E ·) (Fattice Semiconductor Corporation - LCMXO3LF-4300E-5MG324I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	540
Number of Logic Elements/Cells	4320
Total RAM Bits	94208
Number of I/O	268
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	324-VFBGA
Supplier Device Package	324-CSFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3lf-4300e-5mg324i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO3 Family Data Sheet Architecture

February 2017

Advance Data Sheet DS1047

Architecture Overview

The MachXO3L/LF family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). All logic density devices in this family have sysCLOCK[™] PLLs and blocks of sysMEM Embedded Block RAM (EBRs). Figure 2-1 and Figure 2-2 show the block diagrams of the various family members.

Notes:

MachXO3L/LF-640 is similar to MachXO3L/LF-1300. MachXO3L/LF-640 has a lower LUT count.

MachXO3L devices have NVCM, MachXO3LF devices have Flash.

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PFU Blocks

The core of the MachXO3L/LF device consists of PFU blocks, which can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. Each PFU block consists of four interconnected slices numbered 0 to 3 as shown in Figure 2-3. Each slice contains two LUTs and two registers. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-3. PFU Block Diagram

Slices

Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

Table 2-1. Resources and Modes Available per Slice

	PFU Block					
Slice	Resources	Modes				
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM				

Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the NVCM or Configuration Flash.

MachXO3LF EBR initialization data can also be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO3LF devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

Figure 2-9. Memory Core Reset

For further information on the sysMEM EBR block, please refer to TN1290, Memory Usage Guide for MachXO3 Devices.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous.

Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

Figure 2-11. Group of Four Programmable I/O Cells

Figure 2-14. Output Gearbox

More information on the output gearbox is available in TN1281, Implementing High-Speed Interfaces with MachXO3 Devices.

Hot Socketing

The MachXO3L/LF devices have been carefully designed to ensure predictable behavior during power-up and power-down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO3L/LF ideal for many multiple power supply and hot-swap applications.

On-chip Oscillator

Every MachXO3L/LF device has an internal CMOS oscillator. The oscillator output can be routed as a clock to the clock tree or as a reference clock to the sysCLOCK PLL using general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit and a user input to enable/disable the oscillator. The oscillator frequency ranges from 2.08 MHz to 133 MHz. The software default value of the Master Clock (MCLK) is nominally 2.08 MHz. When a different MCLK is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal MCLK frequency of 2.08 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The MCLK frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.08 MHz.

Table 2-13 lists all the available MCLK frequencies.

Table 2-13. Available MCLK Frequencies

MCLK (MHz, Nominal)	MCLK (MHz, Nominal)	MCLK (MHz, Nominal)
2.08 (default)	9.17	33.25
2.46	10.23	38
3.17	13.3	44.33
4.29	14.78	53.2
5.54	20.46	66.5
7	26.6	88.67
8.31	29.56	133

Figure 2-18. PC Core Block Diagram

Table 2-14 describes the signals interfacing with the I²C cores.

 Table 2-14. PC Core Signal Description

Signal Name	I/O	Description
i2c_scl	Bi-directional	Bi-directional clock line of the I ² C core. The signal is an output if the I ² C core is in master mode. The signal is an input if the I ² C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO3L/LF device.
i2c_sda	Bi-directional	Bi-directional data line of the l^2C core. The signal is an output when data is transmitted from the l^2C core. The signal is an input when data is received into the l^2C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of l^2C ports in each MachXO3L/LF device.
i2c_irqo	Output	Interrupt request output signal of the I ² C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I ² C register definitions.
cfg_wake	Output	Wake-up signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.
cfg_stdby	Output	Stand-by signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.

Hardened SPI IP Core

Every MachXO3L/LF device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO3L/LF devices supports the following functions:

- Configurable Master and Slave modes
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer
- Interface to custom logic through 8-bit WISHBONE interface

Table 2-17. MachXO3L/LF Power Saving Features Description

Device Subsystem	Feature Description
Bandgap	The bandgap can be turned off in standby mode. When the Bandgap is turned off, analog circuitry such as the POR, PLLs, on-chip oscillator, and differential I/O buffers are also turned off. Bandgap can only be turned off for 1.2 V devices.
Power-On-Reset (POR)	The POR can be turned off in standby mode. This monitors VCC levels. In the event of unsafe V_{CC} drops, this circuit reconfigures the device. When the POR circuitry is turned off, limited power detector circuitry is still active. This option is only recommended for applications in which the power supply rails are reliable.
On-Chip Oscillator	The on-chip oscillator has two power saving features. It may be switched off if it is not needed in your design. It can also be turned off in Standby mode.
PLL	Similar to the on-chip oscillator, the PLL also has two power saving features. It can be statically switched off if it is not needed in a design. It can also be turned off in Standby mode. The PLL will wait until all output clocks from the PLL are driven low before powering off.
I/O Bank Controller	Differential I/O buffers (used to implement standards such as LVDS) consume more than ratioed single-ended I/Os such as LVCMOS and LVTTL. The I/O bank controller allows the user to turn these I/Os off dynamically on a per bank selection.
Dynamic Clock Enable for Primary Clock Nets	Each primary clock net can be dynamically disabled to save power.
Power Guard	Power Guard is a feature implemented in input buffers. This feature allows users to switch off the input buffer when it is not needed. This feature can be used in both clock and data paths. Its biggest impact is that in the standby mode it can be used to switch off clock inputs that are distributed using general routing resources.

For more details on the standby mode refer to TN1289, Power Estimation and Management for MachXO3 Devices.

Power On Reset

MachXO3L/LF devices have power-on reset circuitry to monitor V_{CCINT} and V_{CCIO} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CCINT} and V_{CCIO} (controls configuration) voltage levels. It then triggers download from the on-chip configuration NVCM/Flash memory after reaching the V_{PORUP} level specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. For "E" devices without voltage regulators, V_{CCINT} is the same as the V_{CC} supply voltage. For "C" devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage. From this voltage reference, the time taken for configuration and entry into user mode is specified as NVCM/Flash Download Time ($t_{REFRESH}$) in the DC and Switching Characteristics section of this data sheet. Hefore and during configuration, the I/Os are held in tri-state. I/Os are released to user functionality once the device has finished configuration. Note that for "C" devices, a separate POR circuit monitors external V_{CC} voltage in addition to the POR circuit that monitors the internal post-regulated power supply voltage level.

Once the device enters into user mode, the POR circuitry can optionally continue to monitor V_{CCINT} levels. If V_{CCINT} drops below $V_{PORDNBG}$ level (with the bandgap circuitry switched on) or below $V_{PORDNSRAM}$ level (with the bandgap circuitry switched off to conserve power) device functionality cannot be guaranteed. In such a situation the POR issues a reset and begins monitoring the V_{CCINT} and V_{CCIO} voltage levels. $V_{PORDNBG}$ and $V_{PORDNSRAM}$ are both specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet.

Note that once an "E" device enters user mode, users can switch off the bandgap to conserve power. When the bandgap circuitry is switched off, the POR circuitry also shuts down. The device is designed such that a mini-mal, low power POR circuit is still operational (this corresponds to the $V_{PORDNSRAM}$ reset point described in the paragraph above). However this circuit is not as accurate as the one that operates when the bandgap is switched on. The low power POR circuit emulates an SRAM cell and is biased to trip before the vast majority of SRAM cells flip. If users are concerned about the V_{CC} supply dropping below V_{CC} (min) they should not shut down the bandgap or POR circuit.

BLVDS

The MachXO3L/LF family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

Over Recommended	Operating	Conditions
	operating	oonantions

		Nor		
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	20	20	Ohms
R _S	Driver series resistance	80	80	Ohms
R _{TLEFT}	Left end termination	45	90	Ohms
R _{TRIGHT}	Right end termination	45	90	Ohms
V _{OH}	Output high voltage	1.376	1.480	V
V _{OL}	Output low voltage	1.124	1.020	V
V _{OD}	Output differential voltage	0.253	0.459	V
V _{CM}	Output common mode voltage	1.250	1.250	V
I _{DC}	DC output current	11.236	10.204	mA

1. For input buffer, see LVDS table.

MachXO3L/LF External Switching Characteristics – C/E Devices^{1, 2, 3, 4, 5, 6, 10}

			-6 -5		5		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
Clocks							
Primary Clo	cks						-
f _{MAX_PRI} ⁷	Frequency for Primary Clock Tree	All MachXO3L/LF devices	_	388	_	323	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO3L/LF devices	0.5		0.6		ns
		MachXO3L/LF-1300		867	_	897	ps
		MachXO3L/LF-2100		867		897	ps
t _{SKEW_PRI}	Primary Clock Skew Within a Device	MachXO3L/LF-4300	_	865	-	892	ps
		MachXO3L/LF-6900	_	902	_	942	ps
		MachXO3L/LF-9400	_	908	_	950	ps
Edge Clock							
f _{MAX_EDGE} ⁷	Frequency for Edge Clock	MachXO3L/LF		400	_	333	MHz
Pin-LUT-Pin	Propagation Delay						
t _{PD}	Best case propagation delay through one LUT-4	All MachXO3L/LF devices		6.72		6.96	ns
General I/O	Pin Parameters (Using Primary Clock with	out PLL)					
		MachXO3L/LF-1300	—	7.46	—	7.66	ns
		MachXO3L/LF-2100	_	7.46	_	7.66	ns
t _{CO}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	_	7.51		7.71	ns
		MachXO3L/LF-6900	_	7.54		7.75	ns
		MachXO3L/LF-9400	_	7.53		7.83	ns
		MachXO3L/LF-1300	-0.20	_	-0.20		ns
		MachXO3L/LF-2100	-0.20	_	-0.20		ns
t _{SU}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	-0.23	_	-0.23		ns
		MachXO3L/LF-6900	-0.23		-0.23		ns
		MachXO3L/LF-9400	-0.24		-0.24		ns
		MachXO3L/LF-1300	1.89		2.13		ns
		MachXO3L/LF-2100	1.89	_	2.13		ns
t _H	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	1.94	_	2.18		ns
		MachXO3L/LF-6900	1.98	_	2.23		ns
		MachXO3L/LF-9400	1.99	_	2.24		ns
		MachXO3L/LF-1300	1.61	_	1.76		ns
		MachXO3L/LF-2100	1.61	_	1.76		ns
t _{SU DEL}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	1.66	_	1.81		ns
	with Data input Delay	MachXO3L/LF-6900	1.53	_	1.67		ns
		MachXO3L/LF-9400	1.65	_	1.80		ns
		MachXO3L/LF-1300	-0.23	_	-0.23		ns
		MachXO3L/LF-2100	-0.23	—	-0.23	_	ns
^t H DEL	Clock to Data Hold - PIO Input Register with	MachXO3L/LF-4300	-0.25	_	-0.25	_	ns
	Input Data Delay	MachXO3L/LF-6900	-0.21	_	-0.21	_	ns
		MachXO3L/LF-9400	-0.24	_	-0.24	_	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO3L/LF devices	—	388	—	323	MHz

Over Recommended Operating Conditions

DC and Switching Characteristics MachXO3 Family Data Sheet

		-6		-5			
Description	Device	Min.	Max.	Min.	Max.	Units	
Generic DDRX4 Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX4_TX.ECLK.Centered ^{8, 9}							
Output Data Valid Before CLK Output		0.455	_	0.570	_	ns	
Output Data Valid After CLK Output		0.455	—	0.570	_	ns	
DDRX4 Serial Output Data Speed	MachXO3L/LF devices,	—	800	—	630	Mbps	
DDRX4 ECLK Frequency (minimum limited by PLL)	top side only	_	400	_	315	MHz	
SCLK Frequency			100		79	MHz	
Itputs – GDDR71_TX.ECLK.7:1 ^{8, 9}							
Output Data Invalid Before CLK Output			0.160	_	0.180	ns	
Output Data Invalid After CLK Output			0.160		0.180	ns	
DDR71 Serial Output Data Speed	MachXO3L/LF devices,		756		630	Mbps	
DDR71 ECLK Frequency	top side only	_	378	—	315	MHz	
7:1 Output Clock Frequency (SCLK) (mini- mum limited by PLL)		_	108	_	90	MHz	
Outputs with Clock and Data Centered at P (.ECLK.Centered ^{10, 11, 12}	in Using PCLK Pin for Clo	ck Input	-				
Output Data Valid Before CLK Output		0.200	—	0.200	_	UI	
Output Data Valid After CLK Output	All MachXO3L/LF	0.200	_	0.200	_	UI	
MIPI D-PHY Output Data Speed		_	900	_	900	Mbps	
MIPI D-PHY ECLK Frequency (minimum limited by PLL)	devices, top side only	_	450	_	450	MHz	
SCLK Frequency	<u> </u>	—	112.5	—	112.5	MHz	
	Description RX4 Outputs with Clock and Data Centered CECLK.Centered ^{8, 9} Output Data Valid Before CLK Output Output Data Valid After CLK Output DDRX4 Serial Output Data Speed DDRX4 ECLK Frequency (minimum limited by PLL) SCLK Frequency ttputs – GDDR71_TX.ECLK.7:1 ^{8, 9} Output Data Invalid Before CLK Output Output Data Invalid After CLK Output DDR71 Serial Output Data Speed DDR71 ECLK Frequency 7:1 Output Clock Frequency (SCLK) (mini- mum limited by PLL) Outputs with Clock and Data Centered at P C.ECLK.Centered ^{10, 11, 12} Output Data Valid Before CLK Output Output Data Valid After CLK Output MIPI D-PHY Output Data Speed MIPI D-PHY ECLK Frequency (minimum limited by PLL) SCLK Frequency	DescriptionDeviceRX4 Outputs with Clock and Data Centered at Pin Using PCLK Pin for C.ECLK.Centered ^{8, 9} In Using PCLK Pin for C.ECLK.Centered ^{8, 9} Output Data Valid Before CLK OutputMachXO3L/LF devices, top side onlyDDRX4 Serial Output Data SpeedMachXO3L/LF devices, top side onlyDDRX4 ECLK Frequency (minimum limited by PLL)MachXO3L/LF devices, top side onlySCLK FrequencyOutput Data Invalid Before CLK OutputOutput Data Invalid Before CLK OutputMachXO3L/LF devices, top side onlyOutput Data Invalid After CLK OutputMachXO3L/LF devices, top side onlyDDR71 Serial Output Data SpeedMachXO3L/LF devices, top side onlyDT71 ECLK Frequency (minimum limited by PLL)MachXO3L/LF devices, top side onlyOutput Data Valid Before CLK OutputOutput Data Valid Before CLK OutputOutput Data Valid Before CLK OutputMachXO3L/LF devices, top side onlyOutput Data Valid Before CLK OutputAll MachXO3L/LFOutput Data Valid After CLK OutputAll MachXO3L/LFMIPI D-PHY Output Data SpeedAll MachXO3L/LFMIPI D-PHY ECLK Frequency (minimum limited by PLL)All MachXO3L/LFSCLK FrequencyAll MachXO3L/LF	Description Device Min. RX4 Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock (LECLK.Centered ^{8,9}) 0.455 Output Data Valid Before CLK Output 0.455 DDRX4 Serial Output Data Speed MachXO3L/LF devices, top side only DDRX4 ECLK Frequency (minimum limited by PLL) MachXO3L/LF devices, top side only SCLK Frequency Output Data Invalid Before CLK Output Output Data Invalid Before CLK Output Output Data Invalid Before CLK Output Output Data Invalid After CLK Output DDR71 Serial Output Data Speed MachXO3L/LF devices, top side only DDR71 ECLK Frequency Output Clock Frequency (SCLK) (minimum limited by PLL) Output Data Valid After CLK Output Output Data Valid Before CLK Output Output Data Valid After CLK Output 0.200 0.200 0.200 Output Data Valid After CLK Out	-6Min.Max.RX4 Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input - CLECLK.Centered ^{8, 9} Output Data Valid Before CLK Output0.455Output Data Valid After CLK OutputMachXO3L/LF devices, top side only0.455DDRX4 ECLK Frequency (minimum limited by PLL)MachXO3L/LF devices, top side only800SCLK Frequency (minimum limited by PLL)100400Output Data Invalid Before CLK Output0.160Output Data Invalid After CLK Output0.160DDR71 Serial Output Data Speed DDR71 Serial Output Data SpeedMachXO3L/LF devices, top side only108Output Swith Clock and Data Centered at Pin Using PCLK Pin for Clock Input - t.ECLK.Centered ^{10, 11, 12} 0.200Output Data Valid Before CLK Output DDR71 Serial Output Data SpeedAll MachXO3L/LF devices, top side only0.200Output Data Valid After CLK Output Mup PLL)All MachXO3L/LF devices, top side only0.200MIPI D-PHY Output Data Speed MIPI D-PHY Output Data SpeedAll MachXO3L/LF devices, top side only450MIPI D-PHY ECLK Frequency (minimum limited by PLL)450450	Description Image: Description Image: Description Max. Min. Max. Min. RX4 Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input - LECLK.Centered ^{8, 9} 0.455 - 0.570 Output Data Valid Before CLK Output MachXO3L/LF devices, top side only 0.455 - 0.570 DDRX4 Serial Output Data Speed MachXO3L/LF devices, top side only - 800 - DDRX4 ECLK Frequency (minimum limited by PLL) MachXO3L/LF devices, top side only - 400 - SCLK Frequency - 0.160 -	Description Device Min. Max. Min. Max. RX4 Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input - LECLK.Centered ^{9,9} 0.455 - 0.570 - Output Data Valid Before CLK Output MachXO3L/LF devices, top side only 0.455 - 0.570 - DDRX4 Serial Output Data Speed MachXO3L/LF devices, top side only 0.455 - 0.570 - DDRX4 ECLK Frequency (minimum limited by PLL) MachXO3L/LF devices, top side only - 800 - 630 SCLK Frequency - 0.160 - 916 - 916 Output Data Invalid Before CLK Output MachXO3L/LF devices, top side only - 0.160 - 0.180 DDR71 ECLK Frequency MachXO3L/LF devices, top side only - 756 - 630 DDR71 ECLK Frequency MachXO3L/LF devices, top side only - 756 - 630 DDR71 ECLK Frequency MachXO3L/LF devices, top side only - 108 - 90 Output Data Valid After CLK Output MachXO3L/LF	

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

5. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

6. The t_{SU DEL} and t_{H DEL} values use the SCLK_ZERHOLD default step size. Each step is 105 ps (-6), 113 ps (-5), 120 ps (-4).

7. This number for general purpose usage. Duty cycle tolerance is +/-10%.

8. Duty cycle is $\pm -5\%$ for system usage.

9. Performance is calculated with 0.225 UI.

10. Performance is calculated with 0.20 UI.

11. Performance for Industrial devices are only supported with VCC between 1.16 V to 1.24 V.

12. Performance for Industrial devices and -5 devices are not modeled in the Diamond design tool.

13. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

14. Above 800 Mbps is only supported with WLCSP and csfBGA packages

15. Between 800 Mbps to 900 Mbps:

a. VIDTH exceeds the MIPI D-PHY Input DC Conditions Table 3-4 and can be calculated with the equation tSU or tH = -0.0005*VIDTH + 0.3284

b. Example calculations

i. tSU and tHO = 0.28 with VIDTH = 100 mV

ii. tSU and tHO = 0.25 with VIDTH = 170 mV

iii. tSU and tHO = 0.20 with VIDTH = 270 mV

NVCM/Flash Download Time^{1, 2}

Symbol	Parameter	Device	Тур.	Units
t _{REFRESH}	POR to Device I/O Active	LCMXO3L/LF-640	1.9	ms
		LCMXO3L/LF-1300	1.9	ms
		LCMXO3L/LF-1300 256-Ball Package	1.4	ms
		LCMXO3L/LF-2100	1.4	ms
		LCMXO3L/LF-2100 324-Ball Package	2.4	ms
		LCMXO3L/LF-4300	2.4	ms
		LCMXO3L/LF-4300 400-Ball Package	3.8	ms
		LCMXO3L/LF-6900	3.8	ms
		LCMXO3L/LF-9400C	5.2	ms

1. Assumes sysMEM EBR initialized to an all zero pattern if they are used.

2. The NVCM/Flash download time is measured starting from the maximum voltage of POR trip point.

JTAG Port Timing Specifications

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK clock frequency	—	25	MHz
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	10	—	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTCO}	TAP controller falling edge of clock to valid output	—	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	—	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	—	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	—	ns
t _{BTCRH}	BSCAN test capture register hold time	20	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output		25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	—	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable		25	ns

Figure 3-8. JTAG Port Timing Waveforms

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions					
Configuration (Dual fu	Configuration (Dual function pins used during sysCONFIG)						
PROGRAMN	I	itiates configuration sequence when asserted low. This pin always has an active pull-up.					
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled.					
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the start-up sequence is in progress.					
MCLK/CCLK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes.					
SN	I	Slave SPI active low chip select input.					
CSSPIN	I/O	Master SPI active low chip select output.					
SI/SPISI	I/O	Slave SPI serial data input and master SPI serial data output.					
SO/SPISO	I/O	Slave SPI serial data output and master SPI serial data input.					
SCL	I/O	Slave I ² C clock input and master I ² C clock output.					
SDA	I/O	Slave I ² C data input and master I ² C data output.					

Pin Information Summary

	MachXO3L/LF -640	MachXO3L/LF-1300			
	CSFBGA121	WLCSP36	CSFBGA121	CSFBGA256	CABGA256
General Purpose IO per Bank					
Bank 0	24	15	24	50	50
Bank 1	26	0	26	52	52
Bank 2	26	9	26	52	52
Bank 3	24	4	24	16	16
Bank 4	0	0	0	16	16
Bank 5	0	0	0	20	20
Total General Purpose Single Ended IO	100	28	100	206	206
Differential IO per Bank	·	•			•
Bank 0	12	8	12	25	25
Bank 1	13	0	13	26	26
Bank 2	13	4	13	26	26
Bank 3	11	2	11	8	8
Bank 4	0	0	0	8	8
Bank 5	0	0	0	10	10
Total General Purpose Differential IO	49	14	49	103	103
Dual Function IO	33	25	33	33	33
Number 7:1 or 8:1 Gearboxes	·	•			•
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	7	3	7	14	14
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	7	2	7	14	14
High-speed Differential Outputs	-				
Bank 0	7	3	7	14	14
VCCIO Pins					
Bank 0	1	1	1	4	4
Bank 1	1	0	1	3	4
Bank 2	1	1	1	4	4
Bank 3	3	1	3	2	1
Bank 4	0	0	0	2	2
Bank 5	0	0	0	2	1
vcc	4	2	4	8	8
GND	10	2	10	24	24
NC	0	0	0	0	1
Reserved for Configuration	1	1	1	1	1
Total Count of Bonded Pins	121	36	121	256	256

	MachXO3L/LF-9400C				
	CSFBGA256	CABGA256	CABGA400	CABGA484	
General Purpose IO per Bank	•				
Bank 0	50	50	83	95	
Bank 1	52	52	84	96	
Bank 2	52	52	84	96	
Bank 3	16	16	28	36	
Bank 4	16	16	24	24	
Bank 5	20	20	32	36	
Total General Purpose Single Ended IO	206	206	335	383	
Differential IO per Bank	·		•		
Bank 0	25	25	42	48	
Bank 1	26	26	42	48	
Bank 2	26	26	42	48	
Bank 3	8	8	14	18	
Bank 4	8	8	12	12	
Bank 5	10	10	16	18	
Total General Purpose Differential IO	103	103	168	192	
Dual Function IO	37	37	37	45	
Number 7:1 or 8:1 Gearboxes	•				
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	20	20	22	24	
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	20	20	22	24	
High-speed Differential Outputs					
Bank 0	20	20	21	24	
VCCIO Pins					
Bank 0	4	4	5	9	
Bank 1	3	4	5	9	
Bank 2	4	4	5	9	
Bank 3	2	1	2	3	
Bank 4	2	2	2	3	
Bank 5	2	1	2	3	
VCC	8	8	10	12	
GND	24	24	33	52	
NC	0	1	0	0	
Reserved for Configuration	1	1	1	1	
Total Count of Bonded Pins	256	256	400	484	

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-6900E-5MG256C	6900	1.2 V	5	Halogen-Free csfBGA	256	СОМ
LCMXO3LF-6900E-6MG256C	6900	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-6900E-5MG256I	6900	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-6900E-6MG256I	6900	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-6900E-5MG324C	6900	1.2 V	5	Halogen-Free csfBGA	324	СОМ
LCMXO3LF-6900E-6MG324C	6900	1.2 V	6	Halogen-Free csfBGA	324	СОМ
LCMXO3LF-6900E-5MG324I	6900	1.2 V	5	Halogen-Free csfBGA	324	IND
LCMXO3LF-6900E-6MG324I	6900	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3LF-6900C-5BG256C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3LF-6900C-6BG256C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3LF-6900C-5BG256I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3LF-6900C-6BG256I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3LF-6900C-5BG324C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3LF-6900C-6BG324C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	COM
LCMXO3LF-6900C-5BG324I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3LF-6900C-6BG324I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
LCMXO3LF-6900C-5BG400C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3LF-6900C-6BG400C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3LF-6900C-5BG400I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3LF-6900C-6BG400I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	IND
	T			1	1	1
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-9400E-5MG256C	9400	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3LF-9400E-6MG256C	9400	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-9400E-5MG256I	9400	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-9400E-6MG256I	9400	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-9400C-5BG256C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3LF-9400C-6BG256C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3LF-9400C-5BG256I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3LF-9400C-6BG256I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3LF-9400C-5BG400C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3LF-9400C-6BG400C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3LF-9400C-5BG400I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3LF-9400C-6BG400I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	IND
LCMXO3LF-9400C-5BG484C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	COM
LCMXO3LF-9400C-6BG484C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	484	COM
LCMXO3LF-9400C-5BG484I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	IND
LCMXO3LF-9400C-6BG484I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	484	IND

MachXO3 Family Data Sheet Revision History

February 2017

Advance Data Sheet DS1047

Date	Version	Section	Change Summary	
February 2017	1.8	Architecture	Updated Supported Standards section. Corrected "MDVS" to "MLDVS" in Table 2-11, Supported Input Standards.	
		DC and Switching Characteristics	Updated ESD Performance section. Added reference to the MachXO2 Product Family Qualification Summary document.	
			Updated Static Supply Current – C/E Devices section. Added footnote 7.	
			Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. — Populated values for MachXO3L/LF-9400. — Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, corrected "t _{DVB} " to "t _{DIB} " and "t _{DVA} " to "t _{DIA} " and revised their descriptions. — Added Figure 3-6, Receiver GDDR71_RX Waveforms and Figure 3-7, Transmitter GDDR71_TX Waveforms.	
		Pinout Information	Updated the Pin Information Summary section. Added MachXO3L/LF- 9600C packages.	
May 2016	1.7	DC and Switching Characteristics	Updated Absolute Maximum Ratings section. Modified I/O Tri-state Volt- age Applied and Dedicated Input Voltage Applied footnotes.	
				Updated sysIO Recommended Operating Conditions section. — Added standards. — Added V _{REF} (V) — Added footnote 4.
			Updated sysIO Single-Ended DC Electrical Characteristics section. Added I/O standards.	
		Ordering Information	Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.	
			Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.	

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
September 2015	1.5	DC and Switching Characteristics	Updated the MIPI D-PHY Emulation section. Revised Table 3-5, MIPI D- PHY Output DC Conditions. — Revised RL Typ. value. — Revised RH description and values.
			Updated the Maximum sysIO Buffer Performance section. Revised MIPI Max. Speed value.
			Updated the MachXO3L/LF External Switching Characteristics – C/E Devices section. Added footnotes 14 and 15.
August 2015	1.4	Architecture	Updated the Device Configuration section. Added JTAGENB to TAP dual purpose pins.
		Ordering Information	Updated the top side markings section to indicate the use of LMXO3LF for the LCMXO3LF device.
March 2015	1.3	All	General update. Added MachXO3LF devices.
October 2014	1.2	Introduction	Updated Table 1-1, MachXO3L Family Selection Guide. Revised XO3L- 2100 and XO3L-4300 IO for 324-ball csfBGA package.
		Architecture	Updated the Dual Boot section. Corrected information on where the pri- mary bitstream and the golden image must reside.
		Pinout Information	Updated the Pin Information Summary section.
			Changed General Purpose IO Bank 5 values for MachXO3L-2100 and MachXO3L-4300 CSFBGA 324 package.
			Changed Number 7:1 or 8:1 Gearboxes for MachXO3L-640 and MachXO3L-1300.
			Removed DQS Groups (Bank 1) section.
			Changed VCCIO Pins Bank 1 values for MachXO3L-1300, MachXO3L- 2100, MachXO3L-4300 and MachXO3L-6900 CSFBGA 256 package.
			Changed GND values for MachXO3L-1300, MachXO3L-2100, MachXO3L-4300 and MachXO3L-6900 CSFBGA 256 package.
			Changed NC values for MachXO3L-2100 and MachXO3L-4300 CSF- BGA 324 package.
		DC and Switching Characteristics	Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition.
			Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition.
			Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values.
July 2014	1.1	DC and Switching Characteristics	Updated the Static Supply Current – C/E Devices section. Added devices.
			Updated the Programming and Erase Supply Current – C/E Device section. Added devices.
			Updated the sysIO Single-Ended DC Electrical Characteristics section. Revised footnote 4.
			Added the NVCM Download Time section.
			Updated the Typical Building Block Function Performance – C/E Devices section. Added information to footnote.
		Pinout Information	Updated the Pin Information Summary section.
		Ordering Information	Updated the MachXO3L Part Number Description section. Added packages.
			Updated the Ordering Information section. General update.