E · Clattile Semiconductor Corporation - LCMX03LF-9400C-6BG484C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1175
Number of Logic Elements/Cells	9400
Total RAM Bits	442368
Number of I/O	384
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-LFBGA
Supplier Device Package	484-CABGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3lf-9400c-6bg484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO3 Family Data Sheet Introduction

January 2016

Features

Solutions

- Smallest footprint, lowest power, high data throughput bridging solutions for mobile applications
- Optimized footprint, logic density, IO count, IO performance devices for IO management and logic applications
- High IO/logic, lowest cost/IO, high IO devices for IO expansion applications

■ Flexible Architecture

- Logic Density ranging from 640 to 9.4K LUT4
- High IO to LUT ratio with up to 384 IO pins

Advanced Packaging

- 0.4 mm pitch: 1K to 4K densities in very small footprint WLCSP (2.5 mm x 2.5 mm to 3.8 mm x 3.8 mm) with 28 to 63 IOs
- 0.5 mm pitch: 640 to 6.9K LUT densities in 6 mm x 6 mm to 10 mm x 10 mm BGA packages with up to 281 IOs
- 0.8 mm pitch: 1K to 9.4K densities with up to 384 IOs in BGA packages

Pre-Engineered Source Synchronous I/O

- DDR registers in I/O cells
- Dedicated gearing logic
- 7:1 Gearing for Display I/Os
- Generic DDR, DDRx2, DDRx4

High Performance, Flexible I/O Buffer

- Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - LVDS, Bus-LVDS, MLVDS, LVPECL
 - MIPI D-PHY Emulated
 - Schmitt trigger inputs, up to 0.5 V hysteresis
- Ideal for IO bridging applications
- I/Os support hot socketing
- On-chip differential termination
- Programmable pull-up or pull-down mode

■ Flexible On-Chip Clocking

- · Eight primary clocks
- Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only)
- Up to two analog PLLs per device with fractional-n frequency synthesis
 - Wide input frequency range (7 MHz to 400 MHz)
- Non-volatile, Multi-time Programmable
 - Instant-on
 - Powers up in microseconds
 - · Optional dual boot with external SPI memory
 - Single-chip, secure solution
 - Programmable through JTAG, SPI or I²C
 - MachXO3L includes multi-time programmable NVCM
 - MachXO3LF infinitely reconfigurable Flash

 Supports background programming of non-volatile memory

TransFR Reconfiguration

In-field logic update while IO holds the system state

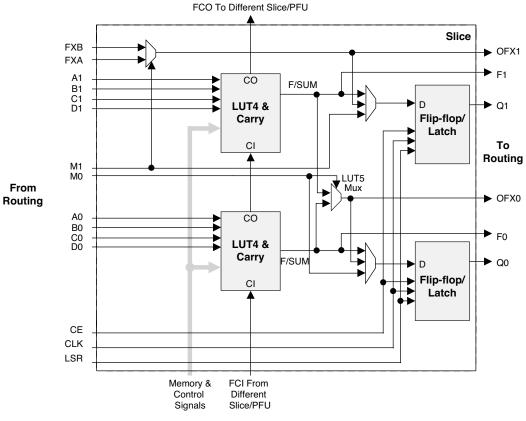
Enhanced System Level Support

- On-chip hardened functions: SPI, I²C, timer/ counter
- On-chip oscillator with 5.5% accuracy
- Unique TraceID for system tracking
- Single power supply with extended operating range
- IEEE Standard 1149.1 boundary scan
- IEEE 1532 compliant in-system programming

Applications

- Consumer Electronics
- Compute and Storage
- Wireless Communications
- Industrial Control Systems
- Automotive System

Low Cost Migration Path


- Migration from the Flash based MachXO3LF to the NVCM based MachXO3L
- · Pin compatible and equivalent timing

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

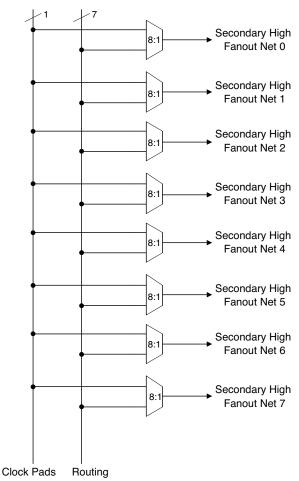
Advance Data Sheet DS1047

Figure 2-4. Slice Diagram

For Slices 0 and 1, memory control signals are generated from Slice 2 as follows:

- WCK is CLK
 WRE is from LSR
- DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2
- WAD [A:D] is a 4-bit address from slice 2 LUT input

 Table 2-2. Slice Signal Descriptions


Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multi-purpose input
Input	Control signal	CE	Clock enable
Input	Control signal	LSR	Local set/reset
Input	Control signal	CLK	System clock
Input	Inter-PFU signal	FCIN	Fast carry in ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Fast carry out ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

Figure 2-6. Secondary High Fanout Nets for MachXO3L/LF Devices

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. All MachXO3L/LF devices have one or more sysCLOCK PLL. CLKI is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. CLKFB is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The MachXO3L/LF sysCLOCK PLLs support high resolution (16-bit) fractional-N synthesis. Fractional-N frequency synthesis allows the user to generate an output clock which is a non-integer multiple of the input frequency. For more information about using the PLL with Fractional-N synthesis, please see TN1282, MachXO3 sysCLOCK PLL Design and Usage Guide.

Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The output dividers may also be cascaded together to generate low frequency clocks. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the MachXO3L/LF clock distribution network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-7.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock.

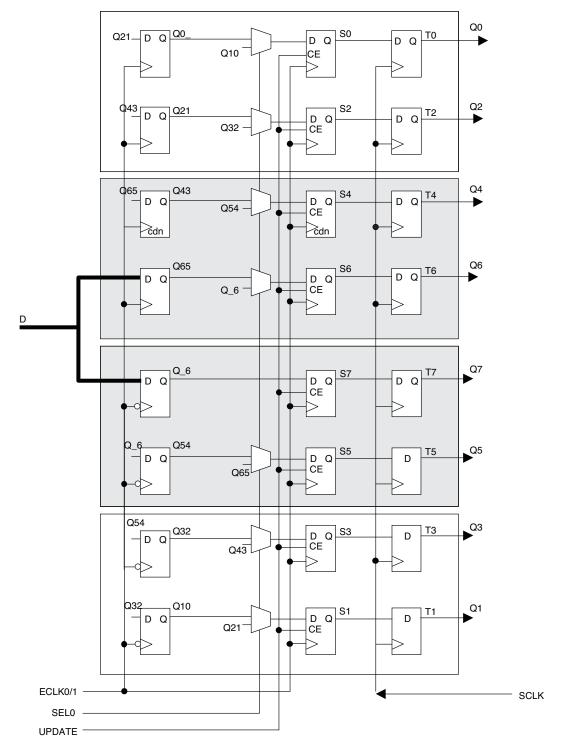
PIO

The PIO contains three blocks: an input register block, output register block and tri-state register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

Table	2-8.	ΡΙΟ	Signal	List
			e.ga.	

Pin Name	I/О Туре	Description
CE	Input	Clock Enable
D	Input	Pin input from sysIO buffer.
INDD	Output	Register bypassed input.
INCK	Output	Clock input
Q0	Output	DDR positive edge input
Q1	Output	Registered input/DDR negative edge input
D0	Input	Output signal from the core (SDR and DDR)
D1	Input	Output signal from the core (DDR)
TD	Input	Tri-state signal from the core
Q	Output	Data output signals to sysIO Buffer
TQ	Output	Tri-state output signals to sysIO Buffer
SCLK	Input	System clock for input and output/tri-state blocks.
RST	Input	Local set reset signal

Input Register Block


The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core.

Left, Top, Bottom Edges

Input signals are fed from the sysIO buffer to the input register block (as signal D). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), and a clock (INCK). If an input delay is desired, users can select a fixed delay. I/Os on the bottom edge also have a dynamic delay, DEL[4:0]. The delay, if selected, reduces input register hold time requirements when using a global clock. The input block allows two modes of operation. In single data rate (SDR) the data is registered with the system clock (SCLK) by one of the registers in the single data rate sync register block. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock (SCLK) signal, creating two data streams.

Figure 2-13. Input Gearbox

More information on the input gearbox is available in TN1281, Implementing High-Speed Interfaces with MachXO3 Devices.

Table 2-11 shows the I/O standards (together with their supply and reference voltages) supported by the MachXO3L/LF devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1280, MachXO3 sysIO Usage Guide.

Table 2-11. Supported Input Standards

		V	CCIO (Ty	p.)	
Input Standard	3.3 V	2.5 V	1.8 V	1.5 V	1.2 V
Single-Ended Interfaces					
LVTTL	Yes				
LVCMOS33	Yes				
LVCMOS25		Yes			
LVCMOS18			Yes		
LVCMOS15				Yes	
LVCMOS12					Yes
PCI	Yes				
Differential Interfaces		•			
LVDS	Yes	Yes			
BLVDS, MLVDS, LVPECL, RSDS	Yes	Yes			
MIPI ¹	Yes	Yes			
LVTTLD	Yes				
LVCMOS33D	Yes				
LVCMOS25D		Yes			
LVCMOS18D			Yes		

1. These interfaces can be emulated with external resistors in all devices.

Hot Socketing

The MachXO3L/LF devices have been carefully designed to ensure predictable behavior during power-up and power-down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO3L/LF ideal for many multiple power supply and hot-swap applications.

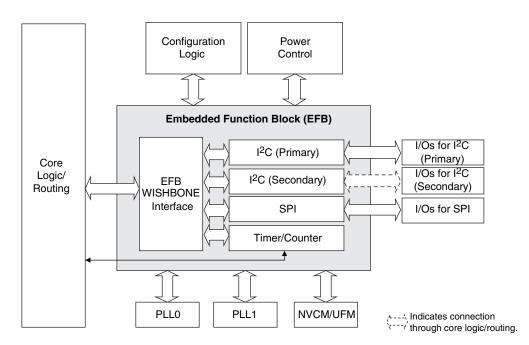
On-chip Oscillator

Every MachXO3L/LF device has an internal CMOS oscillator. The oscillator output can be routed as a clock to the clock tree or as a reference clock to the sysCLOCK PLL using general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit and a user input to enable/disable the oscillator. The oscillator frequency ranges from 2.08 MHz to 133 MHz. The software default value of the Master Clock (MCLK) is nominally 2.08 MHz. When a different MCLK is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal MCLK frequency of 2.08 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The MCLK frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.08 MHz.

Table 2-13 lists all the available MCLK frequencies.

Table 2-13. Available MCLK Frequencies


MCLK (MHz, Nominal)	MCLK (MHz, Nominal)	MCLK (MHz, Nominal)
2.08 (default)	9.17	33.25
2.46	10.23	38
3.17	13.3	44.33
4.29	14.78	53.2
5.54	20.46	66.5
7	26.6	88.67
8.31	29.56	133

Embedded Hardened IP Functions

All MachXO3L/LF devices provide embedded hardened functions such as SPI, I²C and Timer/Counter. MachXO3LF devices also provide User Flash Memory (UFM). These embedded blocks interface through the WISHBONE interface with routing as shown in Figure 2-17.

Figure 2-17. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO3L/LF device contains two I^2C IP cores. These are the primary and secondary I^2C IP cores. Either of the two cores can be configured either as an I^2C master or as an I^2C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I^2C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

Hardened Timer/Counter

MachXO3L/LF devices provide a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit timer/counter module with independent output compare units and PWM support. The Timer/Counter supports the following functions:

- Supports the following modes of operation:
 - Watchdog timer
 - Clear timer on compare match
 - Fast PWM
 - Phase and Frequency Correct PWM
- Programmable clock input source
- Programmable input clock prescaler
- One static interrupt output to routing
- One wake-up interrupt to on-chip standby mode controller.
- Three independent interrupt sources: overflow, output compare match, and input capture
- Auto reload
- Time-stamping support on the input capture unit
- Waveform generation on the output
- Glitch-free PWM waveform generation with variable PWM period
- Internal WISHBONE bus access to the control and status registers
- · Stand-alone mode with preloaded control registers and direct reset input

Figure 2-20. Timer/Counter Block Diagram

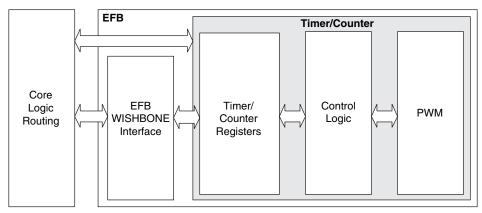


Table 2-16. Timer/Counter Signal Description

Port	I/O	Description
tc_clki	I	Timer/Counter input clock signal
tc_rstn	I	Register tc_rstn_ena is preloaded by configuration to always keep this pin enabled
tc_ic	I	Input capture trigger event, applicable for non-pwm modes with WISHBONE interface. If enabled, a rising edge of this signal will be detected and synchronized to capture tc_cnt value into tc_icr for time-stamping.
tc_int	0	Without WISHBONE – Can be used as overflow flag With WISHBONE – Controlled by three IRQ registers
tc_oc	0	Timer counter output signal

For more details on these embedded functions, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

User Flash Memory (UFM)

MachXO3LF devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I2C and SPI interfaces of the device. The UFM block offers the following features:

- Non-volatile storage up to 256 kbits
- 100K write cycles
- Write access is performed page-wise; each page has 128 bits (16 bytes)
- Auto-increment addressing
- WISHBONE interface

For more information on the UFM, please refer to TN1293, Using Hardened Control Functions in MachXO3 Devices.

Standby Mode and Power Saving Options

MachXO3L/LF devices are available in two options, the C and E devices. The C devices have a built-in voltage regulator to allow for 2.5 V V_{CC} and 3.3 V V_{CC} while the E devices operate at 1.2 V V_{CC}.

MachXO3L/LF devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO3L/LF devices support a low power Stand-by mode.

In the stand-by mode the MachXO3L/LF devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I²C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned "off" or go into a low power consumption state to save power when the device enters this state. Note that the MachXO3L/LF devices are powered on when in standby mode and all power supplies should remain in the Recommended Operating Conditions.

Configuration and Testing

This section describes the configuration and testing features of the MachXO3L/LF family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO3L/LF devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO3L/LF devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO3L/LF device:

- 1. Internal NVCM/Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1279, MachXO3 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO3L/ LF devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip NVCM/Flash, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip NVCM/Flash. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

Security and One-Time Programmable Mode (OTP)

For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM-based FPGAs. This is further enhanced by device locking. MachXO3L/LF devices contain security bits that, when set, prevent the readback of the SRAM configuration and NVCM/Flash spaces. The device can be in one of two modes:

- 1. Unlocked Readback of the SRAM configuration and NVCM/Flash spaces is allowed.
- 2. Permanently Locked The device is permanently locked.

Once set, the only way to clear the security bits is to erase the device. To further complement the security of the device, a One Time Programmable (OTP) mode is available. Once the device is set in this mode it is not possible to erase or re-program the NVCM/Flash and SRAM OTP portions of the device. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

Password

The MachXO3LF supports a password-based security access feature also known as Flash Protect Key. Optionally, the MachXO3L device can be ordered with a custom specification (c-spec) to support this feature. The Flash Protect Key feature provides a method of controlling access to the Configuration and Programming modes of the device. When enabled, the Configuration and Programming edit mode operations (including Write, Verify and Erase operations) are allowed only when coupled with a Flash Protect Key which matches that expected by the device. Without a valid Flash Protect Key, the user can perform only rudimentary non-configuration operations such as Read Device ID. For more details, refer to TN1313, Using Password Security with MachXO3 Devices.

Dual Boot

MachXO3L/LF devices can optionally boot from two patterns, a primary bitstream and a golden bitstream. If the primary bitstream is found to be corrupt while being downloaded into the SRAM, the device shall then automatically re-boot from the golden bitstream. Note that the primary bitstream must reside in the external SPI Flash. The golden image MUST reside in an on-chip NVCM/Flash. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

Soft Error Detection

The SED feature is a CRC check of the SRAM cells after the device is configured. This check ensures that the SRAM cells were configured successfully. This feature is enabled by a configuration bit option. The Soft Error Detection can also be initiated in user mode via an input to the fabric. The clock for the Soft Error Detection circuit is generated using a dedicated divider. The undivided clock from the on-chip oscillator is the input to this divider. For low power applications users can switch off the Soft Error Detection circuit. For more details, refer to TN1292, MachXO3 Soft Error Detection Usage Guide.

Soft Error Correction

The MachXO3LF device supports Soft Error Correction (SEC). Optionally, the MachXO3L device can be ordered with a custom specification (c-spec) to support this feature. When BACKGROUND_RECONFIG is enabled using the Lattice Diamond Software in a design, asserting the PROGRAMN pin or issuing the REFRESH sysConfig command refreshes the SRAM array from configuration memory. Only the detected error bit is corrected. No other SRAM cells are changed, allowing the user design to function uninterrupted.

During the project design phase, if the overall system cannot guarantee containment of the error or its subsequent effects on downstream data or control paths, Lattice recommends using SED only. The MachXO3 can be then be soft-reset by asserting PROGRAMN or issuing the Refresh command over a sysConfig port in response to SED. Soft-reset additionally erases the SRAM array prior to the SRAM refresh, and asserts internal Reset circuitry to guarantee a known state. For more details, refer to TN1292, MachXO3 Soft Error Detection (SED)/Correction (SEC) Usage Guide.

TraceID

Each MachXO3L/LF device contains a unique (per device), TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the EFB WISHBONE interface and can also be accessed through the SPI, I²C, or JTAG interfaces.

Density Shifting

The MachXO3L/LF family has been designed to enable density migration within the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. When migrating from lower to higher density or higher to lower density, ensure to review all the power supplies and NC pins of the chosen devices. For more details refer to the MachXO3 migration files.

Static Supply Current – C/E Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ.⁴	Units
I _{CC}	Core Power Supply	LCMXO3L/LF-1300C 256 Ball Package	4.8	mA
		LCMXO3L/LF-2100C	4.8	mA
		LCMXO3L/LF-2100C 324 Ball Package	8.45	mA
		LCMXO3L/LF-4300C	8.45	mA
		LCMXO3L/LF-4300C 400 Ball Package	12.87	mA
		LCMXO3L/LF-6900C7	12.87	mA
		LCMXO3L/LF-9400C7	17.86	mA
		LCMXO3L/LF-640E	1.00	mA
		LCMXO3L/LF-1300E	1.00	mA
		LCMXO3L/LF-1300E 256 Ball Package	1.39	mA
		LCMXO3L/LF-2100E	1.39	mA
		LCMXO3L/LF-2100E 324 Ball Package	2.55	mA
		LCMXO3L/LF-4300E	2.55	mA
		LCMXO3L/LF-6900E	4.06	mA
		LCMXO3L/LF-9400E	5.66	mA
ICCIO	Bank Power Supply ⁵ VCCIO = 2.5 V	All devices	0	mA

1. For further information on supply current, please refer to TN1289, Power Estimation and Management for MachXO3 Devices.

2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO3L/LF peak start-up current data, use the Power Calculator tool.

7. Determination of safe ambient operating conditions requires use of the Diamond Power Calculator tool.

sysIO Recommended Operating Conditions

		V _{CCIO} (V)			V _{REF} (V)	
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.465	—	—	—
LVCMOS 2.5	2.375	2.5	2.625	—	—	—
LVCMOS 1.8	1.71	1.8	1.89	—	—	—
LVCMOS 1.5	1.425	1.5	1.575	—	—	—
LVCMOS 1.2	1.14	1.2	1.26	—	—	—
LVTTL	3.135	3.3	3.465	—	—	—
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	—
LVDS33 ^{1, 2}	3.135	3.3	3.465	—	—	—
LVPECL ¹	3.135	3.3	3.465	—	—	—
BLVDS ¹	2.375	2.5	2.625	—	—	—
MIPI ³	2.375	2.5	2.625	—	—	—
MIPI_LP ³	1.14	1.2	1.26	—	—	_
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75
LVCMOS10R334	3.135	3.3	3.6	0.35	0.5	0.65
LVCMOS10R254	2.375	2.5	2.625	0.35	0.5	0.65

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. For the dedicated LVDS buffers.

3. Requires the addition of external resistors.

4. Supported only for inputs and BIDIs for -6 speed grade devices.

Table 3-5. MIPI D-PHY Output DC Conditions¹

	Description	Min.	Тур.	Max.	Units
Transmitter				1	
External Termi	nation				
RL	1% external resistor with VCCIO = 2.5 V		50	—	Ohms
	1% external resistor with VCCIO = 3.3 V		50	—	
RH	1% external resistor with performance up to 800 Mbps or with performance up 900 Mbps when VCCIO = 2.5 V	_	330	—	Ohms
	1% external resistor with performance between 800 Mbps to 900 Mbps when VCCIO = 3.3 V	—	464	_	Ohms
High Speed			•		•
VCCIO	VCCIO of the Bank with LVDS Emulated output buffer		2.5	_	V
	VCCIO of the Bank with LVDS Emulated output buffer	_	3.3	—	V
VCMTX	HS transmit static common mode voltage	150	200	250	mV
VOD	HS transmit differential voltage	140	200	270	mV
VOHHS	HS output high voltage		—	360	V
ZOS	Single ended output impedance		50	—	Ohms
ΔZOS	Single ended output impedance mismatch		_	10	%
Low Power			•		•
VCCIO	VCCIO of the Bank with LVCMOS12D 6 mA drive bidirectional IO buffer	_	1.2	—	V
VOH	Output high level	1.1	1.2	1.3	V
VOL	Output low level	-50	0	50	mV
ZOLP	Output impedance of LP transmitter	110		—	Ohms

1. Over Recommended Operating Conditions

DC and Switching Characteristics MachXO3 Family Data Sheet

			-	6	_	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Edge Clock without	t PLL)			1		1
		MachXO3L/LF-1300	—	7.53	—	7.76	ns
		MachXO3L/LF-2100	—	7.53	—	7.76	ns
t _{COE}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	7.45		7.68	ns
		MachXO3L/LF-6900	—	7.53		7.76	ns
		MachXO3L/LF-9400	—	8.93	—	9.35	ns
		MachXO3L/LF-1300	-0.19		-0.19		ns
		MachXO3L/LF-2100	-0.19		-0.19	_	ns
t _{SUE}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	-0.16	_	-0.16	_	ns
		MachXO3L/LF-6900	-0.19		-0.19		ns
		MachXO3L/LF-9400	-0.20	_	-0.20	_	ns
		MachXO3L/LF-1300	1.97	_	2.24	_	ns
		MachXO3L/LF-2100	1.97		2.24		ns
t _{HE}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	1.89		2.16		ns
		MachXO3L/LF-6900	1.97	_	2.24	_	ns
		MachXO3L/LF-9400	1.98		2.25		ns
		MachXO3L/LF-1300	1.56		1.69	_	ns
		MachXO3L/LF-2100	1.56		1.69		ns
t _{SU_DELE}	Clock to Data Setup - PIO Input Register with Data Input Delay	MachXO3L/LF-4300	1.74	_	1.88	_	ns
_	with Data input Delay	MachXO3L/LF-6900	1.66	_	1.81	_	ns
		MachXO3L/LF-9400	1.71		1.85		ns
		MachXO3L/LF-1300	-0.23	_	-0.23	_	ns
		MachXO3L/LF-2100	-0.23		-0.23		ns
t _{H_DELE}	Clock to Data Hold - PIO Input Register with Input Data Delay	MachXO3L/LF-4300	-0.34		-0.34		ns
	input bata bolay	MachXO3L/LF-6900	-0.29		-0.29		ns
		MachXO3L/LF-9400	-0.30		-0.30		ns
General I/O	Pin Parameters (Using Primary Clock with	PLL)					
		MachXO3L/LF-1300	—	5.98		6.01	ns
		MachXO3L/LF-2100	—	5.98	_	6.01	ns
t _{COPLL}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	—	5.99	—	6.02	ns
		MachXO3L/LF-6900	—	6.02	_	6.06	ns
		MachXO3L/LF-9400	—	5.55	_	6.13	ns
		MachXO3L/LF-1300	0.36	_	0.36	—	ns
		MachXO3L/LF-2100	0.36	_	0.36	_	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	0.35		0.35		ns
		MachXO3L/LF-6900	0.34	—	0.34	—	ns
		MachXO3L/LF-9400	0.33		0.33		ns
		MachXO3L/LF-1300	0.42		0.49		ns
		MachXO3L/LF-2100	0.42	—	0.49	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	0.43	—	0.50	_	ns
		MachXO3L/LF-6900	0.46		0.54		ns
		MachXO3L/LF-9400	0.47	—	0.55	—	ns

			_	-6	_	-5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
	RX1 Inputs with Clock and Data Aligned at	Pin Using PCLK Pin for Cl	ock Inpu	it —			
	X.SCLK.Aligned ^{8,9}	J	•				
t _{DVA}	Input Data Valid After CLK		—	0.317		0.344	UI
t _{DVE}	Input Data Hold After CLK	All MachXO3L/LF	0.742	—	0.702		UI
f _{DATA}	DDRX1 Input Data Speed	all sides	—	300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		—	150		125	MHz
Generic DD GDDRX1_R	RX1 Inputs with Clock and Data Centered X.SCLK.Centered ^{8, 9}	d at Pin Using PCLK Pin fo	or Clock	Input –			
t _{SU}	Input Data Setup Before CLK		0.566	—	0.560	—	ns
t _{HO}	Input Data Hold After CLK	All MachXO3L/LF	0.778		0.879		ns
f _{DATA}	DDRX1 Input Data Speed	all sides	—	300	—		Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		—	150	—	125	MHz
	RX2 Inputs with Clock and Data Aligned a X.ECLK.Aligned ^{8, 9}	t Pin Using PCLK Pin for (Clock Inp	out –			
t _{DVA}	Input Data Valid After CLK			0.316		0.342	UI
t _{DVE}	Input Data Hold After CLK	-	0.710	_	0.675		UI
f _{DATA}	DDRX2 Serial Input Data Speed			664		554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency			332		277	MHz
f _{SCLK}	SCLK Frequency	-		166		139	MHz
Generic DD	RX2 Inputs with Clock and Data Centered X.ECLK.Centered ^{8,9}	at Pin Using PCLK Pin for	Clock I	nput –			
t _{SU}	Input Data Setup Before CLK	MachXO3L/LF devices,	0.233		0.219		ns
t _{HO}	Input Data Hold After CLK		0.287		0.287		ns
f _{DATA}	DDRX2 Serial Input Data Speed		_	664		554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency		_	332		277	MHz
f _{SCLK}	SCLK Frequency		_	166		139	MHz
-	R4 Inputs with Clock and Data Aligned at F	In Using PCLK Pin for Clo	ck Input	– GDDR	X4_RX.	ECLK.A	ligned ⁸
t _{DVA}	Input Data Valid After ECLK		· -	0.307		0.320	UI
t _{DVE}	Input Data Hold After ECLK		0.782		0.699		UI
f _{DATA}	DDRX4 Serial Input Data Speed	ered at Pin Using PCLK Pin f All MachXO3L/LF devices, all sides ed at Pin Using PCLK Pin for of MachXO3L/LF devices, bottom side only machXO3L/LF devices, bottom side only at Pin Using PCLK Pin for Clo MachXO3L/LF devices, bottom side only at Pin Using PCLK Pin for Clo MachXO3L/LF devices, bottom side only MachXO3L/LF devices, bottom side only MachXO3L/LF devices, bottom side only	_	800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency		_	400		315	MHz
f _{SCLK}	SCLK Frequency	-	_	100		79	MHz
	R4 Inputs with Clock and Data Centered at I	Pin Using PCLK Pin for Cloc	k Input -	- GDDR	X4_RX.E	ECLK.Ce	entered ⁸
t _{SU}	Input Data Setup Before ECLK		0.233	—	0.219	—	ns
t _{HO}	Input Data Hold After ECLK	-	0.287	_	0.287		ns
f _{DATA}	DDRX4 Serial Input Data Speed		_	800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency		_	400		315	MHz
f _{SCLK}	SCLK Frequency	-	_	100		79	MHz
	puts (GDDR71_RX.ECLK.7:1) ⁹						ł
t _{DVA}	Input Data Valid After ECLK			0.290	_	0.320	UI
t _{DVE}	Input Data Hold After ECLK	· · · · · ·	0.739		0.699		UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO3L/LF devices.		756	_	630	Mbps
f _{DDR71}	DDR71 ECLK Frequency			378	_	315	MHz
fCLKIN	7:1 Input Clock Frequency (SCLK) (mini- mum limited by PLL)		_	108	_	90	MHz

DC and Switching Characteristics MachXO3 Family Data Sheet

	Description		-6		-5		
Parameter		Device	Min.	Max.	Min.	Max.	Units
	DRX4 Outputs with Clock and Data Centere X.ECLK.Centered ^{8, 9}	d at Pin Using PCLK Pin f	or Clock	Input –			
t _{DVB}	Output Data Valid Before CLK Output	 MachXO3L/LF devices,	0.455	—	0.570		ns
t _{DVA}	Output Data Valid After CLK Output		0.455	—	0.570		ns
f _{DATA}	DDRX4 Serial Output Data Speed		—	800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency (minimum limited by PLL)	top side only	_	400	_	315	MHz
f _{SCLK}	SCLK Frequency	_	—	100	—	79	MHz
7:1 LVDS 0	utputs – GDDR71_TX.ECLK.7:1 ^{8,9}		•	•			
t _{DIB}	Output Data Invalid Before CLK Output	MachXO3L/LF devices, top side only	—	0.160		0.180	ns
t _{DIA}	Output Data Invalid After CLK Output		_	0.160	—	0.180	ns
f _{DATA}	DDR71 Serial Output Data Speed		_	756	—	630	Mbps
f _{DDR71}	DDR71 ECLK Frequency		—	378		315	MHz
f _{CLKOUT}	7:1 Output Clock Frequency (SCLK) (mini- mum limited by PLL)	-	_	108	_	90	MHz
	Outputs with Clock and Data Centered at FXECLK.Centered ^{10, 11, 12}	in Using PCLK Pin for Clo	ck Input	-			
t _{DVB}	Output Data Valid Before CLK Output	All MachXO3L/LF	0.200	—	0.200		UI
t _{DVA}	Output Data Valid After CLK Output		0.200	—	0.200		UI
f _{DATA} ¹⁴	MIPI D-PHY Output Data Speed		—	900		900	Mbps
f _{DDRX4} ¹⁴	MIPI D-PHY ECLK Frequency (minimum limited by PLL)	devices, top side only	_	450	—	450	MHz
f _{SCLK} ¹⁴	SCLK Frequency	1	—	112.5	—	112.5	MHz

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

5. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

6. The t_{SU DEL} and t_{H DEL} values use the SCLK_ZERHOLD default step size. Each step is 105 ps (-6), 113 ps (-5), 120 ps (-4).

7. This number for general purpose usage. Duty cycle tolerance is +/-10%.

8. Duty cycle is $\pm -5\%$ for system usage.

9. Performance is calculated with 0.225 UI.

10. Performance is calculated with 0.20 UI.

11. Performance for Industrial devices are only supported with VCC between 1.16 V to 1.24 V.

12. Performance for Industrial devices and -5 devices are not modeled in the Diamond design tool.

13. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

14. Above 800 Mbps is only supported with WLCSP and csfBGA packages

15. Between 800 Mbps to 900 Mbps:

a. VIDTH exceeds the MIPI D-PHY Input DC Conditions Table 3-4 and can be calculated with the equation tSU or tH = -0.0005*VIDTH + 0.3284

b. Example calculations

i. tSU and tHO = 0.28 with VIDTH = 100 mV

ii. tSU and tHO = 0.25 with VIDTH = 170 mV

iii. tSU and tHO = 0.20 with VIDTH = 270 mV

	MachXO3L/LF-2100							
	WLCSP49	CSFBGA121	CSFBGA256	CSFBGA324	CABGA256	CABGA324		
General Purpose IO per Bank	1							
Bank 0	19	24	50	71	50	71		
Bank 1	0	26	52	62	52	68		
Bank 2	13	26	52	72	52	72		
Bank 3	0	7	16	22	16	24		
Bank 4	0	7	16	14	16	16		
Bank 5	6	10	20	27	20	28		
Total General Purpose Single Ended IO	38	100	206	268	206	279		
Differential IO per Bank	1							
Bank 0	10	12	25	36	25	36		
Bank 1	0	13	26	30	26	34		
Bank 2	6	13	26	36	26	36		
Bank 3	0	3	8	10	8	12		
Bank 4	0	3	8	6	8	8		
Bank 5	3	5	10	13	10	14		
Total General Purpose Differential IO	19	49	103	131	103	140		
Dual Function IO	25	33	33	37	33	37		
Number 7:1 or 8:1 Gearboxes	•			•	•	•		
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	5	7	14	18	14	18		
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	6	13	14	18	14	18		
High-speed Differential Outputs	•			•	•	•		
Bank 0	5	7	14	18	14	18		
VCCIO Pins	1							
Bank 0	2	1	4	4	4	4		
Bank 1	0	1	3	4	4	4		
Bank 2	1	1	4	4	4	4		
Bank 3	0	1	2	2	1	2		
Bank 4	0	1	2	2	2	2		
Bank 5	1	1	2	2	1	2		
VCC	2	4	8	8	8	10		
GND	4	10	24	16	24	16		
NC	0	0	0	13	1	0		
Reserved for Configuration	1	1	1	1	1	1		
Total Count of Bonded Pins	49	121	256	324	256	324		