E. Kattice Semiconductor Corporation - <u>LCMXO3LF-2100E-6MG121I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	75776
Number of I/O	100
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	121-VFBGA, CSPBGA
Supplier Device Package	121-CSFBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3lf-2100e-6mg121i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. MachXO3L/LF Family Selection Guide

Features		MachXO3L-640/ MachXO3LF-640	MachXO3L-1300/ MachXO3LF-1300	MachXO3L-2100/ MachXO3LF-2100	MachXO3L-4300/ MachXO3LF-4300	MachXO3L-6900/ MachXO3LF-6900	MachXO3L-9400/ MachXO3LF-9400
LUTs		640	1300	2100	4300	6900	9400
Distributed RAM (kbits)		5	10	16	34	54	73
EBR SRAM (kbits)	64	64	74	92	240	432
Number of PL	Ls	1	1	1	2	2	2
Hardened	I ² C	2	2	2	2	2	2
Functions:	SPI	1	1	1	1	1	1
	Timer/Counter	1	1	1	1	1	1
	Oscillator	1	1	1	1	1	1
MIPI D-PHY	Support	Yes	Yes	Yes	Yes	Yes	Yes
Multi Time Pr NVCM	ogrammable	MachXO3L-640	MachXO3L-1300	MachXO3L-2100	MachXO3L-4300	MachXO3L-6900	MachXO3L-9400
Programmabl	le Flash	MachXO3LF-640	MachXO3LF-1300	MachXO3LF-2100	MachXO3LF-4300	MachXO3LF-6900	MachXO3LF-9400
Packages							
36-ball WLCS (2.5 mm x 2.5	SP ¹ 5 mm, 0.4 mm)		28				
49-ball WLCS (3.2 mm x 3.2	SP ¹ 2 mm, 0.4 mm)			38			
81-ball WLCS (3.8 mm x 3.8	SP ¹ 3 mm, 0.4 mm)				63		
121-ball csfB (6 mm x 6 mr		100	100	100	100		
256-ball csfB (9 mm x 9 mr		2	206	206	206	206	206
324-ball csfB (10 mm x 10				268	268	281	
256-ball caBGA ² (14 mm x 14 mm, 0.8 mm)			206	206	206	206	206
324-ball caB0 (15 mm x 15				279	279	279	
400-ball caB0 (17 mm x 17					335	335	335
484-ball caB0 (19 mm x 19							384

1. Package is only available for E=1.2 V devices.

2. Package is only available for C=2.5 V/3.3 V devices.

Introduction

MachXO3[™] device family is an Ultra-Low Density family that supports the most advanced programmable bridging and IO expansion. It has the breakthrough IO density and the lowest cost per IO. The device IO features have the integrated support for latest industry standard IO.

The MachXO3L/LF family of low power, instant-on, non-volatile PLDs has five devices with densities ranging from 640 to 9400 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. MachXO3LF devices also support User Flash Memory (UFM). These features allow these devices to be used in low cost, high volume consumer and system applications.

The MachXO3L/LF devices are designed on a 65nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs

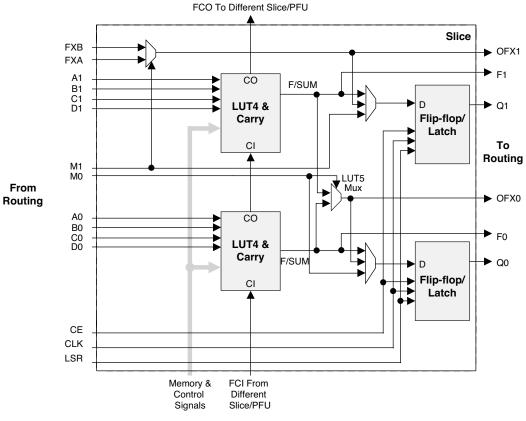
and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family.

The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E are functionally compatible with each other.

The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The MachXO3L/LF devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis.

A user-programmable internal oscillator is included in MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines.


The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE[™] modules, including a number of reference designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

Figure 2-4. Slice Diagram

For Slices 0 and 1, memory control signals are generated from Slice 2 as follows:

- WCK is CLK
 WRE is from LSR
- DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2
- WAD [A:D] is a 4-bit address from slice 2 LUT input

 Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multi-purpose input
Input	Control signal	CE	Clock enable
Input	Control signal	LSR	Local set/reset
Input	Control signal	CLK	System clock
Input	Inter-PFU signal	FCIN	Fast carry in ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Fast carry out ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

ROM Mode

ROM mode uses the LUT logic; hence, slices 0-3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information on the RAM and ROM modes, please refer to TN1290, Memory Usage Guide for MachXO3 Devices.

Routing

There are many resources provided in the MachXO3L/LF devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

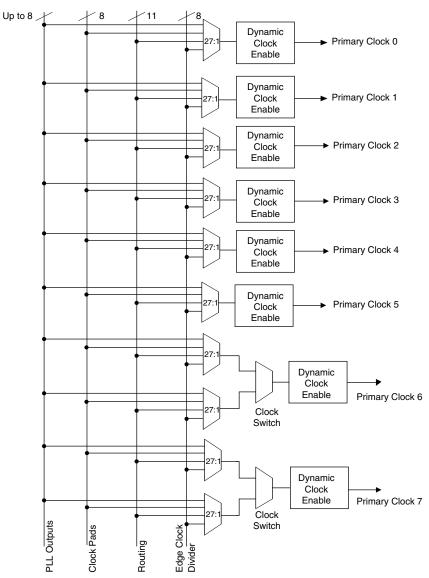
The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.

The design tools take the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

Each MachXO3L/LF device has eight clock inputs (PCLK [T, C] [Banknum]_[2..0]) – three pins on the left side, two pins each on the bottom and top sides and one pin on the right side. These clock inputs drive the clock nets. These eight inputs can be differential or single-ended and may be used as general purpose I/O if they are not used to drive the clock nets. When using a single ended clock input, only the PCLKT input can drive the clock tree directly.

The MachXO3L/LF architecture has three types of clocking resources: edge clocks, primary clocks and secondary high fanout nets. MachXO3L/LF devices have two edge clocks each on the top and bottom edges. Edge clocks are used to clock I/O registers and have low injection time and skew. Edge clock inputs are from PLL outputs, primary clock pads, edge clock bridge outputs and CIB sources.


The eight primary clock lines in the primary clock network drive throughout the entire device and can provide clocks for all resources within the device including PFUs, EBRs and PICs. In addition to the primary clock signals, MachXO3L/LF devices also have eight secondary high fanout signals which can be used for global control signals, such as clock enables, synchronous or asynchronous clears, presets, output enables, etc. Internal logic can drive the global clock network for internally-generated global clocks and control signals.

The maximum frequency for the primary clock network is shown in the MachXO3L/LF External Switching Characteristics table.

Primary clock signals for the MachXO3L/LF-1300 and larger devices are generated from eight 27:1 muxes The available clock sources include eight I/O sources, 11 routing inputs, eight clock divider inputs and up to eight sys-CLOCK PLL outputs.

Figure 2-5. Primary Clocks for MachXO3L/LF Devices

Eight secondary high fanout nets are generated from eight 8:1 muxes as shown in Figure 2-6. One of the eight inputs to the secondary high fanout net input mux comes from dual function clock pins and the remaining seven come from internal routing. The maximum frequency for the secondary clock network is shown in MachXO3L/LF External Switching Characteristics table.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the NVCM or Configuration Flash.

MachXO3LF EBR initialization data can also be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO3LF devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Port Name	Description	Active State
CLK	Clock	Rising Clock Edge
CE	Clock Enable	Active High
OCE ¹	Output Clock Enable	Active High
RST	Reset	Active High
BE ¹	Byte Enable	Active High
WE	Write Enable	Active High
AD	Address Bus	—
DI	Data In	_
DO	Data Out	_
CS	Chip Select	Active High
AFF	FIFO RAM Almost Full Flag	_
FF	FIFO RAM Full Flag	_
AEF	FIFO RAM Almost Empty Flag	_
EF	FIFO RAM Empty Flag	_
RPRST	FIFO RAM Read Pointer Reset	_

Table 2-6. EBR Signal Descriptions

1. Optional signals.

2. For dual port EBR primitives a trailing 'A' or 'B' in the signal name specifies the EBR port A or port B respectively.

3. For FIFO RAM mode primitive, a trailing 'R' or 'W' in the signal name specifies the FIFO read port or write port respectively.

4. For FIFO RAM mode primitive FULLI has the same function as CSW(2) and EMPTYI has the same function as CSR(2).

In FIFO mode, CLKW is the write port clock, CSW is the write port chip select, CLKR is the read port clock, CSR is the read port clock, CSR is the read port clock.

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

FIFO Configuration

The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to max (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width.

The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset

Output Gearbox

Each PIC on the top edge has a built-in 8:1 output gearbox. Each of these output gearboxes may be programmed as a 7:1 serializer or as one ODDRX4 (8:1) gearbox or as two ODDRX2 (4:1) gearboxes. Table 2-10 shows the gearbox signals.

Table 2-10. Output Gearbox Signal List

Name	I/O Type	Description
Q	Output	High-speed data output
D[7:0]	Input	Low-speed data from device core
Video TX(7:1): D[6:0]		
GDDRX4(8:1): D[7:0]		
GDDRX2(4:1)(IOL-A): D[3:0]		
GDDRX2(4:1)(IOL-C): D[7:4]		
SCLK	Input	Slow-speed system clock
ECLK [1:0]	Input	High-speed edge clock
RST	Input	Reset

The gearboxes have three stage pipeline registers. The first stage registers sample the low-speed input data on the low-speed system clock. The second stage registers transfer data from the low-speed clock registers to the high-speed clock registers. The third stage pipeline registers controlled by high-speed edge clock shift and mux the high-speed data out to the sysIO buffer. Figure 2-14 shows the output gearbox block diagram.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS, TTL, PCI, LVDS, BLVDS, MLVDS and LVPECL.

Each bank is capable of supporting multiple I/O standards. In the MachXO3L/LF devices, single-ended output buffers, ratioed input buffers (LVTTL, LVCMOS and PCI), differential (LVDS) input buffers are powered using I/O supply voltage (V_{CCIO}). Each sysIO bank has its own V_{CCIO} .

MachXO3L/LF devices contain three types of sysIO buffer pairs.

1. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the left and right of the devices also have differential input buffers.

2. Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the bottom bank of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the bottom also have differential input buffers. Only the I/Os on the bottom banks have programmable PCI clamps and differential input termination. The PCI clamp is enabled after V_{CC} and V_{CCIO} are at valid operating levels and the device has been configured.

3. Top sysIO Buffer Pairs

The sysIO buffer pairs in the top bank of the device consist of two single-ended output drivers and two singleended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the top also have differential I/O buffers. Half of the sysIO buffer pairs on the top edge have true differential outputs. The sysIO buffer pair comprising of the A and B PIOs in every PIC on the top edge have a differential output driver.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCIO0} have reached V_{PORUP} level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pulldown to GND (some pins such as PROGRAMN and the JTAG pins have weak pull-up to V_{CCIO} as the default functionality). The I/O pins will maintain the blank configuration until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached V_{PORUP} levels at which time the I/Os will take on the user-configured settings only after a proper download/configuration.

There are various ways a user can ensure that there are no spurious signals on critical outputs as the device powers up. These are discussed in more detail in TN1280, MachXO3 sysIO Usage Guide.

Supported Standards

The MachXO3L/LF sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL, and PCI. The buffer supports the LVTTL, PCI, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS, MLVDS and LVPECL output emulation is supported on all devices. The MachXO3L/LF devices support on-chip LVDS output buffers on approximately 50% of the I/Os on the top bank. Differential receivers for LVDS, BLVDS, MLVDS and LVPECL are supported on all banks of MachXO3L/LF devices. PCI support is provided in the bottom bank of the MachXO3L/LF devices. Table 2-11 summarizes the I/O characteristics of the MachXO3L/LF PLDs.

Table 2-12. Supported Output Standards

Output Standard	V _{CCIO} (Typ.)
Single-Ended Interfaces	
LVTTL	3.3
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
LVCMOS15	1.5
LVCMOS12	1.2
LVCMOS33, Open Drain	—
LVCMOS25, Open Drain	—
LVCMOS18, Open Drain	—
LVCMOS15, Open Drain	—
LVCMOS12, Open Drain	—
PCI33	3.3
Differential Interfaces	
LVDS ¹	2.5, 3.3
BLVDS, MLVDS, RSDS ¹	2.5
LVPECL ¹	3.3
MIPI ¹	2.5
LVTTLD	3.3
LVCMOS33D	3.3
LVCMOS25D	2.5
LVCMOS18D	1.8

1. These interfaces can be emulated with external resistors in all devices.

sysIO Buffer Banks

The numbers of banks vary between the devices of this family. MachXO3L/LF-1300 in the 256 Ball packages and the MachXO3L/LF-2100 and higher density devices have six I/O banks (one bank on the top, right and bottom side and three banks on the left side). The MachXO3L/LF-1300 and lower density devices have four banks (one bank per side). Figures 2-15 and 2-16 show the sysIO banks and their associated supplies for all devices.

Figure 2-15. MachXO3L/LF-1300 in 256 Ball Packages, MachXO3L/LF-2100, MachXO3L/LF-4300, MachXO3L/LF-6900 and MachXO3L/LF-9400 Banks

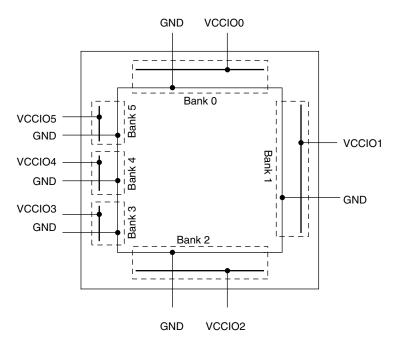
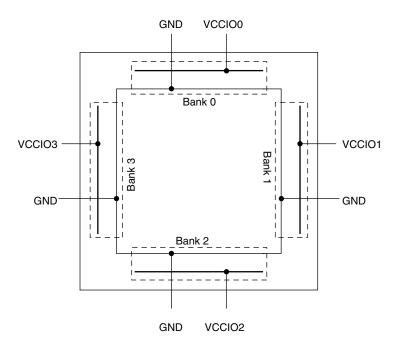



Figure 2-16. MachXO3L/LF-640 and MachXO3L/LF-1300 Banks

Security and One-Time Programmable Mode (OTP)

For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM-based FPGAs. This is further enhanced by device locking. MachXO3L/LF devices contain security bits that, when set, prevent the readback of the SRAM configuration and NVCM/Flash spaces. The device can be in one of two modes:

- 1. Unlocked Readback of the SRAM configuration and NVCM/Flash spaces is allowed.
- 2. Permanently Locked The device is permanently locked.

Once set, the only way to clear the security bits is to erase the device. To further complement the security of the device, a One Time Programmable (OTP) mode is available. Once the device is set in this mode it is not possible to erase or re-program the NVCM/Flash and SRAM OTP portions of the device. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

Password

The MachXO3LF supports a password-based security access feature also known as Flash Protect Key. Optionally, the MachXO3L device can be ordered with a custom specification (c-spec) to support this feature. The Flash Protect Key feature provides a method of controlling access to the Configuration and Programming modes of the device. When enabled, the Configuration and Programming edit mode operations (including Write, Verify and Erase operations) are allowed only when coupled with a Flash Protect Key which matches that expected by the device. Without a valid Flash Protect Key, the user can perform only rudimentary non-configuration operations such as Read Device ID. For more details, refer to TN1313, Using Password Security with MachXO3 Devices.

Dual Boot

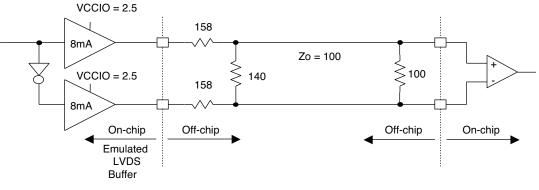
MachXO3L/LF devices can optionally boot from two patterns, a primary bitstream and a golden bitstream. If the primary bitstream is found to be corrupt while being downloaded into the SRAM, the device shall then automatically re-boot from the golden bitstream. Note that the primary bitstream must reside in the external SPI Flash. The golden image MUST reside in an on-chip NVCM/Flash. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

Soft Error Detection

The SED feature is a CRC check of the SRAM cells after the device is configured. This check ensures that the SRAM cells were configured successfully. This feature is enabled by a configuration bit option. The Soft Error Detection can also be initiated in user mode via an input to the fabric. The clock for the Soft Error Detection circuit is generated using a dedicated divider. The undivided clock from the on-chip oscillator is the input to this divider. For low power applications users can switch off the Soft Error Detection circuit. For more details, refer to TN1292, MachXO3 Soft Error Detection Usage Guide.

Soft Error Correction


The MachXO3LF device supports Soft Error Correction (SEC). Optionally, the MachXO3L device can be ordered with a custom specification (c-spec) to support this feature. When BACKGROUND_RECONFIG is enabled using the Lattice Diamond Software in a design, asserting the PROGRAMN pin or issuing the REFRESH sysConfig command refreshes the SRAM array from configuration memory. Only the detected error bit is corrected. No other SRAM cells are changed, allowing the user design to function uninterrupted.


During the project design phase, if the overall system cannot guarantee containment of the error or its subsequent effects on downstream data or control paths, Lattice recommends using SED only. The MachXO3 can be then be soft-reset by asserting PROGRAMN or issuing the Refresh command over a sysConfig port in response to SED. Soft-reset additionally erases the SRAM array prior to the SRAM refresh, and asserts internal Reset circuitry to guarantee a known state. For more details, refer to TN1292, MachXO3 Soft Error Detection (SED)/Correction (SEC) Usage Guide.

LVDS Emulation

MachXO3L/LF devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Note: All resistors are ±1%.

Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions

Parameter	Description	Тур.	Units			
Z _{OUT}	Output impedance	20	Ohms			
R _S	Driver series resistor	158	Ohms			
R _P	Driver parallel resistor	140	Ohms			
R _T	Receiver termination	100	Ohms			
V _{OH}	Output high voltage	1.43	V			
V _{OL}	Output low voltage	1.07	V			
V _{OD}	Output differential voltage	0.35	V			
V _{CM}	Output common mode voltage	1.25	V			
Z _{BACK}	Back impedance	100.5	Ohms			
I _{DC}	DC output current	6.03	mA			

			_	-6	_	-5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
	RX1 Inputs with Clock and Data Aligned at	Pin Using PCLK Pin for Cl	ock Inpu	it —			
	X.SCLK.Aligned ^{8,9}	J	•				
t _{DVA}	Input Data Valid After CLK		—	0.317		0.344	UI
t _{DVE}	Input Data Hold After CLK	All MachXO3L/LF devices,	0.742	—	0.702		UI
f _{DATA}	DDRX1 Input Data Speed	all sides	—	300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		—	150		125	MHz
Generic DD GDDRX1_R	RX1 Inputs with Clock and Data Centered X.SCLK.Centered ^{8, 9}	d at Pin Using PCLK Pin fo	or Clock	Input –			
t _{SU}	Input Data Setup Before CLK		0.566	—	0.560	—	ns
t _{HO}	Input Data Hold After CLK	All MachXO3L/LF devices,	0.778		0.879		ns
f _{DATA}	DDRX1 Input Data Speed	all sides	—	300	—		Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		—	150	—	125	MHz
	RX2 Inputs with Clock and Data Aligned a X.ECLK.Aligned ^{8, 9}	t Pin Using PCLK Pin for (Clock Inp	out –			
t _{DVA}	Input Data Valid After CLK			0.316		0.342	UI
t _{DVE}	Input Data Hold After CLK	-	0.710	_	0.675		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO3L/LF devices, bottom side only		664		554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency			332		277	MHz
f _{SCLK}	SCLK Frequency	-		166		139	MHz
Generic DD	RX2 Inputs with Clock and Data Centered X.ECLK.Centered ^{8,9}	at Pin Using PCLK Pin for	Clock I	nput –			
t _{SU}	Input Data Setup Before CLK		0.233		0.219		ns
t _{HO}	Input Data Hold After CLK		0.287		0.287		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO3L/LF devices,	_	664		554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only	_	332		277	MHz
f _{SCLK}	SCLK Frequency		_	166		139	MHz
-	R4 Inputs with Clock and Data Aligned at F	Pin Using PCLK Pin for Clo	ck Input	– GDDR	X4_RX.	ECLK.A	ligned ⁸
t _{DVA}	Input Data Valid After ECLK		· -	0.307		0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.782		0.699		UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO3L/LF devices,	_	800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only	_	400		315	MHz
f _{SCLK}	SCLK Frequency	-	_	100		79	MHz
	R4 Inputs with Clock and Data Centered at I	Pin Using PCLK Pin for Cloc	k Input -	- GDDR	X4_RX.E	ECLK.Ce	entered ⁸
t _{SU}	Input Data Setup Before ECLK		0.233	—	0.219	—	ns
t _{HO}	Input Data Hold After ECLK	-	0.287	_	0.287		ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO3L/LF devices,	_	800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only	_	400		315	MHz
f _{SCLK}	SCLK Frequency	-	_	100		79	MHz
	puts (GDDR71_RX.ECLK.7:1) ⁹						ł
t _{DVA}	Input Data Valid After ECLK			0.290	_	0.320	UI
t _{DVE}	Input Data Hold After ECLK	1	0.739		0.699		UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO3L/LF devices,		756	_	630	Mbps
f _{DDR71}	DDR71 ECLK Frequency	bottom side only		378	_	315	MHz
fCLKIN	7:1 Input Clock Frequency (SCLK) (mini- mum limited by PLL)		_	108	_	90	MHz

Figure 3-6. Receiver GDDR71_RX. Waveforms

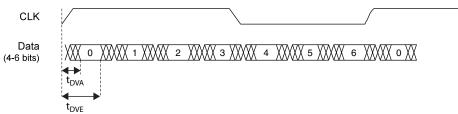
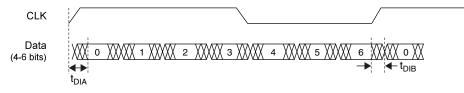
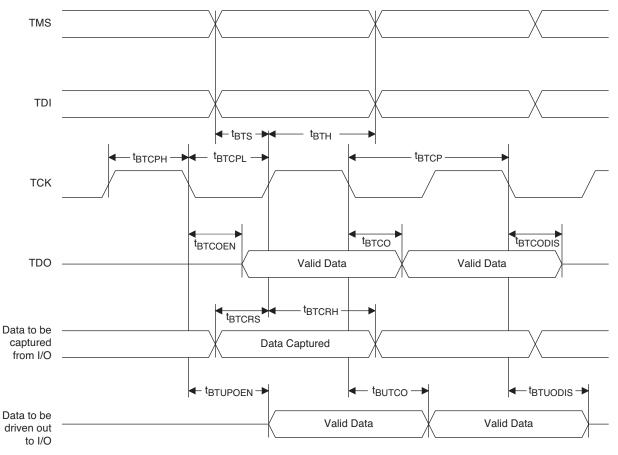



Figure 3-7. Transmitter GDDR71_TX. Waveforms



JTAG Port Timing Specifications

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK clock frequency		25	MHz
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	10	_	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTCO}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	_	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	—	ns
t _{BTCRH}	BSCAN test capture register hold time	20	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

Figure 3-8. JTAG Port Timing Waveforms

Pin Information Summary

	MachXO3L/LF -640 MachXO3L/LF-1300			L/LF-1300	
	CSFBGA121	WLCSP36	CSFBGA121	CSFBGA256	CABGA256
General Purpose IO per Bank	•	•	•	•	•
Bank 0	24	15	24	50	50
Bank 1	26	0	26	52	52
Bank 2	26	9	26	52	52
Bank 3	24	4	24	16	16
Bank 4	0	0	0	16	16
Bank 5	0	0	0	20	20
Total General Purpose Single Ended IO	100	28	100	206	206
Differential IO per Bank		L			1
Bank 0	12	8	12	25	25
Bank 1	13	0	13	26	26
Bank 2	13	4	13	26	26
Bank 3	11	2	11	8	8
Bank 4	0	0	0	8	8
Bank 5	0	0	0	10	10
Total General Purpose Differential IO	49	14	49	103	103
Dual Function IO	33	25	33	33	33
Number 7:1 or 8:1 Gearboxes		I.			I
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	7	3	7	14	14
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	7	2	7	14	14
High-speed Differential Outputs	•	L			L
Bank 0	7	3	7	14	14
VCCIO Pins	•	L			L
Bank 0	1	1	1	4	4
Bank 1	1	0	1	3	4
Bank 2	1	1	1	4	4
Bank 3	3	1	3	2	1
Bank 4	0	0	0	2	2
Bank 5	0	0	0	2	1
VCC	4	2	4	8	8
GND	10	2	10	24	24
NC	0	0	0	0	1
Reserved for Configuration	1	1	1	1	1
Total Count of Bonded Pins	121	36	121	256	256

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-2100E-6MG324I	2100	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3L-2100C-5BG256C	2100	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	СОМ
LCMXO3L-2100C-6BG256C	2100	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-2100C-5BG256I	2100	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-2100C-6BG256I	2100	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-2100C-5BG324C	2100	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3L-2100C-6BG324C	2100	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	COM
LCMXO3L-2100C-5BG324I	2100	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3L-2100C-6BG324I	2100	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
				·		
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-4300E-5UWG81CTR	4300	1.2 V	5	Halogen-Free WLCSP	81	COM
LCMXO3L-4300E-5UWG81CTR50	4300	1.2 V	5	Halogen-Free WLCSP	81	COM
LCMXO3L-4300E-5UWG81CTR1K	4300	1.2 V	5	Halogen-Free WLCSP	81	COM
LCMXO3L-4300E-5UWG81ITR	4300	1.2 V	5	Halogen-Free WLCSP	81	IND
LCMXO3L-4300E-5UWG81ITR50	4300	1.2 V	5	Halogen-Free WLCSP	81	IND
LCMXO3L-4300E-5UWG81ITR1K	4300	1.2 V	5	Halogen-Free WLCSP	81	IND
LCMXO3L-4300E-5MG121C	4300	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-4300E-6MG121C	4300	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-4300E-5MG121I	4300	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-4300E-6MG121I	4300	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-4300E-5MG256C	4300	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-4300E-6MG256C	4300	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-4300E-5MG256I	4300	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-4300E-6MG256I	4300	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-4300E-5MG324C	4300	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-4300E-6MG324C	4300	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-4300E-5MG324I	4300	1.2 V	5	Halogen-Free csfBGA	324	IND
LCMXO3L-4300E-6MG324I	4300	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3L-4300C-5BG256C	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-4300C-6BG256C	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-4300C-5BG256I	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-4300C-6BG256I	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-4300C-5BG324C	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3L-4300C-6BG324C	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	СОМ
LCMXO3L-4300C-5BG324I	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3L-4300C-6BG324I	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
LCMXO3L-4300C-5BG400C	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	СОМ
LCMXO3L-4300C-6BG400C	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	СОМ
LCMXO3L-4300C-5BG400I	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-4300C-6BG400I	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	IND

LCMXO3L-9400C-6BG4841

484

IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-6900E-5MG256C	6900	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-6MG256C	6900	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-5MG256I	6900	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-6MG256I	6900	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-5MG324C	6900	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-6MG324C	6900	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-5MG324I	6900	1.2 V	5	Halogen-Free csfBGA	324	IND
LCMXO3L-6900E-6MG324I	6900	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3L-6900C-5BG256C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-6BG256C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-5BG256I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-6BG256I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-5BG324C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-6BG324C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-5BG324I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-6BG324I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-5BG400C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-6BG400C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-5BG400I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-6900C-6BG400I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	IND
Devt Newshare		O	0	Destant	Landa	.
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-9400E-5MG256C LCMXO3L-9400E-6MG256C	9400 9400	1.2 V 1.2 V	5	Halogen-Free csfBGA	256	COM COM
LCMX03L-9400E-5MG256I		1.2 V 1.2 V	6 5	Halogen-Free csfBGA Halogen-Free csfBGA	256	IND
	9400				256	
LCMXO3L-9400E-6MG256I	9400	1.2 V	6	Halogen-Free csfBGA	256	
LCMXO3L-9400C-5BG256C LCMXO3L-9400C-6BG256C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	COM COM
	9400	2.5 V/3.3 V 2.5 V/3.3 V	6	Halogen-Free caBGA	256	
LCMXO3L-9400C-5BG256I	9400		5	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-6BG256I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-5BG400C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-6BG400C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-5BG400I	9400	2.5 V/3.3 V 2.5 V/3.3 V	5	Halogen-Free caBGA Halogen-Free caBGA	400	
LCMXO3L-9400C-6BG400I	9400		6		400	
LCMXO3L-9400C-5BG484C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-6BG484C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-5BG484I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	IND

2.5 V/3.3 V

6

Halogen-Free caBGA

9400

MachXO3 Family Data Sheet Revision History

February 2017

Advance Data Sheet DS1047

Date	Version	Section	Change Summary		
February 2017 1.8		Architecture	Updated Supported Standards section. Corrected "MDVS" to "MLDVS" in Table 2-11, Supported Input Standards.		
	DC and Switching Characteristics	Updated ESD Performance section. Added reference to the MachXO2 Product Family Qualification Summary document.			
			Updated Static Supply Current – C/E Devices section. Added footnote 7.		
			Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. — Populated values for MachXO3L/LF-9400. — Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, corrected "t _{DVB} " to "t _{DIB} " and "t _{DVA} " to "t _{DIA} " and revised their descriptions. — Added Figure 3-6, Receiver GDDR71_RX Waveforms and Figure 3-7, Transmitter GDDR71_TX Waveforms.		
		Pinout Information	Updated the Pin Information Summary section. Added MachXO3L/LF- 9600C packages.		
May 2016		DC and Switching Characteristics	Updated Absolute Maximum Ratings section. Modified I/O Tri-state Volt- age Applied and Dedicated Input Voltage Applied footnotes.		
			Updated sysIO Recommended Operating Conditions section. — Added standards. — Added V _{REF} (V) — Added footnote 4.		
		Updated sysIO Single-Ended DC Electrical Characteristics section. Added I/O standards.			
	Ordering Information	Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.			
			Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.		

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.