E · Clattile Semiconductor Corporation - LCMX03LF-9400C-5BG484C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1175
Number of Logic Elements/Cells	9400
Total RAM Bits	442368
Number of I/O	384
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-LFBGA
Supplier Device Package	484-CABGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3lf-9400c-5bg484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family.

The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E are functionally compatible with each other.

The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The MachXO3L/LF devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis.

A user-programmable internal oscillator is included in MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines.

The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE[™] modules, including a number of reference designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

PIO

The PIO contains three blocks: an input register block, output register block and tri-state register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

Table	2-8.	ΡΙΟ	Signal	List
			e.ga.	

Pin Name	I/О Туре	Description
CE	Input	Clock Enable
D	Input	Pin input from sysIO buffer.
INDD	Output	Register bypassed input.
INCK	Output	Clock input
Q0	Output	DDR positive edge input
Q1	Output	Registered input/DDR negative edge input
D0	Input	Output signal from the core (SDR and DDR)
D1	Input	Output signal from the core (DDR)
TD	Input	Tri-state signal from the core
Q	Output	Data output signals to sysIO Buffer
TQ	Output	Tri-state output signals to sysIO Buffer
SCLK	Input	System clock for input and output/tri-state blocks.
RST	Input	Local set reset signal

Input Register Block

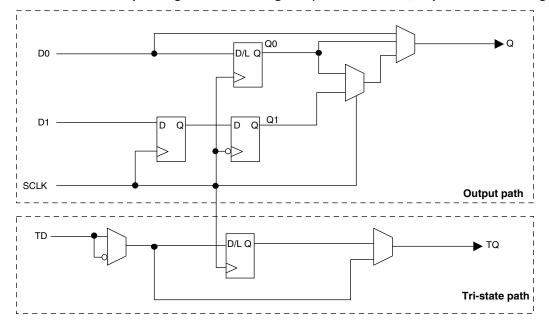
The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core.

Left, Top, Bottom Edges

Input signals are fed from the sysIO buffer to the input register block (as signal D). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), and a clock (INCK). If an input delay is desired, users can select a fixed delay. I/Os on the bottom edge also have a dynamic delay, DEL[4:0]. The delay, if selected, reduces input register hold time requirements when using a global clock. The input block allows two modes of operation. In single data rate (SDR) the data is registered with the system clock (SCLK) by one of the registers in the single data rate sync register block. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock (SCLK) signal, creating two data streams.

Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysIO buffers.


Left, Top, Bottom Edges

In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch.

In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-12 shows the output register block on the left, top and bottom edges.

Figure 2-12. MachXO3L/LF Output Register Block Diagram (PIO on the Left, Top and Bottom Edges)

Tri-state Register Block

The tri-state register block registers tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation. In SDR, TD input feeds one of the flip-flops that then feeds the output.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS, TTL, PCI, LVDS, BLVDS, MLVDS and LVPECL.

Each bank is capable of supporting multiple I/O standards. In the MachXO3L/LF devices, single-ended output buffers, ratioed input buffers (LVTTL, LVCMOS and PCI), differential (LVDS) input buffers are powered using I/O supply voltage (V_{CCIO}). Each sysIO bank has its own V_{CCIO} .

MachXO3L/LF devices contain three types of sysIO buffer pairs.

1. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the left and right of the devices also have differential input buffers.

2. Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the bottom bank of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the bottom also have differential input buffers. Only the I/Os on the bottom banks have programmable PCI clamps and differential input termination. The PCI clamp is enabled after V_{CC} and V_{CCIO} are at valid operating levels and the device has been configured.

3. Top sysIO Buffer Pairs

The sysIO buffer pairs in the top bank of the device consist of two single-ended output drivers and two singleended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the top also have differential I/O buffers. Half of the sysIO buffer pairs on the top edge have true differential outputs. The sysIO buffer pair comprising of the A and B PIOs in every PIC on the top edge have a differential output driver.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCIO0} have reached V_{PORUP} level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pulldown to GND (some pins such as PROGRAMN and the JTAG pins have weak pull-up to V_{CCIO} as the default functionality). The I/O pins will maintain the blank configuration until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached V_{PORUP} levels at which time the I/Os will take on the user-configured settings only after a proper download/configuration.

There are various ways a user can ensure that there are no spurious signals on critical outputs as the device powers up. These are discussed in more detail in TN1280, MachXO3 sysIO Usage Guide.

Supported Standards

The MachXO3L/LF sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL, and PCI. The buffer supports the LVTTL, PCI, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS, MLVDS and LVPECL output emulation is supported on all devices. The MachXO3L/LF devices support on-chip LVDS output buffers on approximately 50% of the I/Os on the top bank. Differential receivers for LVDS, BLVDS, MLVDS and LVPECL are supported on all banks of MachXO3L/LF devices. PCI support is provided in the bottom bank of the MachXO3L/LF devices. Table 2-11 summarizes the I/O characteristics of the MachXO3L/LF PLDs.

Table 2-11 shows the I/O standards (together with their supply and reference voltages) supported by the MachXO3L/LF devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1280, MachXO3 sysIO Usage Guide.

Table 2-11. Supported Input Standards

		V	CCIO (Ty	p.)	
Input Standard	3.3 V	2.5 V	1.8 V	1.5 V	1.2 V
Single-Ended Interfaces					
LVTTL	Yes				
LVCMOS33	Yes				
LVCMOS25		Yes			
LVCMOS18			Yes		
LVCMOS15				Yes	
LVCMOS12					Yes
PCI	Yes				
Differential Interfaces		•			
LVDS	Yes	Yes			
BLVDS, MLVDS, LVPECL, RSDS	Yes	Yes			
MIPI ¹	Yes	Yes			
LVTTLD	Yes				
LVCMOS33D	Yes				
LVCMOS25D		Yes			
LVCMOS18D			Yes		

1. These interfaces can be emulated with external resistors in all devices.

Hardened Timer/Counter

MachXO3L/LF devices provide a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit timer/counter module with independent output compare units and PWM support. The Timer/Counter supports the following functions:

- Supports the following modes of operation:
 - Watchdog timer
 - Clear timer on compare match
 - Fast PWM
 - Phase and Frequency Correct PWM
- Programmable clock input source
- Programmable input clock prescaler
- One static interrupt output to routing
- One wake-up interrupt to on-chip standby mode controller.
- Three independent interrupt sources: overflow, output compare match, and input capture
- Auto reload
- Time-stamping support on the input capture unit
- Waveform generation on the output
- Glitch-free PWM waveform generation with variable PWM period
- Internal WISHBONE bus access to the control and status registers
- · Stand-alone mode with preloaded control registers and direct reset input

Figure 2-20. Timer/Counter Block Diagram

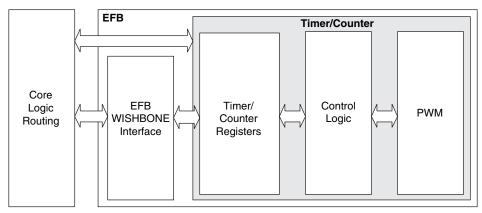
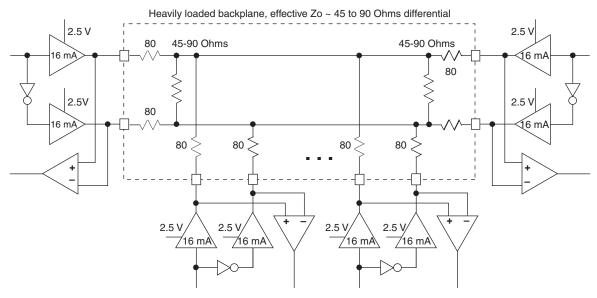


Table 2-16. Timer/Counter Signal Description


Port	I/O	Description
tc_clki	I	Timer/Counter input clock signal
tc_rstn	I	Register tc_rstn_ena is preloaded by configuration to always keep this pin enabled
tc_ic	I Input capture trigger event, applicable for non-pwm modes with WISHBONE interface enabled, a rising edge of this signal will be detected and synchronized to capture tc_o into tc_icr for time-stamping.	
tc_int	0	Without WISHBONE – Can be used as overflow flag With WISHBONE – Controlled by three IRQ registers
tc_oc	0	Timer counter output signal

BLVDS

The MachXO3L/LF family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

Over Recommended	Operating	Conditions
	oporating	00110110110

		Non		
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	20	20	Ohms
R _S	Driver series resistance	80	80	Ohms
R _{TLEFT}	Left end termination	45	90	Ohms
R _{TRIGHT}	Right end termination	45	90	Ohms
V _{OH}	Output high voltage	1.376	1.480	V
V _{OL}	Output low voltage	1.124	1.020	V
V _{OD}	Output differential voltage	0.253	0.459	V
V _{CM}	Output common mode voltage	1.250	1.250	V
I _{DC}	DC output current	11.236	10.204	mA

1. For input buffer, see LVDS table.

MIPI D-PHY Emulation

MachXO3L/LF devices can support MIPI D-PHY unidirectional HS (High Speed) and bidirectional LP (Low Power) inputs and outputs via emulation. In conjunction with external resistors High Speed IOs use the LVDS25E buffer and Low Power IOs use the LVCMOS buffers. The scheme shown in Figure 3-4 is one possible solution for MIPI D-PHY Receiver implementation. The scheme shown in Figure 3-5 is one possible solution for MIPI D-PHY Transmitter implementation.

Figure 3-4. MIPI D-PHY Input Using External Resistors

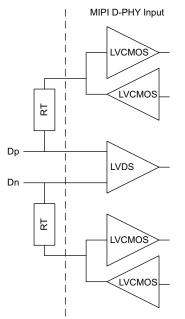
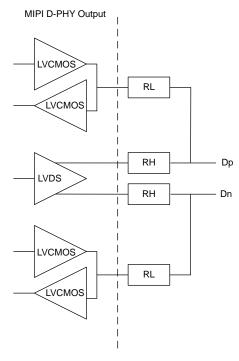


Table 3-4. MIPI DC Conditions¹


	Description	Min.	Тур.	Max.	Units
Receiver		1	1	1	
External Termi	nation				
RT	1% external resistor with VCCIO=2.5 V		50		Ohms
	1% external resistor with VCCIO=3.3 V		50	_	Ohms
High Speed					
VCCIO	VCCIO of the Bank with LVDS Emulated input buffer	iffer	V		
	VCCIO of the Bank with LVDS Emulated input buffer	—	3.3	—	V
VCMRX	Common-mode voltage HS receive mode	150	200	250	mV
VIDTH	Differential input high threshold			100	mV
VIDTL	Differential input low threshold	-100		—	mV
VIHHS	Single-ended input high voltage	_		300	mV
VILHS	Single-ended input low voltage	100		—	mV
ZID	Differential input impedance	80	100	120	Ohms

	Description	Min.	Тур.	Max.	Units
Low Power					
VCCIO	VCCIO of the Bank with LVCMOS12D 6 mA drive bidirectional IO buffer		1.2		V
VIH	Logic 1 input voltage	—	_	0.88	V
VIL	Logic 0 input voltage, not in ULP State	0.55	_	_	V
VHYST	Input hysteresis	25	—	—	mV

1. Over Recommended Operating Conditions

Figure 3-5. MIPI D-PHY Output Using External Resistors

			_	-6	_	-5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
	RX1 Inputs with Clock and Data Aligned at	Pin Using PCLK Pin for Cl	ock Inpu	it —			
	X.SCLK.Aligned ^{8,9}	J	•				
t _{DVA}	Input Data Valid After CLK		—	0.317		0.344	UI
t _{DVE}	Input Data Hold After CLK	All MachXO3L/LF devices,	0.742	—	0.702		UI
f _{DATA}	DDRX1 Input Data Speed	all sides	—	300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		—	150		125	MHz
Generic DD GDDRX1_R	RX1 Inputs with Clock and Data Centered X.SCLK.Centered ^{8, 9}	d at Pin Using PCLK Pin fo	or Clock	Input –			
t _{SU}	Input Data Setup Before CLK		0.566	—	0.560	—	ns
t _{HO}	Input Data Hold After CLK	All MachXO3L/LF devices,	0.778	—	0.879		ns
f _{DATA}	DDRX1 Input Data Speed	all sides	—	300	—		Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		—	150	—	125	MHz
	RX2 Inputs with Clock and Data Aligned a X.ECLK.Aligned ^{8, 9}	t Pin Using PCLK Pin for (Clock Inp	out –			
t _{DVA}	Input Data Valid After CLK			0.316		0.342	UI
t _{DVE}	Input Data Hold After CLK	-	0.710	_	0.675		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO3L/LF devices, bottom side only		664		554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency			332		277	MHz
f _{SCLK}	SCLK Frequency	-		166		139	MHz
Generic DD	RX2 Inputs with Clock and Data Centered X.ECLK.Centered ^{8,9}	at Pin Using PCLK Pin for	Clock I	nput –			
t _{SU}	Input Data Setup Before CLK		0.233		0.219		ns
t _{HO}	Input Data Hold After CLK		0.287		0.287		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO3L/LF devices,	_	664		554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency		_	332		277	MHz
f _{SCLK}	SCLK Frequency		_	166		139	MHz
-	R4 Inputs with Clock and Data Aligned at F	In Using PCLK Pin for Clo	ck Input	– GDDR	X4_RX.	ECLK.A	ligned ⁸
t _{DVA}	Input Data Valid After ECLK		· -	0.307		0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.782		0.699		UI
f _{DATA}	DDRX4 Serial Input Data Speed	bottom side only at Pin Using PCLK Pin for Close MachXO3L/LF devices, bottom side only	_	800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency		_	400		315	MHz
f _{SCLK}	SCLK Frequency	-	_	100		79	MHz
	R4 Inputs with Clock and Data Centered at I	Pin Using PCLK Pin for Cloc	k Input -	- GDDR	X4_RX.E	ECLK.Ce	entered ⁸
t _{SU}	Input Data Setup Before ECLK		0.233	—	0.219	—	ns
t _{HO}	Input Data Hold After ECLK	-	0.287	_	0.287		ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO3L/LF devices,	_	800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only	_	400		315	MHz
f _{SCLK}	SCLK Frequency	-	_	100		79	MHz
	puts (GDDR71_RX.ECLK.7:1) ⁹						ł
t _{DVA}	Input Data Valid After ECLK			0.290	_	0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.739		0.699		UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO3L/LF devices,		756	_	630	Mbps
f _{DDR71}	DDR71 ECLK Frequency	bottom side only		378	_	315	MHz
fCLKIN	7:1 Input Clock Frequency (SCLK) (mini- mum limited by PLL)		_	108	_	90	MHz

			_	-6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
MIPI D-PHY	Inputs with Clock and Data Centered at P	in Using PCLK Pin for Cloo	k Input	-			
	X.ECLK.Centered ^{10, 11, 12}		1	I	I		
t _{SU} ¹⁵	Input Data Setup Before ECLK		0.200	—	0.200	—	UI
t _{HO} ¹⁵	Input Data Hold After ECLK	All MachXO3L/LF	0.200	—	0.200		UI
f _{DATA} ¹⁴	MIPI D-PHY Input Data Speed	devices, bottom side only	—	900	—	900	Mbps
f _{DDRX4} ¹⁴	MIPI D-PHY ECLK Frequency	_	—	450	—	450	MHz
f _{SCLK} ¹⁴	SCLK Frequency			112.5	—	112.5	MHz
Generic DD	R Outputs with Clock and Data Aligned at I	Pin Using PCLK Pin for Clo	ck Input	– GDDF	RX1_TX.	SCLK.A	ligned ⁸
t _{DIA}	Output Data Invalid After CLK Output			0.520	—	0.550	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO3L/LF devices.		0.520	—	0.550	ns
f _{DATA}	DDRX1 Output Data Speed	all sides		300	_	250	Mbps
f _{DDRX1}	DDRX1 SCLK frequency			150	—	125	MHz
Generic DDF	R Outputs with Clock and Data Centered at	Pin Using PCLK Pin for Cloo	k Input	– GDDR	X1_TX.9	SCLK.Ce	entered ⁸
t _{DVB}	Output Data Valid Before CLK Output		1.210		1.510	_	ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO3L/LF devices, all sides	1.210		1.510	_	ns
f _{DATA}	DDRX1 Output Data Speed			300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)		_	150	_	125	MHz
Generic DDF	RX2 Outputs with Clock and Data Aligned a	t Pin Using PCLK Pin for Clo	ock Inpu	t – GDD	RX2_TX	ECLK.A	ligned ⁸
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	—	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output			0.200	—	0.215	ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices, top side only		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK frequency			332	—	277	MHz
f _{SCLK}	SCLK Frequency			166	—	139	MHz
	RX2 Outputs with Clock and Data Centere X.ECLK.Centered ^{8, 9}	ed at Pin Using PCLK Pin fo	or Clock	Input –			
t _{DVB}	Output Data Valid Before CLK Output		0.535		0.670	_	ns
t _{DVA}	Output Data Valid After CLK Output	-	0.535		0.670		ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices,		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency (minimum limited by PLL)	top side only	_	332	_	277	MHz
f _{SCLK}	SCLK Frequency	-		166	—	139	MHz
Generic DD	RX4 Outputs with Clock and Data Aligned K.ECLK.Aligned ^{8, 9}	at Pin Using PCLK Pin for	Clock I	nput –	1		
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	—	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output			0.200	_	0.215	ns
f _{DATA}	DDRX4 Serial Output Data Speed	MachXO3L/LF devices,		800	_	630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	top side only		400	_	315	MHz
f _{SCLK}	SCLK Frequency	-		100		79	MHz
JOLIN					1	-	-

DC and Switching Characteristics MachXO3 Family Data Sheet

			-	-6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
	DRX4 Outputs with Clock and Data Centere X.ECLK.Centered ^{8, 9}	d at Pin Using PCLK Pin f	or Clock	Input –			
t _{DVB}	Output Data Valid Before CLK Output		0.455	—	0.570		ns
t _{DVA}	Output Data Valid After CLK Output		0.455	—	0.570	—	ns
f _{DATA}	DDRX4 Serial Output Data Speed	MachXO3L/LF devices,	—	800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency (minimum limited by PLL)	MachXO3L/LF devices,	_	400	_	315	MHz
f _{SCLK}	SCLK Frequency	_	_	100	—	79	MHz
7:1 LVDS 0	outputs – GDDR71_TX.ECLK.7:1 ^{8,9}		•	•			
t _{DIB}	Output Data Invalid Before CLK Output		—	0.160		0.180	ns
t _{DIA}	Output Data Invalid After CLK Output	_	—	0.160	—	0.180	ns
f _{DATA}	DDR71 Serial Output Data Speed		—	756	—	630	Mbps
f _{DDR71}	DDR71 ECLK Frequency	MachXO3L/LF devices, top side only	—	378		315	MHz
f _{CLKOUT}	7:1 Output Clock Frequency (SCLK) (mini- mum limited by PLL)	-	_	108	_	90	MHz
	Outputs with Clock and Data Centered at F X.ECLK.Centered ^{10, 11, 12}	in Using PCLK Pin for Clo	ck Input	-			
t _{DVB}	Output Data Valid Before CLK Output		0.200	—	0.200		UI
t _{DVA}	Output Data Valid After CLK Output		0.200	—	0.200		UI
f _{DATA} ¹⁴	MIPI D-PHY Output Data Speed	All MachXO3L/LF	—	900		900	Mbps
f _{DDRX4} ¹⁴	MIPI D-PHY ECLK Frequency (minimum limited by PLL)	devices, top side only	_	450	—	450	MHz
f _{SCLK} ¹⁴	SCLK Frequency	1	—	112.5	—	112.5	MHz

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

5. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

6. The t_{SU DEL} and t_{H DEL} values use the SCLK_ZERHOLD default step size. Each step is 105 ps (-6), 113 ps (-5), 120 ps (-4).

7. This number for general purpose usage. Duty cycle tolerance is +/-10%.

8. Duty cycle is $\pm -5\%$ for system usage.

9. Performance is calculated with 0.225 UI.

10. Performance is calculated with 0.20 UI.

11. Performance for Industrial devices are only supported with VCC between 1.16 V to 1.24 V.

12. Performance for Industrial devices and -5 devices are not modeled in the Diamond design tool.

13. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

14. Above 800 Mbps is only supported with WLCSP and csfBGA packages

15. Between 800 Mbps to 900 Mbps:

a. VIDTH exceeds the MIPI D-PHY Input DC Conditions Table 3-4 and can be calculated with the equation tSU or tH = -0.0005*VIDTH + 0.3284

b. Example calculations

i. tSU and tHO = 0.28 with VIDTH = 100 mV

ii. tSU and tHO = 0.25 with VIDTH = 170 mV

iii. tSU and tHO = 0.20 with VIDTH = 270 mV

NVCM/Flash Download Time^{1, 2}

Symbol	Parameter	Device	Тур.	Units
t _{REFRESH}	POR to Device I/O Active	LCMXO3L/LF-640	1.9	ms
		LCMXO3L/LF-1300	1.9	ms
		LCMXO3L/LF-1300 256-Ball Package	1.4	ms
		LCMXO3L/LF-2100	1.4	ms
		LCMXO3L/LF-2100 324-Ball Package	2.4	ms
		LCMXO3L/LF-4300	2.4	ms
		LCMXO3L/LF-4300 400-Ball Package	3.8	ms
		LCMXO3L/LF-6900	3.8	ms
		LCMXO3L/LF-9400C	5.2	ms

1. Assumes sysMEM EBR initialized to an all zero pattern if they are used.

2. The NVCM/Flash download time is measured starting from the maximum voltage of POR trip point.

MachXO3 Family Data Sheet Pinout Information

February 2017

Advance Data Sheet DS1047

Signal Descriptions

Signal Name	I/O	Descriptions				
General Purpose						
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).				
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.				
		[A/B/C/D] indicates the PIO within the group to which the pad is connected.				
P[Edge] [Row/Column Number]_[A/B/C/D]	I/O	Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.				
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased.				
NC	_	No connect.				
GND	_	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.				
VCC	_	V_{CC} – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.				
VCCIOx		VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that all VCCIOs located in the same bank are tied to the same supply.				
PLL and Clock Function	ons (Us	ed as user-programmable I/O pins when not used for PLL or clock pins)				
[LOC]_GPLL[T, C]_IN	_	Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.				
[LOC]_GPLL[T, C]_FB	_	Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.				
PCLK [n]_[2:0]	_	Primary Clock pads. One to three clock pads per side.				
Test and Programming	g (Dual t	function pins used for test access port and during sysCONFIG™)				
TMS	Ι	Test Mode Select input pin, used to control the 1149.1 state machine.				
ТСК	Ι	Test Clock input pin, used to clock the 1149.1 state machine.				
TDI	Ι	Test Data input pin, used to load data into the device using an 1149.1 state machine.				
TDO	0	Output pin – Test Data output pin used to shift data out of the device using 1149.1.				
		Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then:				
JTAGENB	Ι	If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O.				
		If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins.				
		For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.				

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary

	MachXO3L/LF -640		MachXO3	L/LF-1300	
	CSFBGA121	WLCSP36	CSFBGA121	CSFBGA256	CABGA256
General Purpose IO per Bank	•	•	•	•	•
Bank 0	24	15	24	50	50
Bank 1	26	0	26	52	52
Bank 2	26	9	26	52	52
Bank 3	24	4	24	16	16
Bank 4	0	0	0	16	16
Bank 5	0	0	0	20	20
Total General Purpose Single Ended IO	100	28	100	206	206
Differential IO per Bank		1			L
Bank 0	12	8	12	25	25
Bank 1	13	0	13	26	26
Bank 2	13	4	13	26	26
Bank 3	11	2	11	8	8
Bank 4	0	0	0	8	8
Bank 5	0	0	0	10	10
Total General Purpose Differential IO	49	14	49	103	103
Dual Function IO	33	25	33	33	33
Number 7:1 or 8:1 Gearboxes		I.			I
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	7	3	7	14	14
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	7	2	7	14	14
High-speed Differential Outputs		L			L
Bank 0	7	3	7	14	14
VCCIO Pins		L			L
Bank 0	1	1	1	4	4
Bank 1	1	0	1	3	4
Bank 2	1	1	1	4	4
Bank 3	3	1	3	2	1
Bank 4	0	0	0	2	2
Bank 5	0	0	0	2	1
VCC	4	2	4	8	8
GND	10	2	10	24	24
NC	0	0	0	0	1
Reserved for Configuration	1	1	1	1	1
Total Count of Bonded Pins	121	36	121	256	256

	MachXO3L/LF-6900				
	CSFBGA256	CSFBGA324	CABGA256	CABGA324	CABGA400
General Purpose IO per Bank		•	•	•	
Bank 0	50	73	50	71	83
Bank 1	52	68	52	68	84
Bank 2	52	72	52	72	84
Bank 3	16	24	16	24	28
Bank 4	16	16	16	16	24
Bank 5	20	28	20	28	32
Total General Purpose Single Ended IO	206	281	206	279	335
Differential IO per Bank		•	•	•	
Bank 0	25	36	25	36	42
Bank 1	26	34	26	34	42
Bank 2	26	36	26	36	42
Bank 3	8	12	8	12	14
Bank 4	8	8	8	8	12
Bank 5	10	14	10	14	16
Total General Purpose Differential IO	103	140	103	140	168
Dual Function IO	37	37	37	37	37
Number 7:1 or 8:1 Gearboxes	•	•	•	•	•
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	20	21	20	21	21
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	20	21	20	21	21
High-speed Differential Outputs					
Bank 0	20	21	20	21	21
VCCIO Pins		•	•	•	
Bank 0	4	4	4	4	5
Bank 1	3	4	4	4	5
Bank 2	4	4	4	4	5
Bank 3	2	2	1	2	2
Bank 4	2	2	2	2	2
Bank 5	2	2	1	2	2
VCC	8	8	8	10	10
GND	24	16	24	16	33
NC	0	0	1	0	0
Reserved for Configuration	1	1	1	1	1
Total Count of Bonded Pins	256	324	256	324	400

LCMXO3L-9400C-6BG4841

484

IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-6900E-5MG256C	6900	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-6MG256C	6900	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-6900E-5MG256I	6900	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-6MG256I	6900	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-6900E-5MG324C	6900	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-6MG324C	6900	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-6900E-5MG324I	6900	1.2 V	5	Halogen-Free csfBGA	324	IND
LCMXO3L-6900E-6MG324I	6900	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3L-6900C-5BG256C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-6BG256C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-6900C-5BG256I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-6BG256I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-6900C-5BG324C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-6BG324C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	COM
LCMXO3L-6900C-5BG324I	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-6BG324I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
LCMXO3L-6900C-5BG400C	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-6BG400C	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-6900C-5BG4001	6900	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-6900C-6BG400I	6900	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	IND
			<u> </u>			-
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-9400E-5MG256C	9400	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-9400E-6MG256C	9400	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-9400E-5MG256I	9400	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-9400E-6MG256I	9400	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-9400C-5BG256C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-9400C-6BG256C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-9400C-5BG256I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-6BG256I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-9400C-5BG400C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-6BG400C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	COM
LCMXO3L-9400C-5BG400I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-9400C-6BG400I	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	400	IND
LCMXO3L-9400C-5BG484C	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-6BG484C	9400	2.5 V/3.3 V	6	Halogen-Free caBGA	484	COM
LCMXO3L-9400C-5BG484I	9400	2.5 V/3.3 V	5	Halogen-Free caBGA	484	IND

2.5 V/3.3 V

6

Halogen-Free caBGA

9400

MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-640E-5MG121C	640	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3LF-640E-6MG121C	640	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3LF-640E-5MG121I	640	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3LF-640E-6MG121I	640	1.2 V	6	Halogen-Free csfBGA	121	IND
	•				•	
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-1300E-5UWG36CTR	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3LF-1300E-5UWG36CTR50	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3LF-1300E-5UWG36CTR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3LF-1300E-5UWG36ITR	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3LF-1300E-5UWG36ITR50	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3LF-1300E-5UWG36ITR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3LF-1300E-5MG121C	1300	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3LF-1300E-6MG121C	1300	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3LF-1300E-5MG121I	1300	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3LF-1300E-6MG121I	1300	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3LF-1300E-5MG256C	1300	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3LF-1300E-6MG256C	1300	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-1300E-5MG256I	1300	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-1300E-6MG256I	1300	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-1300C-5BG256C	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3LF-1300C-6BG256C	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3LF-1300C-5BG256I	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3LF-1300C-6BG256I	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3LF-2100E-5UWG49CTR	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3LF-2100E-5UWG49CTR50	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3LF-2100E-5UWG49CTR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3LF-2100E-5UWG49ITR	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3LF-2100E-5UWG49ITR50	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3LF-2100E-5UWG49ITR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3LF-2100E-5MG121C	2100	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3LF-2100E-6MG121C	2100	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3LF-2100E-5MG121I	2100	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3LF-2100E-6MG121I	2100	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3LF-2100E-5MG256C	2100	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3LF-2100E-6MG256C	2100	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3LF-2100E-5MG256I	2100	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3LF-2100E-6MG256I	2100	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3LF-2100E-5MG324C	2100	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3LF-2100E-6MG324C 210		1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3LF-2100E-5MG324I	2100	1.2 V	5	Halogen-Free csfBGA	324	IND

Date	Version	Section	Change Summary
April 2016	1.6	Introduction	Updated Features section. — Revised logic density range and IO to LUT ratio under Flexible Archi- tecture. — Revised 0.8 mm pitch information under Advanced Packaging. — Added MachXO3L-9400/MachXO3LF-9400 information to Table 1-1, MachXO3L/LF Family Selection Guide.
			Updated Introduction section. — Changed density from 6900 to 9400 LUTs. — Changed caBGA packaging to 19 x 19 mm.
		Architecture	Updated Architecture Overview section. — Changed statement to "All logic density devices in this family" — Updated Figure 2-2 heading and notes.
			Updated sysCLOCK Phase Locked Loops (PLLs) section. — Changed statement to "All MachXO3L/LF devices have one or more sysCLOCK PLL."
			Updated Programmable I/O Cells (PIC) section. — Changed statement to "All PIO pairs can implement differential receiv- ers."
			Updated sysIO Buffer Banks section. Updated Figure 2-5 heading.
	DC and Switching Characteristics	Updated Device Configuration section. Added Password and Soft Error Correction.	
		Updated Static Supply Current – C/E Devices section. Added LCMXO3L/ LF-9400C and LCMXO3L/LF-9400E devices.	
			Updated Programming and Erase Supply Current – C/E Devices section. — Added LCMXO3L/LF-9400C and LCMXO3L/LF-9400E devices. — Changed LCMXO3L/LF-640E and LCMXO3L/LF-1300E Typ. values.
			Updated MachXO3L/LF External Switching Characteristics – C/E Devices section. Added MachXO3L/LF-9400 devices.
			Updated NVCM/Flash Download Time section. Added LCMXO3L/LF- 9400C device.
			Updated sysCONFIG Port Timing Specifications section. — Added LCMXO3L/LF-9400C device. — Changed t _{INITL} units to from ns to us. — Changed t _{DPPINIT} and t _{DPPDONE} Max. values are per PCN#03A-16.
		Pinout Information	Updated Pin Information Summary section. Added LCMXO3L/LF-9400C device.
		Ordering Information	Updated MachXO3 Part Number Description section. — Added 9400 = 9400 LUTs. — Added BG484 package.
			Updated MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.
			Updated MachXO3LF Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added LCMXO3L-9400C part numbers.

Date	Version	Section	Change Summary
June 2014	1.0	—	Product name/trademark adjustment.
		Introduction	Updated Features section.
			Updated Table 1-1, MachXO3L Family Selection Guide. Changed fcCSP packages to csfBGA. Adjusted 121-ball csfBGA arrow.
			Introduction section general update.
		Architecture	General update.
		DC and Switching Characteristics	Updated sysIO Recommended Operating Conditions section. Removed V _{REF} (V) column. Added standards.
			Updated Maximum sysIO Buffer Performance section. Added MIPI I/O standard.
			Updated MIPI D-PHY Emulation section. Changed Low Speed to Low Power. Updated Table 3-4, MIPI DC Conditions.
			Updated Table 3-5, MIPI D-PHY Output DC Conditions.
			Updated Maximum sysIO Buffer Performance section.
			Updated MachXO3L External Switching Characteristics – C/E Device section.
May 2014	00.3	Introduction	Updated Features section.
			Updated Table 1-1, MachXO3L Family Selection Guide. Moved 121-ball fcCSP arrow.
			General update of Introduction section.
		Architecture	General update.
		Pinout Information	Updated Pin Information Summary section. Updated or added data on WLCSP49, WLCSP81, CABGA324, and CABGA400 for specific devices.
		Ordering Information	Updated MachXO3L Part Number Description section. Updated or added data on WLCSP49, WLCSP81, CABGA324, and CABGA400 for specific devices.
			Updated Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Added part numbers.
February 2014	00.2	DC and Switching Characteristics	Updated MachXO3L External Switching Characteristics – C/E Devices table. Removed LPDDR and DDR2 parameters.
	00.1		Initial release.