

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Total RAM Bits	65536
Number of I/O	100
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	121-VFBGA, CSPBGA
Supplier Device Package	121-CSFBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3lf-640e-5mg121i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. MachXO3L/LF Family Selection Guide

Features		MachXO3L-640/ MachXO3LF-640	MachXO3L-1300/ MachXO3LF-1300	MachXO3L-2100/ MachXO3LF-2100	MachXO3L-4300/ MachXO3LF-4300	MachXO3L-6900/ MachXO3LF-6900	MachXO3L-9400/ MachXO3LF-9400
LUTs		640	1300	2100	4300	6900	9400
Distributed R	AM (kbits)	5	10	16	34	54	73
EBR SRAM (kbits)	64	64	74	92	240	432
Number of PL	Ls	1	1	1	2	2	2
Hardened	I ² C	2	2	2	2	2	2
Functions:	SPI	1	1	1	1	1	1
	Timer/Counter	1	1	1	1	1	1
	Oscillator	1	1	1	1	1	1
MIPI D-PHY	Support	Yes	Yes	Yes	Yes	Yes	Yes
Multi Time Pr NVCM	ogrammable	MachXO3L-640	MachXO3L-1300	MachXO3L-2100	MachXO3L-4300	MachXO3L-6900	MachXO3L-9400
Programmabl	le Flash	MachXO3LF-640	MachXO3LF-1300	MachXO3LF-2100	MachXO3LF-4300	MachXO3LF-6900	MachXO3LF-9400
Packages				ю			
36-ball WLCS (2.5 mm x 2.5	SP ¹ 5 mm, 0.4 mm)		28				
49-ball WLCS (3.2 mm x 3.2	SP ¹ 2 mm, 0.4 mm)			38			
81-ball WLCS (3.8 mm x 3.8	SP ¹ 3 mm, 0.4 mm)				63		
121-ball csfB (6 mm x 6 mr		100	100	100	100		
256-ball csfB (9 mm x 9 mr		2	206	206	206	206	206
324-ball csfBGA ¹ (10 mm x 10 mm, 0.5 mm)				268	268	281	
256-ball caBGA ² (14 mm x 14 mm, 0.8 mm)			206	206	206	206	206
324-ball caB0 (15 mm x 15				279	279	279	
400-ball caB0 (17 mm x 17					335	335	335
484-ball caB0 (19 mm x 19							384

1. Package is only available for E=1.2 V devices.

2. Package is only available for C=2.5 V/3.3 V devices.

Introduction

MachXO3[™] device family is an Ultra-Low Density family that supports the most advanced programmable bridging and IO expansion. It has the breakthrough IO density and the lowest cost per IO. The device IO features have the integrated support for latest industry standard IO.

The MachXO3L/LF family of low power, instant-on, non-volatile PLDs has five devices with densities ranging from 640 to 9400 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. MachXO3LF devices also support User Flash Memory (UFM). These features allow these devices to be used in low cost, high volume consumer and system applications.

The MachXO3L/LF devices are designed on a 65nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs

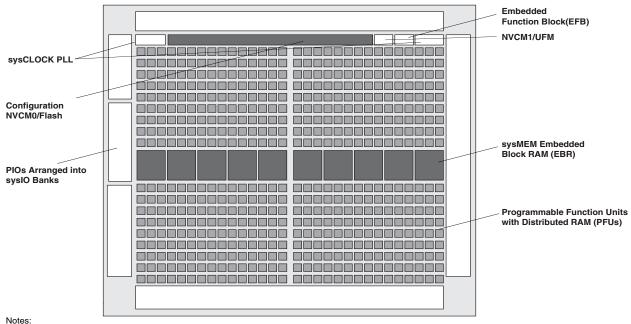
and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family.

The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E are functionally compatible with each other.

The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The MachXO3L/LF devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis.

A user-programmable internal oscillator is included in MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines.


The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE[™] modules, including a number of reference designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

 MachXO3L/LF-1300, MachXO3L/LF-2100, MachXO3L/LF-6900 and MachXO3L/LF-9400 are similar to MachXO3L/LF-4300. MachXO3L/LF-1300 has a lower LUT count, one PLL, and seven EBR blocks. MachXO3L/LF-2100 has a lower LUT count, one PLL, and eight EBR blocks. MachXO3L/LF-6900 has a higher LUT count, two PLLs, and 26 EBR blocks. MachXO3L/LF-9400 has a higher LUT count, two PLLs, and 48 EBR blocks.

• MachXO3L devices have NVCM, MachXO3LF devices have Flash.

The logic blocks, Programmable Functional Unit (PFU) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each row has either the logic blocks or the EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the MachXO3L/LF family, the number of sysIO banks varies by device. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT usage.

The MachXO3L/LF registers in PFU and sysI/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

The MachXO3L/LF architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. These blocks are located at the ends of the on-chip NVCM/Flash block. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

MachXO3L/LF devices provide commonly used hardened functions such as SPI controller, I²C controller and timer/ counter.

MachXO3LF devices also provide User Flash Memory (UFM). These hardened functions and the UFM interface to the core logic and routing through a WISHBONE interface. The UFM can also be accessed through the SPI, I²C and JTAG ports.

Every device in the family has a JTAG port that supports programming and configuration of the device as well as access to the user logic. The MachXO3L/LF devices are available for operation from 3.3 V, 2.5 V and 1.2 V power sup-plies, providing easy integration into the overall system.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the NVCM or Configuration Flash.

MachXO3LF EBR initialization data can also be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO3LF devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Output Gearbox

Each PIC on the top edge has a built-in 8:1 output gearbox. Each of these output gearboxes may be programmed as a 7:1 serializer or as one ODDRX4 (8:1) gearbox or as two ODDRX2 (4:1) gearboxes. Table 2-10 shows the gearbox signals.

Table 2-10. Output Gearbox Signal List

Name	I/O Type	Description
Q	Output	High-speed data output
D[7:0]	Input	Low-speed data from device core
Video TX(7:1): D[6:0]		
GDDRX4(8:1): D[7:0]		
GDDRX2(4:1)(IOL-A): D[3:0]		
GDDRX2(4:1)(IOL-C): D[7:4]		
SCLK	Input	Slow-speed system clock
ECLK [1:0]	Input	High-speed edge clock
RST	Input	Reset

The gearboxes have three stage pipeline registers. The first stage registers sample the low-speed input data on the low-speed system clock. The second stage registers transfer data from the low-speed clock registers to the high-speed clock registers. The third stage pipeline registers controlled by high-speed edge clock shift and mux the high-speed data out to the sysIO buffer. Figure 2-14 shows the output gearbox block diagram.

There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes:

- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B)
- TN1293, Using Hardened Control Functions in MachXO3 Devices

Figure 2-19. SPI Core Block Diagram

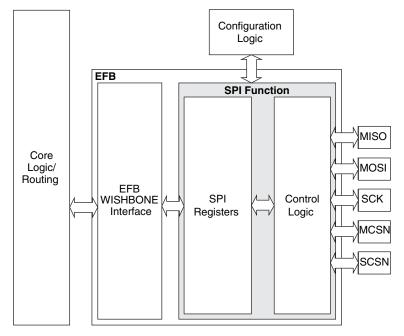


Table 2-15 describes the signals interfacing with the SPI cores.

Table 2-15. SPI Core Signal Description

Signal Name	I/O	Master/Slave	Description	
spi_csn[0]	0	Master	SPI master chip-select output	
spi_csn[17]	0	Master	Additional SPI chip-select outputs (total up to eight slaves)	
spi_scsn	I	Slave	SPI slave chip-select input	
spi_irq	0	Master/Slave	Interrupt request	
spi_clk	I/O	Master/Slave	SPI clock. Output in master mode. Input in slave mode.	
spi_miso	I/O	Master/Slave	SPI data. Input in master mode. Output in slave mode.	
spi_mosi	I/O	Master/Slave	SPI data. Output in master mode. Input in slave mode.	
sn	I	Slave	Configuration Slave Chip Select (active low), dedicated for selecting the Co figuration Logic.	
cfg_stdby	0	Master/Slave	Stand-by signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.	
cfg_wake	О	Master/Slave	Wake-up signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.	

For more details on these embedded functions, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

User Flash Memory (UFM)

MachXO3LF devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I2C and SPI interfaces of the device. The UFM block offers the following features:

- Non-volatile storage up to 256 kbits
- 100K write cycles
- Write access is performed page-wise; each page has 128 bits (16 bytes)
- Auto-increment addressing
- WISHBONE interface

For more information on the UFM, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

Standby Mode and Power Saving Options

MachXO3L/LF devices are available in two options, the C and E devices. The C devices have a built-in voltage regulator to allow for 2.5 V V_{CC} and 3.3 V V_{CC} while the E devices operate at 1.2 V V_{CC}.

MachXO3L/LF devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO3L/LF devices support a low power Stand-by mode.

In the stand-by mode the MachXO3L/LF devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I²C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned "off" or go into a low power consumption state to save power when the device enters this state. Note that the MachXO3L/LF devices are powered on when in standby mode and all power supplies should remain in the Recommended Operating Conditions.

MachXO3 Family Data Sheet DC and Switching Characteristics

February 2017

Advance Data Sheet DS1047

Absolute Maximum Ratings^{1, 2, 3}

	MachXO3L/LF E (1.2 V)	MachXO3L/LF C (2.5 V/3.3 V)
Supply Voltage V _{CC}	–0.5 V to 1.32 V	0.5 V to 3.75 V
Output Supply Voltage V _{CCIO}	–0.5 V to 3.75 V	–0.5 V to 3.75 V
I/O Tri-state Voltage Applied ^{4, 5}	–0.5 V to 3.75 V	–0.5 V to 3.75 V
Dedicated Input Voltage Applied ⁴	–0.5 V to 3.75 V	–0.5 V to 3.75 V
Storage Temperature (Ambient)	–55 °C to 125 °C	–55 °C to 125 °C
Junction Temperature (T _J)	–40 °C to 125 °C	–40 °C to 125 °C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2 V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

5. The dual function I^2C pins SCL and SDA are limited to -0.25 V to 3.75 V or to -0.3 V with a duration of <20 ns.

Recommended Operating Conditions¹

Symbol	Parameter		Max.	Units
V = 1	Core Supply Voltage for 1.2 V Devices	1.14	1.26	V
V _{CC} ¹	Core Supply Voltage for 2.5 V/3.3 V Devices	2.375	3.465	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	1.14	3.465	V
t _{JCOM}	JCOM Junction Temperature Commercial Operation		85	°C
t _{JIND}	Junction Temperature Industrial Operation	-40	100	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both the same voltage, they must also be the same supply.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

Power Supply Ramp Rates¹

Symbol	Parameter	Min.	Тур.	Max.	Units
t _{RAMP}	Power supply ramp rates for all power supplies.	0.01		100	V/ms

1. Assumes monotonic ramp rates.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Power-On-Reset Voltage Levels^{1, 2, 3, 4, 5}

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{PORUP}	Power-On-Reset ramp up trip point (band gap based circuit monitoring V_{CCINT} and $V_{CCIO0})$	0.9	_	1.06	V
V _{PORUPEXT}	Power-On-Reset ramp up trip point (band gap based circuit monitoring external V_{CC} power supply)	1.5	_	2.1	V
V _{PORDNBG}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{\mbox{CCINT}})$	0.75	_	0.93	V
V _{PORDNBGEXT}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{CC})$	0.98	_	1.33	V
V _{PORDNSRAM}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CCINT})	_	0.6	_	V
VPORDNSRAMEXT	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CC})	_	0.96	_	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

2. For devices without voltage regulators V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage.

3. Note that V_{PORUP} (min.) and V_{PORDNBG} (max.) are in different process corners. For any given process corner V_{PORDNBG} (max.) is always 12.0 mV below V_{PORUP} (min.).

4. V_{PORUPEXT} is for C devices only. In these devices a separate POR circuit monitors the external V_{CC} power supply.

5. V_{CCIO0} does not have a Power-On-Reset ramp down trip point. V_{CCIO0} must remain within the Recommended Operating Conditions to ensure proper operation.

Hot Socketing Specifications^{1, 2, 3}

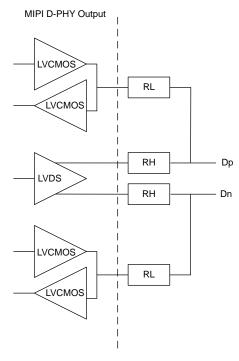
Symbol	Parameter	Condition	Max.	Units
I _{DK}	Input or I/O leakage Current	$0 < V_{IN} < V_{IH}$ (MAX)	+/-1000	μΑ

1. Insensitive to sequence of V_{CC} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCIO} .

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCIO} < V_{CCIO}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

ESD Performance


Please refer to the MachXO2 Product Family Qualification Summary for complete qualification data, including ESD performance.

	Description	Min.	Тур.	Max.	Units
Low Power					
VCCIO	VCCIO of the Bank with LVCMOS12D 6 mA drive bidirectional IO buffer		1.2		V
VIH	Logic 1 input voltage	—	_	0.88	V
VIL	Logic 0 input voltage, not in ULP State	0.55	_	_	V
VHYST	Input hysteresis	25	—	—	mV

1. Over Recommended Operating Conditions

Figure 3-5. MIPI D-PHY Output Using External Resistors

Maximum sysIO Buffer Performance

I/O Standard	Max. Speed	Units
MIPI	450	MHz
LVDS25	400	MHz
LVDS25E	150	MHz
BLVDS25	150	MHz
BLVDS25E	150	MHz
MLVDS25	150	MHz
MLVDS25E	150	MHz
LVPECL33	150	MHz
LVPECL33E	150	MHz
LVTTL33	150	MHz
LVTTL33D	150	MHz
LVCMOS33	150	MHz
LVCMOS33D	150	MHz
LVCMOS25	150	MHz
LVCMOS25D	150	MHz
LVCMOS18	150	MHz
LVCMOS18D	150	MHz
LVCMOS15	150	MHz
LVCMOS15D	150	MHz
LVCMOS12	91	MHz
LVCMOS12D	91	MHz

MachXO3L/LF External Switching Characteristics – C/E Devices^{1, 2, 3, 4, 5, 6, 10}

			_	6	-	5		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units	
Clocks		I						
Primary Clo	ocks							
f _{MAX_PRI} ⁷	Frequency for Primary Clock Tree	All MachXO3L/LF devices		388	—	323	MHz	
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO3L/LF devices	0.5	_	0.6		ns	
		MachXO3L/LF-1300	_	867	—	897	ps	
		MachXO3L/LF-2100		867	_	897	ps	
t _{SKEW_PRI}	Primary Clock Skew Within a Device	MachXO3L/LF-4300	_	865	—	892	ps	
0.12.1		MachXO3L/LF-6900		902	_	942	ps	
		MachXO3L/LF-9400	_	908	_	950	ps	
Edge Clock								
f _{MAX_EDGE} ⁷	Frequency for Edge Clock	MachXO3L/LF	_	400	_	333	MHz	
_	n Propagation Delay							
t _{PD}	Best case propagation delay through one LUT-4	All MachXO3L/LF devices	_	6.72	_	6.96	ns	
General I/O	Pin Parameters (Using Primary Clock with	out PLL)		I			I	
		MachXO3L/LF-1300	—	7.46	_	7.66	ns	
	Clock to Output - PIO Output Register	MachXO3L/LF-2100	_	7.46	—	7.66	ns	
t _{CO}		MachXO3L/LF-4300	_	7.51	_	7.71	ns	
		MachXO3L/LF-6900	_	7.54	_	7.75	ns	
		MachXO3L/LF-9400	_	7.53	_	7.83	ns	
		MachXO3L/LF-1300	-0.20	_	-0.20	_	ns	
		MachXO3L/LF-2100	-0.20		-0.20	—	ns	
t _{SU}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	-0.23		-0.23	—	ns	
		MachXO3L/LF-6900	-0.23		-0.23	_	ns	
		MachXO3L/LF-9400	-0.24		-0.24	_	ns	
		MachXO3L/LF-1300	1.89		2.13	_	ns	
		MachXO3L/LF-2100	1.89		2.13		ns	
t _H	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	1.94		2.18		ns	
		MachXO3L/LF-6900	1.98		2.23	_	ns	
		MachXO3L/LF-9400	1.99		2.24		ns	
		MachXO3L/LF-1300	1.61		1.76		ns	
		MachXO3L/LF-2100	1.61		1.76		ns	
t _{SU_DEL}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	1.66		1.81		ns	
JU_DLL	with Data Input Delay	MachXO3L/LF-6900	1.53		1.67		ns	
		MachXO3L/LF-9400	1.65		1.80		ns	
		MachXO3L/LF-1300	-0.23		-0.23		ns	
		MachXO3L/LF-2100	-0.23		-0.23		ns	
t _{H_DEL}	Clock to Data Hold - PIO Input Register with	MachXO3L/LF-4300	-0.25	_	-0.25		ns	
ILUEL	Input Data Delay	MachXO3L/LF-6900	-0.21	_	-0.21		ns	
		MachXO3L/LF-9400	-0.24		-0.24		ns	
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO3L/LF devices		388		323	MHz	

Over Recommended Operating Conditions

			-	-6	-5		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
Generic DDF	RX1 Inputs with Clock and Data Aligned at	Pin Using PCLK Pin for Cl	ock Inpu	it —			
GDDRX1_RX	K.SCLK.Aligned ^{8, 9}	-	-				
t _{DVA}	Input Data Valid After CLK			0.317	—	0.344	UI
t _{DVE}	Input Data Hold After CLK	All MachXO3L/LF devices,	0.742	—	0.702		UI
f _{DATA}	DDRX1 Input Data Speed	all sides	—	300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		—	150	—	125	MHz
Generic DD GDDRX1_R	RX1 Inputs with Clock and Data Centered X.SCLK.Centered ^{8, 9}	d at Pin Using PCLK Pin fo	or Clock	Input –			
t _{SU}	Input Data Setup Before CLK		0.566	—	0.560		ns
t _{HO}	Input Data Hold After CLK	All MachXO3L/LF	0.778	—	0.879	—	ns
f _{DATA}	DDRX1 Input Data Speed	devices, all sides		300	—		Mbps
f _{DDRX1}	DDRX1 SCLK Frequency			150	—	125	MHz
	RX2 Inputs with Clock and Data Aligned a K.ECLK.Aligned ^{8,9}	t Pin Using PCLK Pin for C	Clock Inp	out –	1	ı	
t _{DVA}	Input Data Valid After CLK		—	0.316	—	0.342	UI
t _{DVE}	Input Data Hold After CLK	_	0.710		0.675		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO3L/LF devices,		664		554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	_bottom side only		332	_	277	MHz
f _{SCLK}	SCLK Frequency	_		166		139	MHz
	RX2 Inputs with Clock and Data Centered	at Pin Using PCLK Pin for	Clock II	nput –			ł
	K.ECLK.Centered ^{8,9}	Ū		•			
t _{SU}	Input Data Setup Before CLK		0.233	—	0.219		ns
t _{HO}	Input Data Hold After CLK		0.287	—	0.287		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO3L/LF devices,		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	,		332	—	277	MHz
f _{SCLK}	SCLK Frequency			166	—	139	MHz
Generic DDF	R4 Inputs with Clock and Data Aligned at F	in Using PCLK Pin for Cloo	k Input	– GDDR	X4_RX.	ECLK.A	ligned ⁸
t _{DVA}	Input Data Valid After ECLK			0.307	—	0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.782		0.699		UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO3L/LF devices, bottom side only	—	800	—	630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency			400	—	315	MHz
f _{SCLK}	SCLK Frequency			100	—	79	MHz
Generic DDF	4 Inputs with Clock and Data Centered at I	Pin Using PCLK Pin for Cloo	k Input	- GDDR	X4_RX.E	CLK.Ce	ntered ⁸
t _{SU}	Input Data Setup Before ECLK		0.233		0.219		ns
t _{HO}	Input Data Hold After ECLK		0.287	—	0.287		ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO3L/LF devices, bottom side only		800	—	630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency			400	—	315	MHz
f _{SCLK}	SCLK Frequency		_	100	—	79	MHz
7:1 LVDS Inp	outs (GDDR71_RX.ECLK.7:1) ⁹		1	1	1	1	L
t _{DVA}	Input Data Valid After ECLK		_	0.290		0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.739		0.699		UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO3L/LF devices,	—	756	—	630	Mbps
f _{DDR71}	DDR71 ECLK Frequency	bottom side only	<u> </u>	378	 	315	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (mini- mum limited by PLL)		_	108	_	90	MHz

			-6		-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
MIPI D-PHY	Inputs with Clock and Data Centered at P	in Using PCLK Pin for Cloo	k Input	-			1
	X.ECLK.Centered ^{10, 11, 12}		1	I	I		I
t _{SU} ¹⁵	Input Data Setup Before ECLK		0.200	—	0.200		UI
t _{HO} ¹⁵	Input Data Hold After ECLK	All MachXO3L/LF	0.200	—	0.200	—	UI
f _{DATA} ¹⁴	MIPI D-PHY Input Data Speed	devices, bottom side only		900	—	900	Mbps
f _{DDRX4} ¹⁴	MIPI D-PHY ECLK Frequency			450	—	450	MHz
f _{SCLK} ¹⁴	SCLK Frequency			112.5	—	112.5	MHz
Generic DDI	R Outputs with Clock and Data Aligned at I	Pin Using PCLK Pin for Clo	ck Input	– GDDF	RX1_TX.	SCLK.A	ligned ⁸
t _{DIA}	Output Data Invalid After CLK Output			0.520	—	0.550	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO3L/LF devices.		0.520	—	0.550	ns
f _{DATA}	DDRX1 Output Data Speed	all sides	—	300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK frequency			150	—	125	MHz
	R Outputs with Clock and Data Centered at	Pin Using PCLK Pin for Cloo	k Input	– GDDR	X1_TX.9	SCLK.Ce	entered ⁸
t _{DVB}	Output Data Valid Before CLK Output		1.210		1.510		ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO3L/LF	1.210		1.510		ns
f _{DATA}	DDRX1 Output Data Speed	devices,		300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)	all sides	_	150	—	125	MHz
Generic DDF	RX2 Outputs with Clock and Data Aligned a	t Pin Using PCLK Pin for Clo	ock Inpu	t – GDD	RX2_TX	.ECLK.A	\ligned ⁸
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	—	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output			0.200	—	0.215	ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices,		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK frequency	top side only		332	_	277	MHz
f _{SCLK}	SCLK Frequency			166	_	139	MHz
	RX2 Outputs with Clock and Data Centere	ed at Pin Using PCLK Pin fo	or Clock	Input –			<u> </u>
	K.ECLK.Centered ^{8, 9}	0		•			
t _{DVB}	Output Data Valid Before CLK Output		0.535		0.670	_	ns
t _{DVA}	Output Data Valid After CLK Output		0.535	—	0.670		ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices,		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency (minimum limited by PLL)	top side only	_	332	_	277	MHz
f _{SCLK}	SCLK Frequency			166	—	139	MHz
Generic DD	L RX4 Outputs with Clock and Data Aligned K.ECLK.Aligned ^{8, 9}	at Pin Using PCLK Pin for	Clock I	nput –	1		L
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	—	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output	-		0.200		0.215	ns
f _{DATA}	DDRX4 Serial Output Data Speed	MachXO3L/LF devices,		800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	top side only		400		315	MHz
f _{SCLK}	SCLK Frequency	-		100		79	MHz
SOLK							

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Max.	Units	
: IN	Input Clock Frequency (CLKI, CLKFB)		7	400	MHz	
OUT	Output Clock Frequency (CLKOP, CLKOS, CLKOS2)		1.5625	400	MHz	
OUT2	Output Frequency (CLKOS3 cascaded from CLKOS2)		0.0122	400	MHz	
fvco	PLL VCO Frequency		200	800	MHz	
PFD	Phase Detector Input Frequency		7	400	MHz	
AC Characteri	istics	•				
^t dt	Output Clock Duty Cycle	Without duty trim selected ³	45	55	%	
DT_TRIM ⁷	Edge Duty Trim Accuracy		-75	75	%	
t _{PH} ⁴	Output Phase Accuracy		-6	6	%	
	Outrout Clask Daviad Littar	f _{OUT} > 100 MHz	—	150	ps p-p	
t _{opjit} 1,8	Output Clock Period Jitter	f _{OUT} < 100 MHz	—	0.007	UIPP	
	Output Cleak Cycle to avala littar	f _{OUT} > 100 MHz	—	180	ps p-p	
	Output Clock Cycle-to-cycle Jitter	f _{OUT} < 100 MHz	—	0.009	UIPP	
	Output Clock Phase litter	f _{PFD} > 100 MHz	—	160	ps p-p	
	Output Clock Phase Jitter	f _{PFD} < 100 MHz	—	0.011	UIPP	
	Output Clock Pariod littar (Eractional N)	f _{OUT} > 100 MHz	—	230	ps p-p	
	Output Clock Period Jitter (Fractional-N)	f _{OUT} < 100 MHz	_	0.12	UIPP	
	Output Clock Cycle-to-cycle Jitter	f _{OUT} > 100 MHz	—	230	ps p-p	
	(Fractional-N)	f _{OUT} < 100 MHz		0.12	UIPP	
t _{SPO}	Static Phase Offset	Divider ratio = integer	-120	120	ps	
tw	Output Clock Pulse Width	At 90% or 10% ³	0.9	_	ns	
LOCK ^{2, 5}	PLL Lock-in Time			15	ms	
UNLOCK	PLL Unlock Time			50	ns	
	Innut Clask Davied Litter	f _{PFD} ≥ 20 MHz	—	1,000	ps p-p	
^t IPJIT ⁶	Input Clock Period Jitter	f _{PFD} < 20 MHz	—	0.02	UIPP	
thi	Input Clock High Time	90% to 90%	0.5	—	ns	
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns	
STABLE ⁵	STANDBY High to PLL Stable		—	15	ms	
RST	RST/RESETM Pulse Width		1	—	ns	
RSTREC	RST Recovery Time		1	—	ns	
RST_DIV	RESETC/D Pulse Width		10	—	ns	
t _{RSTREC_DIV}	RESETC/D Recovery Time		1	_	ns	
ROTATE-SETUP	PHASESTEP Setup Time		10		ns	
t _{ROTATE_WD}	PHASESTEP Pulse Width		4		VCO Cycles	

Over Recommended Operating Conditions

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency. See TN1282, MachXO3 sysCLOCK PLL Design and Usage Guide for more details.

5. At minimum $\rm f_{PFD}$ As the $\rm f_{PFD}$ increases the time will decrease to approximately 60% the value listed.

6. Maximum allowed jitter on an input clock. PLL unlock may occur if the input jitter exceeds this specification. Jitter on the input clock may be transferred to the output clocks, resulting in jitter measurements outside the output specifications listed in this table.

7. Edge Duty Trim Accuracy is a percentage of the setting value. Settings available are 70 ps, 140 ps, and 280 ps in addition to the default value of none.

8. Jitter values measured with the internal oscillator operating. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

sysCONFIG Port Timing Specifications

Symbol	Parameter		Min.	Max.	Units
All Configuration Mo	odes				
t _{PRGM}	PROGRAMN low pul	se accept	55	—	ns
t _{PRGMJ}	PROGRAMN low pul	se rejection	—	25	ns
t _{INITL}	INITN low time	INITN low time LCMXO3L/LF-640/ LCMXO3L/LF-1300		55	us
		LCMXO3L/LF-1300 256-Ball Package/ LCMXO3L/LF-2100	_	70	us
		LCMXO3L/LF-2100 324-Ball Package/ LCMXO3-4300	_	105	us
		LCMXO3L/LF-4300 400-Ball Package/ LCMXO3-6900	_	130	us
		LCMXO3L/LF-9400C	_	175	us
t _{DPPINIT}	PROGRAMN low to	PROGRAMN low to INITN low			ns
t _{DPPDONE}	PROGRAMN low to I	DONE low	_	150	ns
t _{IODISS}	PROGRAMN low to	I/O disable	—	120	ns
Slave SPI	·				
f _{MAX}	CCLK clock frequence	CCLK clock frequency		66	MHz
t _{CCLKH}	CCLK clock pulse wi	dth high	7.5	—	ns
t _{CCLKL}	CCLK clock pulse wi	dth low	7.5	—	ns
t _{STSU}	CCLK setup time		2	—	ns
t _{STH}	CCLK hold time		0	—	ns
t _{STCO}	CCLK falling edge to	valid output	—	10	ns
t _{STOZ}	CCLK falling edge to	valid disable	_	10	ns
t _{STOV}	CCLK falling edge to	valid enable	_	10	ns
t _{SCS}	Chip select high time)	25	—	ns
t _{SCSS}	Chip select setup tim	e	3	—	ns
t _{SCSH}	Chip select hold time)	3	—	ns
Master SPI					
f _{MAX}	MCLK clock frequence	су		133	MHz
t _{MCLKH}	MCLK clock pulse wi	MCLK clock pulse width high		—	ns
t _{MCLKL}	MCLK clock pulse wi	MCLK clock pulse width low		—	ns
t _{STSU}	MCLK setup time		5	—	ns
t _{STH}	MCLK hold time		1	—	ns
t _{CSSPI}	INITN high to chip se	elect low	100	200	ns
t _{MCLK}	INITN high to first MO	CLK edge	0.75	1	us

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions
Configuration (Dual fu	inction p	ins used during sysCONFIG)
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up.
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the start-up sequence is in progress.
MCLK/CCLK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes.
SN	I	Slave SPI active low chip select input.
CSSPIN	I/O	Master SPI active low chip select output.
SI/SPISI	I/O	Slave SPI serial data input and master SPI serial data output.
SO/SPISO	I/O	Slave SPI serial data output and master SPI serial data input.
SCL	I/O	Slave I ² C clock input and master I ² C clock output.
SDA	I/O	Slave I ² C data input and master I ² C data output.

	MachXO3L/LF-9400C						
	CSFBGA256	CABGA256	CABGA400	CABGA484			
General Purpose IO per Bank		•		•			
Bank 0	50	50	83	95			
Bank 1	52	52	84	96			
Bank 2	52	52	84	96			
Bank 3	16	16	28	36			
Bank 4	16	16	24	24			
Bank 5	20	20	32	36			
Total General Purpose Single Ended IO	206	206	335	383			
Differential IO per Bank		•		•			
Bank 0	25	25	42	48			
Bank 1	26	26	42	48			
Bank 2	26	26	42	48			
Bank 3	8	8	14	18			
Bank 4	8	8	12	12			
Bank 5	10	10	16	18			
Total General Purpose Differential IO	103	103	168	192			
Dual Function IO	37	37	37	45			
Number 7:1 or 8:1 Gearboxes	•			•			
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	20	20	22	24			
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	20	20	22	24			
High-speed Differential Outputs	•			•			
Bank 0	20	20	21	24			
VCCIO Pins	•			•			
Bank 0	4	4	5	9			
Bank 1	3	4	5	9			
Bank 2	4	4	5	9			
Bank 3	2	1	2	3			
Bank 4	2	2	2	3			
Bank 5	2	1	2	3			
VCC	8	8	10	12			
GND	24	24	33	52			
NC	0	1	0	0			
Reserved for Configuration	1	1	1	1			
Total Count of Bonded Pins	256	256	400	484			

LCMXO3L-9400C-6BG4841

484

IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-6900E-5MG256C	6900	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-6MG256C	6900	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-5MG256I	6900	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-6MG256I	6900	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-5MG324C	6900	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-6MG324C	6900	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-5MG324I	6900	1.2 V	5	Halogen-Free csfBGA	324	IND
LCMXO3L-6900E-6MG324I	6900	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3L-6900C-5BG256C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-6BG256C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-5BG256I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-6BG256I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-5BG324C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-6BG324C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-5BG324I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-6BG324I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-5BG400C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-6BG400C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-5BG4001	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-6900C-6BG400I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	IND
			<u> </u>			-
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-9400E-5MG256C	9400	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-9400E-6MG256C	9400	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-9400E-5MG256I	9400	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-9400E-6MG256I	9400	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-9400C-5BG256C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-9400C-6BG256C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-9400C-5BG256I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-6BG256I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-5BG400C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-6BG400C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-5BG400I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-9400C-6BG400I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	IND
LCMXO3L-9400C-5BG484C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-6BG484C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-5BG484I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	IND

2.5 V/3.3 V

6

Halogen-Free caBGA

9400

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-6900E-5MG256C	6900	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3LF-6900E-6MG256C	6900	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-6900E-5MG256I	6900	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-6900E-6MG256I	6900	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-6900E-5MG324C	6900	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3LF-6900E-6MG324C	6900	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3LF-6900E-5MG324I	6900	1.2 V	5	Halogen-Free csfBGA	324	IND
LCMXO3LF-6900E-6MG324I	6900	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3LF-6900C-5BG256C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3LF-6900C-6BG256C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3LF-6900C-5BG256I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3LF-6900C-6BG256I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3LF-6900C-5BG324C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3LF-6900C-6BG324C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	COM
LCMXO3LF-6900C-5BG324I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3LF-6900C-6BG324I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
LCMXO3LF-6900C-5BG400C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3LF-6900C-6BG400C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3LF-6900C-5BG400I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3LF-6900C-6BG400I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	IND
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-9400E-5MG256C	9400	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3LF-9400E-6MG256C	9400	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-9400E-5MG256I	9400	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-9400E-6MG256I	9400	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-9400C-5BG256C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3LF-9400C-6BG256C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3LF-9400C-5BG256I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3LF-9400C-6BG256I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3LF-9400C-5BG400C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3LF-9400C-6BG400C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3LF-9400C-5BG400I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3LF-9400C-6BG400I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	IND
LCMXO3LF-9400C-5BG484C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	COM
LCMXO3LF-9400C-6BG484C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	484	COM
LCMXO3LF-9400C-5BG484I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	IND
LCMXO3LF-9400C-6BG484I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	484	IND