SU_DEL}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	1.66		1.81		ns
JU_DLL	with Data Input Delay	MachXO3L/LF-6900	1.53		1.67		ns
		MachXO3L/LF-9400	1.65		1.80		ns
		MachXO3L/LF-1300	-0.23		-0.23		ns
		MachXO3L/LF-2100	-0.23		-0.23		ns
t _{H_DEL}	Clock to Data Hold - PIO Input Register with	MachXO3L/LF-4300	-0.25	_	-0.25		ns
ILUEL	Input Data Delay	MachXO3L/LF-6900	-0.21	_	-0.21		ns
		MachXO3L/LF-9400	-0.24		-0.24		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO3L/LF devices		388		323	MHz

Over Recommended Operating Conditions

			-	-6	_	-5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
Generic DDF	RX1 Inputs with Clock and Data Aligned at	Pin Using PCLK Pin for Cl	ock Inpu	it —			
GDDRX1_RX	K.SCLK.Aligned ^{8, 9}	-	-				
t _{DVA}	Input Data Valid After CLK			0.317	—	0.344	UI
t _{DVE}	Input Data Hold After CLK	All MachXO3L/LF devices,	0.742	—	0.702		UI
f _{DATA}	DDRX1 Input Data Speed	all sides	—	300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		—	150	—	125	MHz
Generic DD GDDRX1_R	RX1 Inputs with Clock and Data Centered X.SCLK.Centered ^{8, 9}	d at Pin Using PCLK Pin fo	or Clock	Input –			
t _{SU}	Input Data Setup Before CLK		0.566	—	0.560		ns
t _{HO}	Input Data Hold After CLK	All MachXO3L/LF	0.778	—	0.879	—	ns
f _{DATA}	DDRX1 Input Data Speed	devices, all sides		300	—		Mbps
f _{DDRX1}	DDRX1 SCLK Frequency			150	—	125	MHz
	RX2 Inputs with Clock and Data Aligned a K.ECLK.Aligned ^{8,9}	t Pin Using PCLK Pin for C	Clock Inp	out –	1	ı	
t _{DVA}	Input Data Valid After CLK		—	0.316	—	0.342	UI
t _{DVE}	Input Data Hold After CLK	_	0.710		0.675		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO3L/LF devices,		664		554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	_bottom side only		332	_	277	MHz
f _{SCLK}	SCLK Frequency	_		166		139	MHz
	RX2 Inputs with Clock and Data Centered	at Pin Using PCLK Pin for	Clock II	nput –			ł
	K.ECLK.Centered ^{8,9}	Ū		•			
t _{SU}	Input Data Setup Before CLK		0.233	—	0.219		ns
t _{HO}	Input Data Hold After CLK	MachXO3L/LF devices,	0.287	—	0.287		ns
f _{DATA}	DDRX2 Serial Input Data Speed			664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	,		332	—	277	MHz
f _{SCLK}	SCLK Frequency			166	—	139	MHz
Generic DDF	R4 Inputs with Clock and Data Aligned at F	in Using PCLK Pin for Cloo	k Input	– GDDR	X4_RX.	ECLK.A	ligned ⁸
t _{DVA}	Input Data Valid After ECLK			0.307	—	0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.782		0.699		UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO3L/LF devices, bottom side only	—	800	—	630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency			400	—	315	MHz
f _{SCLK}	SCLK Frequency			100	—	79	MHz
Generic DDF	4 Inputs with Clock and Data Centered at I	Pin Using PCLK Pin for Cloo	k Input	- GDDR	X4_RX.E	CLK.Ce	ntered ⁸
t _{SU}	Input Data Setup Before ECLK		0.233		0.219		ns
t _{HO}	Input Data Hold After ECLK		0.287		0.287		ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO3L/LF devices, bottom side only		800	—	630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency			400	—	315	MHz
f _{SCLK}	SCLK Frequency		_	100	—	79	MHz
7:1 LVDS Inp	outs (GDDR71_RX.ECLK.7:1) ⁹		1	1	1	1	L
t _{DVA}	Input Data Valid After ECLK		_	0.290		0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.739		0.699		UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO3L/LF devices,	—	756	—	630	Mbps
f _{DDR71}	DDR71 ECLK Frequency	bottom side only	<u> </u>	378	 	315	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (mini- mum limited by PLL)		_	108	_	90	MHz

I²C Port Timing Specifications^{1, 2}

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	Maximum SCL clock frequency		400	kHz

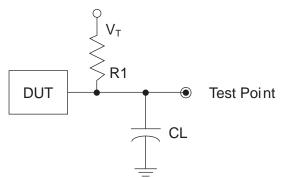
1. MachXO3L/LF supports the following modes:

• Standard-mode (Sm), with a bit rate up to 100 kbit/s (user and configuration mode)

• Fast-mode (Fm), with a bit rate up to 400 kbit/s (user and configuration mode)

2. Refer to the I^2C specification for timing requirements.

SPI Port Timing Specifications¹


Symbol	Parameter	Min.	Max.	Units
f _{MAX}	Maximum SCK clock frequency	— 45		MHz

1. Applies to user mode only. For configuration mode timing specifications, refer to sysCONFIG Port Timing Specifications table in this data sheet.

Switching Test Conditions

Figure 3-9 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-6.

Figure 3-9. Output Test Load, LVTTL and LVCMOS Standards

Table 3-6. Test Fixture Required Components,	Non-Terminated Interfaces
--	---------------------------

Test Condition	R1	CL	Timing Ref.	VT			
			LVTTL, LVCMOS 3.3 = 1.5 V	—			
			LVCMOS 2.5 = $V_{CCIO}/2$	_			
LVTTL and LVCMOS settings (L -> H, H -> L)	∞	0pF	LVCMOS 1.8 = $V_{CCIO}/2$	_			
			LVCMOS 1.5 = $V_{CCIO}/2$				
			LVCMOS 1.2 = $V_{CCIO}/2$	_			
LVTTL and LVCMOS 3.3 (Z -> H)			1.5	V _{OL}			
LVTTL and LVCMOS 3.3 (Z -> L)			1.5	V _{OH}			
Other LVCMOS (Z -> H)	188	0pF	V _{CCIO} /2	V _{OL}			
Other LVCMOS (Z -> L)	100	opr	V _{CCIO} /2	V _{OH}			
LVTTL + LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}			
LVTTL + LVCMOS (L -> Z)	7		V _{OL} - 0.15	V _{OH}			

Note: Output test conditions for all other interfaces are determined by the respective standards.

			Ма	chXO3L/LF	-4300		
	WLCSP81	CSFBGA121	CSFBGA256	CSFBGA324	CABGA256	CABGA324	CABGA400
General Purpose IO per Bank							
Bank 0	29	24	50	71	50	71	83
Bank 1	0	26	52	62	52	68	84
Bank 2	20	26	52	72	52	72	84
Bank 3	7	7	16	22	16	24	28
Bank 4	0	7	16	14	16	16	24
Bank 5	7	10	20	27	20	28	32
Total General Purpose Single Ended IO	63	100	206	268	206	279	335
Differential IO per Bank	•	•				•	
Bank 0	15	12	25	36	25	36	42
Bank 1	0	13	26	30	26	34	42
Bank 2	10	13	26	36	26	36	42
Bank 3	3	3	8	10	8	12	14
Bank 4	0	3	8	6	8	8	12
Bank 5	3	5	10	13	10	14	16
Total General Purpose Differential IO	31	49	103	131	103	140	168
Dual Function IO	25	37	37	37	37	37	37
Number 7:1 or 8:1 Gearboxes	•	•				•	
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	10	7	18	18	18	18	21
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	10	13	18	18	18	18	21
High-speed Differential Outputs							
Bank 0	10	7	18	18	18	18	21
VCCIO Pins							
Bank 0	3	1	4	4	4	4	5
Bank 1	0	1	3	4	4	4	5
Bank 2	2	1	4	4	4	4	5
Bank 3	1	1	2	2	1	2	2
Bank 4	0	1	2	2	2	2	2
Bank 5	1	1	2	2	1	2	2
VCC	4	4	8	8	8	10	10
GND	6	10	24	16	24	16	33
NC	0	0	0	13	1	0	0
Reserved for Configuration	1	1	1	1	1	1	1
Total Count of Bonded Pins	81	121	256	324	256	324	400

Date	Version	Section	Change Summary
April 2016	1.6	Introduction	Updated Features section. — Revised logic density range and IO to LUT ratio under Flexible Archi- tecture. — Revised 0.8 mm pitch information under Advanced Packaging. — Added MachXO3L-9400/MachXO3LF-9400 information to Table 1-1, MachXO3L/LF Family Selection Guide.
			Updated Introduction section. — Changed density from 6900 to 9400 LUTs. — Changed caBGA packaging to 19 x 19 mm.
		Architecture	Updated Architecture Overview section. — Changed statement to "All logic density devices in this family" — Updated Figure 2-2 heading and notes.
			Updated sysCLOCK Phase Locked Loops (PLLs) section. — Changed statement to "All MachXO3L/LF devices have one or more sysCLOCK PLL."
	DC and Switching	Updated Programmable I/O Cells (PIC) section. — Changed statement to "All PIO pairs can implement differential receiv- ers."	
		Updated sysIO Buffer Banks section. Updated Figure 2-5 heading.	
		Updated Device Configuration section. Added Password and Soft Error Correction.	
		Updated Static Supply Current – C/E Devices section. Added LCMXO3L/ LF-9400C and LCMXO3L/LF-9400E devices.	
			Updated Programming and Erase Supply Current – C/E Devices section. — Added LCMXO3L/LF-9400C and LCMXO3L/LF-9400E devices. — Changed LCMXO3L/LF-640E and LCMXO3L/LF-1300E Typ. values.
			Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. Added MachXO3L/LF-9400 devices.
			Updated NVCM/Flash Download Time section. Added LCMXO3L/LF- 9400C device.
			Updated sysCONFIG Port Timing Specifications section. — Added LCMXO3L/LF-9400C device. — Changed t _{INITL} units to from ns to us. — Changed t _{DPPINIT} and t _{DPPDONE} Max. values are per PCN#03A-16.
		Pinout Information	Updated Pin Information Summary section. Added LCMXO3L/LF-9400C device.
		Ordering Information	Updated MachXO3 Part Number Description section. — Added 9400 = 9400 LUTs. — Added BG484 package.
			Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.
			Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.

Date	Version	Section	Change Summary
June 2014	1.0	—	Product name/trademark adjustment.
		Introduction	Updated Features section.
			Updated Table 1-1, MachXO3L Family Selection Guide. Changed fcCSP packages to csfBGA. Adjusted 121-ball csfBGA arrow.
			Introduction section general update.
		Architecture	General update.
		DC and Switching Characteristics	Updated sysIO Recommended Operating Conditions section. Removed V _{REF} (V) column. Added standards.
			Updated Maximum sysIO Buffer Performance section. Added MIPI I/O standard.
			Updated MIPI D-PHY Emulation section. Changed Low Speed to Low Power. Updated Table 3-4, MIPI DC Conditions.
			Updated Table 3-5, MIPI D-PHY Output DC Conditions.
			Updated Maximum sysIO Buffer Performance section.
			Updated MachXO3L External Switching Characteristics – C/E Device section.
May 2014	00.3	Introduction	Updated Features section.
			Updated Table 1-1, MachXO3L Family Selection Guide. Moved 121-ball fcCSP arrow.
			General update of Introduction section.
		Architecture	General update.
		Pinout Information	Updated Pin Information Summary section. Updated or added data on WLCSP49, WLCSP81, CABGA324, and CABGA400 for specific devices.
		Ordering Information	Updated MachXO3L Part Number Description section. Updated or added data on WLCSP49, WLCSP81, CABGA324, and CABGA400 for specific devices.
			Updated Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added part numbers.
February 2014	00.2	DC and Switching Characteristics	Updated MachXO3L External Switching Characteristics – C/E Devices table. Removed LPDDR and DDR2 parameters.
	00.1		Initial release.