
E ·) (Fattice Semiconductor Corporation - LCMXO3LF-6900E-5MG324I Datasheet

Welcome to E-XFL.COM

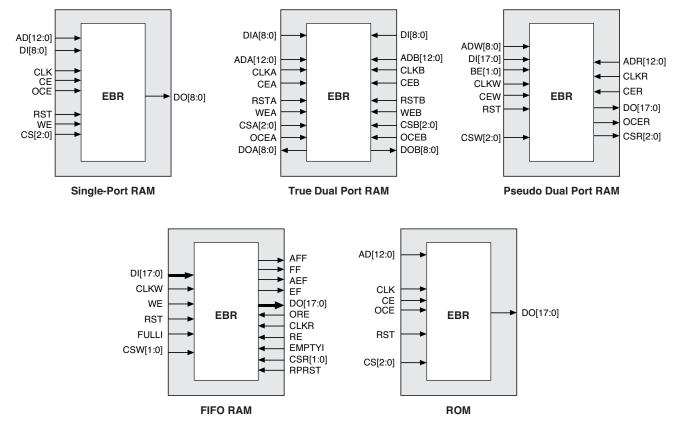
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

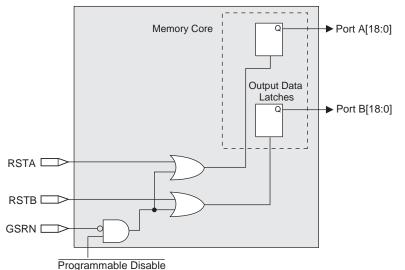
Details


Product Status	Active
Number of LABs/CLBs	858
Number of Logic Elements/Cells	6864
Total RAM Bits	245760
Number of I/O	281
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	324-VFBGA
Supplier Device Package	324-CSFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3lf-6900e-5mg324i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-8. sysMEM Memory Primitives



state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

Figure 2-9. Memory Core Reset

For further information on the sysMEM EBR block, please refer to TN1290, Memory Usage Guide for MachXO3 Devices.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous.

Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock	

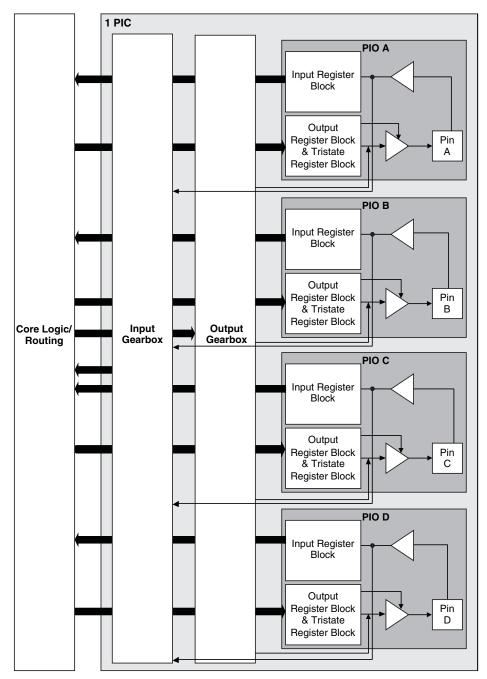
If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device wake up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-10. The reset timing rules apply to the RPReset input versus the RE input and the RST input versus the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For more details refer to TN1290, Memory Usage Guide for MachXO3 Devices.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Programmable I/O Cells (PIC)


The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO3L/LF devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the MachXO3L/LF devices, two adjacent PIOs can be combined to provide a complementary output driver pair.

All PIO pairs can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these devices have on-chip differential termination and also provide PCI support.

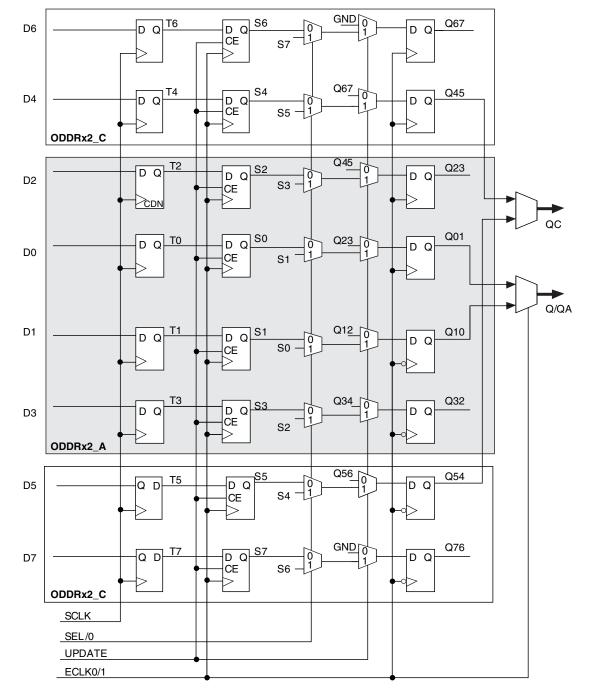


Figure 2-11. Group of Four Programmable I/O Cells

Figure 2-14. Output Gearbox

More information on the output gearbox is available in TN1281, Implementing High-Speed Interfaces with MachXO3 Devices.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS, TTL, PCI, LVDS, BLVDS, MLVDS and LVPECL.

Each bank is capable of supporting multiple I/O standards. In the MachXO3L/LF devices, single-ended output buffers, ratioed input buffers (LVTTL, LVCMOS and PCI), differential (LVDS) input buffers are powered using I/O supply voltage (V_{CCIO}). Each sysIO bank has its own V_{CCIO} .

MachXO3L/LF devices contain three types of sysIO buffer pairs.

1. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the left and right of the devices also have differential input buffers.

2. Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the bottom bank of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the bottom also have differential input buffers. Only the I/Os on the bottom banks have programmable PCI clamps and differential input termination. The PCI clamp is enabled after V_{CC} and V_{CCIO} are at valid operating levels and the device has been configured.

3. Top sysIO Buffer Pairs

The sysIO buffer pairs in the top bank of the device consist of two single-ended output drivers and two singleended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the top also have differential I/O buffers. Half of the sysIO buffer pairs on the top edge have true differential outputs. The sysIO buffer pair comprising of the A and B PIOs in every PIC on the top edge have a differential output driver.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCIO0} have reached V_{PORUP} level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pulldown to GND (some pins such as PROGRAMN and the JTAG pins have weak pull-up to V_{CCIO} as the default functionality). The I/O pins will maintain the blank configuration until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached V_{PORUP} levels at which time the I/Os will take on the user-configured settings only after a proper download/configuration.

There are various ways a user can ensure that there are no spurious signals on critical outputs as the device powers up. These are discussed in more detail in TN1280, MachXO3 sysIO Usage Guide.

Supported Standards

The MachXO3L/LF sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL, and PCI. The buffer supports the LVTTL, PCI, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS, MLVDS and LVPECL output emulation is supported on all devices. The MachXO3L/LF devices support on-chip LVDS output buffers on approximately 50% of the I/Os on the top bank. Differential receivers for LVDS, BLVDS, MLVDS and LVPECL are supported on all banks of MachXO3L/LF devices. PCI support is provided in the bottom bank of the MachXO3L/LF devices. Table 2-11 summarizes the I/O characteristics of the MachXO3L/LF PLDs.

Figure 2-18. PC Core Block Diagram

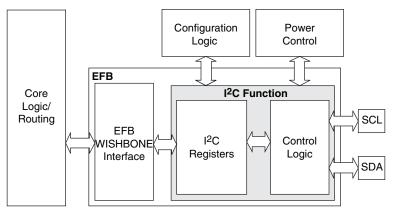


Table 2-14 describes the signals interfacing with the I²C cores.

 Table 2-14. PC Core Signal Description

Signal Name	I/O	Description
i2c_scl	Bi-directional	Bi-directional clock line of the I ² C core. The signal is an output if the I ² C core is in master mode. The signal is an input if the I ² C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO3L/LF device.
i2c_sda	Bi-directional	Bi-directional data line of the I ² C core. The signal is an output when data is transmitted from the I ² C core. The signal is an input when data is received into the I ² C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO3L/LF device.
i2c_irqo	Output	Interrupt request output signal of the I ² C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I ² C register definitions.
cfg_wake	Output	Wake-up signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.
cfg_stdby	Output	Stand-by signal – To be connected only to the power module of the MachXO3L/LF device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.

Hardened SPI IP Core

Every MachXO3L/LF device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO3L/LF devices supports the following functions:

- Configurable Master and Slave modes
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer
- Interface to custom logic through 8-bit WISHBONE interface

Configuration and Testing

This section describes the configuration and testing features of the MachXO3L/LF family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO3L/LF devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO3L/LF devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO3L/LF device:

- 1. Internal NVCM/Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1279, MachXO3 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO3L/ LF devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip NVCM/Flash, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip NVCM/Flash. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

TraceID

Each MachXO3L/LF device contains a unique (per device), TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the EFB WISHBONE interface and can also be accessed through the SPI, I²C, or JTAG interfaces.

Density Shifting

The MachXO3L/LF family has been designed to enable density migration within the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. When migrating from lower to higher density or higher to lower density, ensure to review all the power supplies and NC pins of the chosen devices. For more details refer to the MachXO3 migration files.

Power-On-Reset Voltage Levels^{1, 2, 3, 4, 5}

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{PORUP}	Power-On-Reset ramp up trip point (band gap based circuit monitoring V_{CCINT} and $V_{CCIO0})$	0.9	_	1.06	V
V _{PORUPEXT}	Power-On-Reset ramp up trip point (band gap based circuit monitoring external V_{CC} power supply)	1.5	_	2.1	V
V _{PORDNBG}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{\mbox{CCINT}})$	0.75	_	0.93	V
V _{PORDNBGEXT}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{CC})$	0.98	_	1.33	V
V _{PORDNSRAM}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CCINT})	_	0.6	_	V
VPORDNSRAMEXT	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CC})	_	0.96	_	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

2. For devices without voltage regulators V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage.

3. Note that V_{PORUP} (min.) and V_{PORDNBG} (max.) are in different process corners. For any given process corner V_{PORDNBG} (max.) is always 12.0 mV below V_{PORUP} (min.).

4. V_{PORUPEXT} is for C devices only. In these devices a separate POR circuit monitors the external V_{CC} power supply.

5. V_{CCIO0} does not have a Power-On-Reset ramp down trip point. V_{CCIO0} must remain within the Recommended Operating Conditions to ensure proper operation.

Hot Socketing Specifications^{1, 2, 3}

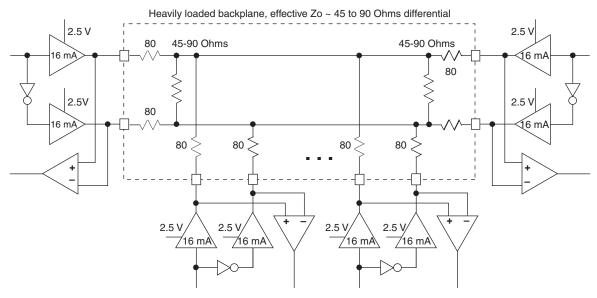
Symbol	Parameter	Condition	Max.	Units
I _{DK}	Input or I/O leakage Current	$0 < V_{IN} < V_{IH}$ (MAX)	+/-1000	μΑ

1. Insensitive to sequence of V_{CC} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCIO} .

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCIO} < V_{CCIO}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

ESD Performance


Please refer to the MachXO2 Product Family Qualification Summary for complete qualification data, including ESD performance.

BLVDS

The MachXO3L/LF family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

Over Recommended	Operating	Conditions
	oporating	00110110110

	Nominal			
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	20	20	Ohms
R _S	Driver series resistance	80	80	Ohms
R _{TLEFT}	Left end termination	45	90	Ohms
R _{TRIGHT}	Right end termination	45	90	Ohms
V _{OH}	Output high voltage	1.376	1.480	V
V _{OL}	Output low voltage	1.124	1.020	V
V _{OD}	Output differential voltage	0.253	0.459	V
V _{CM}	Output common mode voltage	1.250	1.250	V
I _{DC}	DC output current	11.236	10.204	mA

1. For input buffer, see LVDS table.

Typical Building Block Function Performance – C/E Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	–6 Timing	Units
Basic Functions		
16-bit decoder	8.9	ns
4:1 MUX	7.5	ns
16:1 MUX	8.3	ns

Register-to-Register Performance

Function	–6 Timing	Units
Basic Functions		
16:1 MUX	412	MHz
16-bit adder	297	MHz
16-bit counter	324	MHz
64-bit counter	161	MHz
Embedded Memory Functions		
1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers)	183	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (one PFU)	500	MHz

 The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

DC and Switching Characteristics MachXO3 Family Data Sheet

		-6		6	_	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Edge Clock without	t PLL)			1		1
		MachXO3L/LF-1300	—	7.53	—	7.76	ns
		MachXO3L/LF-2100	—	7.53	—	7.76	ns
t _{COE}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	7.45		7.68	ns
		MachXO3L/LF-6900	—	7.53		7.76	ns
		MachXO3L/LF-9400	—	8.93	—	9.35	ns
		MachXO3L/LF-1300	-0.19		-0.19	_	ns
		MachXO3L/LF-2100	-0.19		-0.19	_	ns
t _{SUE}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	-0.16	_	-0.16	_	ns
		MachXO3L/LF-6900	-0.19		-0.19	_	ns
		MachXO3L/LF-9400	-0.20	_	-0.20	_	ns
		MachXO3L/LF-1300	1.97	_	2.24	_	ns
		MachXO3L/LF-2100	1.97		2.24	_	ns
t _{HE}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	1.89		2.16	_	ns
		MachXO3L/LF-6900	1.97	_	2.24	_	ns
		MachXO3L/LF-9400	1.98		2.25	_	ns
		MachXO3L/LF-1300	1.56		1.69	_	ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	MachXO3L/LF-2100	1.56		1.69		ns
t _{SU_DELE}		MachXO3L/LF-4300	1.74	_	1.88	_	ns
_		MachXO3L/LF-6900	1.66	_	1.81	_	ns
		MachXO3L/LF-9400	1.71		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns	
		MachXO3L/LF-1300	-0.23	_	-0.23	_	ns
		MachXO3L/LF-2100	-0.23		-0.23		ns
t _{H_DELE}	Clock to Data Hold - PIO Input Register with Input Data Delay	MachXO3L/LF-4300	-0.34		-0.34		ns
	input bata bolay	MachXO3L/LF-6900	-0.29		-0.29		ns
		MachXO3L/LF-9400	-0.30		-0.30		ns
General I/O	Pin Parameters (Using Primary Clock with	PLL)					
		MachXO3L/LF-1300	—	5.98		6.01	ns
		MachXO3L/LF-2100	—	5.98	_	6.01	ns
t _{COPLL}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	5.99	—	6.02	ns
		MachXO3L/LF-6900	—	6.02	_	6.06	ns
		MachXO3L/LF-9400	—	5.55	_	6.13	ns
		MachXO3L/LF-1300	0.36	_	0.36	—	ns
		MachXO3L/LF-2100	0.36	_	0.36	_	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	0.35		0.35		ns
		MachXO3L/LF-6900	0.34	—	0.34	—	ns
		MachXO3L/LF-9400	0.33		0.33		ns
		MachXO3L/LF-1300	0.42		0.49		ns
		MachXO3L/LF-2100	0.42	—	0.49	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	0.43	—	0.50	_	ns
		MachXO3L/LF-6900	0.46		0.54		ns
		MachXO3L/LF-9400	0.47	—	0.55	—	ns

Figure 3-6. Receiver GDDR71_RX. Waveforms

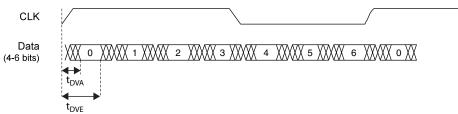
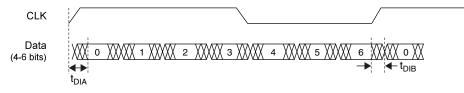



Figure 3-7. Transmitter GDDR71_TX. Waveforms

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Max.	Units
: IN	Input Clock Frequency (CLKI, CLKFB)		7	400	MHz
OUT	Output Clock Frequency (CLKOP, CLKOS, CLKOS2)		1.5625	400	MHz
OUT2	Output Frequency (CLKOS3 cascaded from CLKOS2)		0.0122	400	MHz
fvco	PLL VCO Frequency		200	800	MHz
PFD	Phase Detector Input Frequency		7	400	MHz
AC Characteri	istics	•			
^t dt	Output Clock Duty Cycle	Without duty trim selected ³	45	55	%
DT_TRIM ⁷	Edge Duty Trim Accuracy		-75	75	%
t _{PH} ⁴	Output Phase Accuracy		-6	6	%
	Outrast Clask Daviad Littar	f _{OUT} > 100 MHz	—	150	ps p-p
	Output Clock Period Jitter	f _{OUT} < 100 MHz	—	0.007	UIPP
	Output Clask Cycle to sycle litter	f _{OUT} > 100 MHz	—	180	ps p-p
	Output Clock Cycle-to-cycle Jitter	f _{OUT} < 100 MHz	—	0.009	UIPP
1.8		f _{PFD} > 100 MHz	—	160	ps p-p
OPJIT ^{1, 8}	Output Clock Phase Jitter	f _{PFD} < 100 MHz	—	0.011	UIPP
	Outrast Clask Daviad Litter (Frantianal N)	f _{OUT} > 100 MHz	—	230	ps p-p
	Output Clock Period Jitter (Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
	Output Clock Cycle-to-cycle Jitter	f _{OUT} > 100 MHz	—	230	ps p-p
	(Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
t _{SPO}	Static Phase Offset	Divider ratio = integer	-120	120	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	0.9		ns
LOCK ^{2, 5}	PLL Lock-in Time		—	15	ms
UNLOCK	PLL Unlock Time		—	50	ns
	Innut Clask Davied Litter	f _{PFD} ≥ 20 MHz	—	1,000	ps p-p
^t IPJIT ⁶	Input Clock Period Jitter	f _{PFD} < 20 MHz	—	0.02	UIPP
thi	Input Clock High Time	90% to 90%	0.5	—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns
STABLE ⁵	STANDBY High to PLL Stable		—	15	ms
RST	RST/RESETM Pulse Width		1	—	ns
RSTREC	RST Recovery Time		1	—	ns
RST_DIV	RESETC/D Pulse Width		10	—	ns
t _{RSTREC_DIV}	RESETC/D Recovery Time		1	_	ns
ROTATE-SETUP	PHASESTEP Setup Time		10		ns
t _{ROTATE_WD}	PHASESTEP Pulse Width		4	_	VCO Cycles

Over Recommended Operating Conditions

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency. See TN1282, MachXO3 sysCLOCK PLL Design and Usage Guide for more details.

5. At minimum $\rm f_{PFD}$ As the $\rm f_{PFD}$ increases the time will decrease to approximately 60% the value listed.

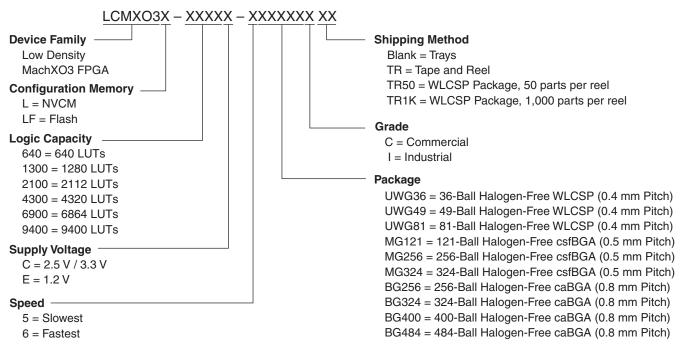
6. Maximum allowed jitter on an input clock. PLL unlock may occur if the input jitter exceeds this specification. Jitter on the input clock may be transferred to the output clocks, resulting in jitter measurements outside the output specifications listed in this table.

7. Edge Duty Trim Accuracy is a percentage of the setting value. Settings available are 70 ps, 140 ps, and 280 ps in addition to the default value of none.

8. Jitter values measured with the internal oscillator operating. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

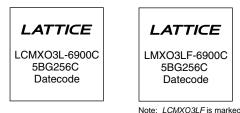
	MachXO3L/LF-2100						
	WLCSP49	CSFBGA121	CSFBGA256	CSFBGA324	CABGA256	CABGA324	
General Purpose IO per Bank	1						
Bank 0	19	24	50	71	50	71	
Bank 1	0	26	52	62	52	68	
Bank 2	13	26	52	72	52	72	
Bank 3	0	7	16	22	16	24	
Bank 4	0	7	16	14	16	16	
Bank 5	6	10	20	27	20	28	
Total General Purpose Single Ended IO	38	100	206	268	206	279	
Differential IO per Bank	1						
Bank 0	10	12	25	36	25	36	
Bank 1	0	13	26	30	26	34	
Bank 2	6	13	26	36	26	36	
Bank 3	0	3	8	10	8	12	
Bank 4	0	3	8	6	8	8	
Bank 5	3	5	10	13	10	14	
Total General Purpose Differential IO	19	49	103	131	103	140	
Dual Function IO	25	33	33	37	33	37	
Number 7:1 or 8:1 Gearboxes	•			•	•	•	
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	5	7	14	18	14	18	
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	6	13	14	18	14	18	
High-speed Differential Outputs	•			•	•	•	
Bank 0	5	7	14	18	14	18	
VCCIO Pins	1						
Bank 0	2	1	4	4	4	4	
Bank 1	0	1	3	4	4	4	
Bank 2	1	1	4	4	4	4	
Bank 3	0	1	2	2	1	2	
Bank 4	0	1	2	2	2	2	
Bank 5	1	1	2	2	1	2	
VCC	2	4	8	8	8	10	
GND	4	10	24	16	24	16	
NC	0	0	0	13	1	0	
Reserved for Configuration	1	1	1	1	1	1	
Total Count of Bonded Pins	49	121	256	324	256	324	

	MachXO3L/LF-9400C				
	CSFBGA256	CABGA256	CABGA400	CABGA484	
General Purpose IO per Bank		•		•	
Bank 0	50	50	83	95	
Bank 1	52	52	84	96	
Bank 2	52	52	84	96	
Bank 3	16	16	28	36	
Bank 4	16	16	24	24	
Bank 5	20	20	32	36	
Total General Purpose Single Ended IO	206	206	335	383	
Differential IO per Bank		•		•	
Bank 0	25	25	42	48	
Bank 1	26	26	42	48	
Bank 2	26	26	42	48	
Bank 3	8	8	14	18	
Bank 4	8	8	12	12	
Bank 5	10	10	16	18	
Total General Purpose Differential IO	103	103	168	192	
Dual Function IO	37	37	37	45	
Number 7:1 or 8:1 Gearboxes	•			•	
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	20	20	22	24	
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	20	20	22	24	
High-speed Differential Outputs	•			•	
Bank 0	20	20	21	24	
VCCIO Pins	•			•	
Bank 0	4	4	5	9	
Bank 1	3	4	5	9	
Bank 2	4	4	5	9	
Bank 3	2	1	2	3	
Bank 4	2	2	2	3	
Bank 5	2	1	2	3	
VCC	8	8	10	12	
GND	24	24	33	52	
NC	0	1	0	0	
Reserved for Configuration	1	1	1	1	
Total Count of Bonded Pins	256	256	400	484	



MachXO3 Family Data Sheet Ordering Information

May 2016


Advance Data Sheet DS1047

MachXO3 Part Number Description

Ordering Information

MachXO3L/LF devices have top-side markings as shown in the examples below, on the 256-Ball caBGA package with MachXO3-6900 device in Commercial Temperature in Speed Grade 5. Notice that for the MachXO3LF device, *LMXO3LF* is used instead of *LCMXO3LF* as in the Part Number.

with LMXO3LF

Note: Markings are abbreviated for small packages.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-640E-5MG121C	640	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3LF-640E-6MG121C	640	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3LF-640E-5MG121I	640	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3LF-640E-6MG121I	640	1.2 V	6	Halogen-Free csfBGA	121	IND
	•				•	
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-1300E-5UWG36CTR	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3LF-1300E-5UWG36CTR50	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3LF-1300E-5UWG36CTR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3LF-1300E-5UWG36ITR	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3LF-1300E-5UWG36ITR50	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3LF-1300E-5UWG36ITR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3LF-1300E-5MG121C	1300	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3LF-1300E-6MG121C	1300	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3LF-1300E-5MG121I	1300	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3LF-1300E-6MG121I	1300	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3LF-1300E-5MG256C	1300	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3LF-1300E-6MG256C	1300	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-1300E-5MG256I	1300	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-1300E-6MG256I	1300	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-1300C-5BG256C	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3LF-1300C-6BG256C	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3LF-1300C-5BG256I 13		2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3LF-1300C-6BG256I	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-2100E-5UWG49CTR	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3LF-2100E-5UWG49CTR50	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3LF-2100E-5UWG49CTR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3LF-2100E-5UWG49ITR	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3LF-2100E-5UWG49ITR50	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3LF-2100E-5UWG49ITR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3LF-2100E-5MG121C	2100	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3LF-2100E-6MG121C	2100	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3LF-2100E-5MG121I	2100	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3LF-2100E-6MG121I	2100	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3LF-2100E-5MG256C	2100	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3LF-2100E-6MG256C	2100	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-2100E-5MG256I	2100	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-2100E-6MG256I	2100	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-2100E-5MG324C	2100	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3LF-2100E-6MG324C 210		1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3LF-2100E-5MG324I	2100	1.2 V	5	Halogen-Free csfBGA	324	IND

Date	Version	Section	Change Summary
June 2014 1.0		—	Product name/trademark adjustment.
	Introduction	Updated Features section.	
			Updated Table 1-1, MachXO3L Family Selection Guide. Changed fcCSP packages to csfBGA. Adjusted 121-ball csfBGA arrow.
			Introduction section general update.
		Architecture	General update.
		DC and Switching Characteristics	Updated sysIO Recommended Operating Conditions section. Removed V _{REF} (V) column. Added standards.
			Updated Maximum sysIO Buffer Performance section. Added MIPI I/O standard.
			Updated MIPI D-PHY Emulation section. Changed Low Speed to Low Power. Updated Table 3-4, MIPI DC Conditions.
			Updated Table 3-5, MIPI D-PHY Output DC Conditions.
			Updated Maximum sysIO Buffer Performance section.
			Updated MachXO3L External Switching Characteristics – C/E Device section.
May 2014	00.3	Introduction	Updated Features section.
			Updated Table 1-1, MachXO3L Family Selection Guide. Moved 121-ball fcCSP arrow.
			General update of Introduction section.
		Architecture	General update.
	Pinout Information	Updated Pin Information Summary section. Updated or added data on WLCSP49, WLCSP81, CABGA324, and CABGA400 for specific devices.	
		Ordering Information	Updated MachXO3L Part Number Description section. Updated or added data on WLCSP49, WLCSP81, CABGA324, and CABGA400 for specific devices.
			Updated Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added part numbers.
February 2014	00.2	DC and Switching Characteristics	Updated MachXO3L External Switching Characteristics – C/E Devices table. Removed LPDDR and DDR2 parameters.
	00.1		Initial release.