E · Chattike Semiconductor Corporation - <u>LCMXO3LF-9400E-6BG484C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1175
Number of Logic Elements/Cells	9400
Total RAM Bits	442368
Number of I/O	384
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-LFBGA
Supplier Device Package	484-CABGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo3lf-9400e-6bg484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. MachXO3L/LF Family Selection Guide

Features		MachXO3L-640/ MachXO3LF-640	MachXO3L-1300/ MachXO3LF-1300	MachXO3L-2100/ MachXO3LF-2100	MachXO3L-4300/ MachXO3LF-4300	MachXO3L-6900/ MachXO3LF-6900	MachXO3L-9400/ MachXO3LF-9400
LUTs		640	1300	2100	4300	6900	9400
Distributed R	AM (kbits)	5	10	16	34	54	73
EBR SRAM (kbits)	64	64	74	92	240	432
Number of PL	Ls	1	1	1	2	2	2
Hardened	I ² C	2	2	2	2	2	2
Functions:	SPI	1	1	1	1	1	1
	Timer/Counter	1	1	1	1	1	1
	Oscillator	1	1	1	1	1	1
MIPI D-PHY	Support	Yes	Yes	Yes	Yes	Yes	Yes
Multi Time Pr NVCM	ogrammable	MachXO3L-640	MachXO3L-1300	MachXO3L-2100	MachXO3L-4300	MachXO3L-6900	MachXO3L-9400
Programmabl	le Flash	MachXO3LF-640	MachXO3LF-1300	MachXO3LF-2100	MachXO3LF-4300	MachXO3LF-6900	MachXO3LF-9400
Packages				ю			
36-ball WLCS (2.5 mm x 2.5	SP ¹ 5 mm, 0.4 mm)		28				
49-ball WLCS (3.2 mm x 3.2	SP ¹ 2 mm, 0.4 mm)			38			
81-ball WLCSP ¹ (3.8 mm x 3.8 mm, 0.4 mm)					63		
121-ball csfBGA ¹ (6 mm x 6 mm, 0.5 mm)		100	100	100	100		
256-ball csfB (9 mm x 9 mr		2	206	206	206	206	206
324-ball csfB (10 mm x 10				268	268	281	
256-ball caB0 (14 mm x 14			206	206	206	206	206
324-ball caB0 (15 mm x 15				279	279	279	
400-ball caB0 (17 mm x 17					335	335	335
484-ball caB0 (19 mm x 19							384

1. Package is only available for E=1.2 V devices.

2. Package is only available for C=2.5 V/3.3 V devices.

Introduction

MachXO3[™] device family is an Ultra-Low Density family that supports the most advanced programmable bridging and IO expansion. It has the breakthrough IO density and the lowest cost per IO. The device IO features have the integrated support for latest industry standard IO.

The MachXO3L/LF family of low power, instant-on, non-volatile PLDs has five devices with densities ranging from 640 to 9400 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. MachXO3LF devices also support User Flash Memory (UFM). These features allow these devices to be used in low cost, high volume consumer and system applications.

The MachXO3L/LF devices are designed on a 65nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs

and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family.

The MachXO3L/LF devices are available in two versions C and E with two speed grades: -5 and -6, with -6 being the fastest. C devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3 V or 2.5 V. E devices only accept 1.2 V as the external VCC supply voltage. With the exception of power supply voltage both C and E are functionally compatible with each other.

The MachXO3L/LF PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 x 2.5 mm WLCSP to the 19 x 19 mm caBGA. MachXO3L/LF devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The MachXO3L/LF devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis.

A user-programmable internal oscillator is included in MachXO3L/LF devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines.

The MachXO3L/LF devices also provide flexible, reliable and secure configuration from on-chip NVCM/Flash. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO3L/LF devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO3L/LF family of devices. Popular logic synthesis tools provide synthesis library support for MachXO3L/LF. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO3L/LF device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE[™] modules, including a number of reference designs licensed free of charge, optimized for the MachXO3L/LF PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In Ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/down counter with asynchronous clear
- Up/down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per-slice basis to allow fast arithmetic functions to be constructed by concatenating slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed by using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals.

MachXO3L/LF devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in MachXO3L/LF devices, please see TN1290, Memory Usage Guide for MachXO3 Devices.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR 16x4	PDPR 16x4			
Number of slices	3	3			
Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM					

ote: SPR = Single Port RAM, PDPR = Pseudo Dual

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the NVCM or Configuration Flash.

MachXO3LF EBR initialization data can also be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO3LF devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

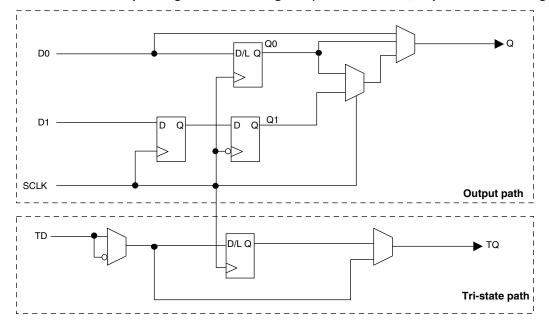
Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysIO buffers.


Left, Top, Bottom Edges

In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch.

In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-12 shows the output register block on the left, top and bottom edges.

Figure 2-12. MachXO3L/LF Output Register Block Diagram (PIO on the Left, Top and Bottom Edges)

Tri-state Register Block

The tri-state register block registers tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation. In SDR, TD input feeds one of the flip-flops that then feeds the output.

Input Gearbox

Each PIC on the bottom edge has a built-in 1:8 input gearbox. Each of these input gearboxes may be programmed as a 1:7 de-serializer or as one IDDRX4 (1:8) gearbox or as two IDDRX2 (1:4) gearboxes. Table 2-9 shows the gearbox signals.

Table 2-9. Input Gearbox Signal List

Name	I/O Type	Description
D	Input	High-speed data input after programmable delay in PIO A input register block
ALIGNWD	Input	Data alignment signal from device core
SCLK	Input	Slow-speed system clock
ECLK[1:0]	Input	High-speed edge clock
RST	Input	Reset
Q[7:0]	Output	Low-speed data to device core: Video RX(1:7): Q[6:0] GDDRX4(1:8): Q[7:0] GDDRX2(1:4)(IOL-A): Q4, Q5, Q6, Q7 GDDRX2(1:4)(IOL-C): Q0, Q1, Q2, Q3

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-13 shows a block diagram of the input gearbox.

Figure 2-15. MachXO3L/LF-1300 in 256 Ball Packages, MachXO3L/LF-2100, MachXO3L/LF-4300, MachXO3L/LF-6900 and MachXO3L/LF-9400 Banks

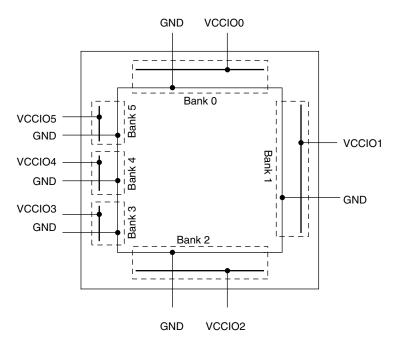
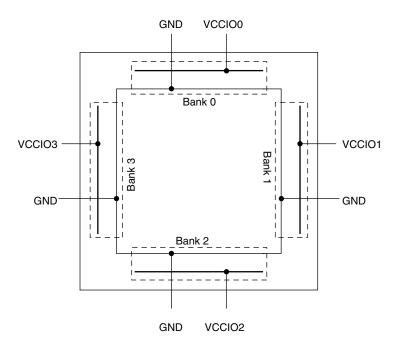



Figure 2-16. MachXO3L/LF-640 and MachXO3L/LF-1300 Banks

Table 2-17. MachXO3L/LF Power Saving Features Description

Device Subsystem	Feature Description
Bandgap	The bandgap can be turned off in standby mode. When the Bandgap is turned off, ana- log circuitry such as the POR, PLLs, on-chip oscillator, and differential I/O buffers are also turned off. Bandgap can only be turned off for 1.2 V devices.
Power-On-Reset (POR)	The POR can be turned off in standby mode. This monitors VCC levels. In the event of unsafe V_{CC} drops, this circuit reconfigures the device. When the POR circuitry is turned off, limited power detector circuitry is still active. This option is only recommended for applications in which the power supply rails are reliable.
On-Chip Oscillator	The on-chip oscillator has two power saving features. It may be switched off if it is not needed in your design. It can also be turned off in Standby mode.
PLL	Similar to the on-chip oscillator, the PLL also has two power saving features. It can be statically switched off if it is not needed in a design. It can also be turned off in Standby mode. The PLL will wait until all output clocks from the PLL are driven low before powering off.
I/O Bank Controller	Differential I/O buffers (used to implement standards such as LVDS) consume more than ratioed single-ended I/Os such as LVCMOS and LVTTL. The I/O bank controller allows the user to turn these I/Os off dynamically on a per bank selection.
Dynamic Clock Enable for Primary Clock Nets	Each primary clock net can be dynamically disabled to save power.
Power Guard	Power Guard is a feature implemented in input buffers. This feature allows users to switch off the input buffer when it is not needed. This feature can be used in both clock and data paths. Its biggest impact is that in the standby mode it can be used to switch off clock inputs that are distributed using general routing resources.

For more details on the standby mode refer to TN1289, Power Estimation and Management for MachXO3 Devices.

Power On Reset

MachXO3L/LF devices have power-on reset circuitry to monitor V_{CCINT} and V_{CCIO} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CCINT} and V_{CCIO} (controls configuration) voltage levels. It then triggers download from the on-chip configuration NVCM/Flash memory after reaching the V_{PORUP} level specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. For "E" devices without voltage regulators, V_{CCINT} is the same as the V_{CC} supply voltage. For "C" devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage. From this voltage reference, the time taken for configuration and entry into user mode is specified as NVCM/Flash Download Time ($t_{REFRESH}$) in the DC and Switching Characteristics section of this data sheet. Before and during configuration. Note that for "C" devices, a separate POR circuit monitors external V_{CC} voltage in addition to the POR circuit that monitors the internal post-regulated power supply voltage level.

Once the device enters into user mode, the POR circuitry can optionally continue to monitor V_{CCINT} levels. If V_{CCINT} drops below $V_{PORDNBG}$ level (with the bandgap circuitry switched on) or below $V_{PORDNSRAM}$ level (with the bandgap circuitry switched off to conserve power) device functionality cannot be guaranteed. In such a situation the POR issues a reset and begins monitoring the V_{CCINT} and V_{CCIO} voltage levels. $V_{PORDNBG}$ and $V_{PORDNSRAM}$ are both specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet.

Note that once an "E" device enters user mode, users can switch off the bandgap to conserve power. When the bandgap circuitry is switched off, the POR circuitry also shuts down. The device is designed such that a mini-mal, low power POR circuit is still operational (this corresponds to the $V_{PORDNSRAM}$ reset point described in the paragraph above). However this circuit is not as accurate as the one that operates when the bandgap is switched on. The low power POR circuit emulates an SRAM cell and is biased to trip before the vast majority of SRAM cells flip. If users are concerned about the V_{CC} supply dropping below V_{CC} (min) they should not shut down the bandgap or POR circuit.

Configuration and Testing

This section describes the configuration and testing features of the MachXO3L/LF family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO3L/LF devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO3L/LF devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO3L/LF device:

- 1. Internal NVCM/Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1279, MachXO3 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO3L/ LF devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip NVCM/Flash, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip NVCM/Flash. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1279, MachXO3 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

Power-On-Reset Voltage Levels^{1, 2, 3, 4, 5}

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{PORUP}	Power-On-Reset ramp up trip point (band gap based circuit monitoring V_{CCINT} and $V_{CCIO0})$	0.9	_	1.06	V
V _{PORUPEXT}	Power-On-Reset ramp up trip point (band gap based circuit monitoring external V_{CC} power supply)	1.5	_	2.1	V
V _{PORDNBG}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{\mbox{CCINT}})$	0.75	_	0.93	V
V _{PORDNBGEXT}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{CC})$	0.98	_	1.33	V
V _{PORDNSRAM}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CCINT})	_	0.6	_	V
VPORDNSRAMEXT	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CC})	_	0.96	_	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

2. For devices without voltage regulators V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage.

3. Note that V_{PORUP} (min.) and V_{PORDNBG} (max.) are in different process corners. For any given process corner V_{PORDNBG} (max.) is always 12.0 mV below V_{PORUP} (min.).

4. V_{PORUPEXT} is for C devices only. In these devices a separate POR circuit monitors the external V_{CC} power supply.

5. V_{CCIO0} does not have a Power-On-Reset ramp down trip point. V_{CCIO0} must remain within the Recommended Operating Conditions to ensure proper operation.

Hot Socketing Specifications^{1, 2, 3}

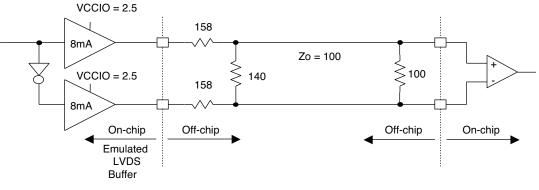
Symbol	Parameter	Condition	Max.	Units
I _{DK}	Input or I/O leakage Current	$0 < V_{IN} < V_{IH}$ (MAX)	+/-1000	μΑ

1. Insensitive to sequence of V_{CC} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCIO} .

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCIO} < V_{CCIO}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.


ESD Performance


Please refer to the MachXO2 Product Family Qualification Summary for complete qualification data, including ESD performance.

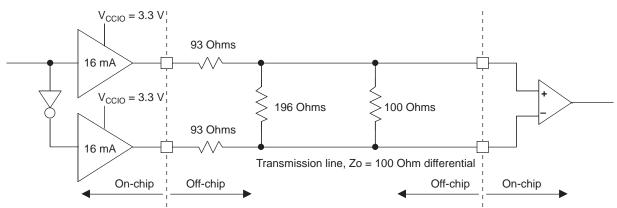
LVDS Emulation

MachXO3L/LF devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Note: All resistors are ±1%.

Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions


Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	158	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

LVPECL

The MachXO3L/LF family supports the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Differential LVPECL is one possible solution for point-to-point signals.

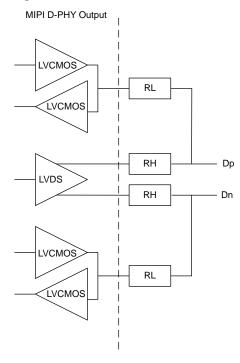
Figure 3-3. Differential LVPECL

Table 3-3. LVPECL DC Conditions¹

Symbol	Description	Nominal	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	93	Ohms
R _P	Driver parallel resistor	196	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	2.05	V
V _{OL}	Output low voltage	1.25	V
V _{OD}	Output differential voltage	0.80	V
V _{CM}	Output common mode voltage	1.65	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	12.11	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.


For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

	Description	Min.	Тур.	Max.	Units
Low Power					
VCCIO	VCCIO of the Bank with LVCMOS12D 6 mA drive bidirectional IO buffer		1.2		V
VIH	Logic 1 input voltage	—	_	0.88	V
VIL	Logic 0 input voltage, not in ULP State	0.55	_	_	V
VHYST	Input hysteresis	25	—	—	mV

1. Over Recommended Operating Conditions

Figure 3-5. MIPI D-PHY Output Using External Resistors

Maximum sysIO Buffer Performance

I/O Standard	Max. Speed	Units
MIPI	450	MHz
LVDS25	400	MHz
LVDS25E	150	MHz
BLVDS25	150	MHz
BLVDS25E	150	MHz
MLVDS25	150	MHz
MLVDS25E	150	MHz
LVPECL33	150	MHz
LVPECL33E	150	MHz
LVTTL33	150	MHz
LVTTL33D	150	MHz
LVCMOS33	150	MHz
LVCMOS33D	150	MHz
LVCMOS25	150	MHz
LVCMOS25D	150	MHz
LVCMOS18	150	MHz
LVCMOS18D	150	MHz
LVCMOS15	150	MHz
LVCMOS15D	150	MHz
LVCMOS12	91	MHz
LVCMOS12D	91	MHz

MachXO3L/LF External Switching Characteristics – C/E Devices^{1, 2, 3, 4, 5, 6, 10}

			_	6	-	5		
Parameter	Description	Device	Min.	Max.	Min. Max		. Units	
Clocks		I						
Primary Clo	ocks							
f _{MAX_PRI} ⁷	Frequency for Primary Clock Tree	All MachXO3L/LF devices		388	—	323	MHz	
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO3L/LF devices	0.5	_	0.6		ns	
		MachXO3L/LF-1300	_	867	—	897	ps	
		MachXO3L/LF-2100		867	_	897	ps	
t _{SKEW_PRI}	Primary Clock Skew Within a Device	MachXO3L/LF-4300	_	865	—	892	ps	
0.12.1		MachXO3L/LF-6900		902	_	942	ps	
		MachXO3L/LF-9400	_	908	_	950	ps	
Edge Clock								
f _{MAX_EDGE} ⁷	Frequency for Edge Clock	MachXO3L/LF		400	_	333	MHz	
_	n Propagation Delay							
t _{PD}	Best case propagation delay through one LUT-4	All MachXO3L/LF devices	_	6.72	_	6.96	ns	
General I/O	Pin Parameters (Using Primary Clock with	out PLL)		I			1	
		MachXO3L/LF-1300		7.46	—	7.66	ns	
		MachXO3L/LF-2100		7.46		7.66	ns	
t _{CO}	Clock to Output - PIO Output Register	MachXO3L/LF-4300	_	7.51	_	7.71	ns	
		MachXO3L/LF-6900	_	7.54	_	7.75	ns	
		MachXO3L/LF-9400 —		7.53	_	7.83	ns	
		MachXO3L/LF-1300	-0.20	-0.20 — -0.20		_	ns	
		MachXO3L/LF-2100	-0.20	—	-0.20	—	ns	
t _{SU}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	-0.23	—	-0.23	—	ns	
		MachXO3L/LF-6900	-0.23		-0.23	_	ns	
		MachXO3L/LF-9400	-0.24		-0.24	_	ns	
		MachXO3L/LF-1300	1.89		2.13	_	ns	
		MachXO3L/LF-2100	1.89		2.13		ns	
t _H	Clock to Data Hold - PIO Input Register	MachXO3L/LF-4300	1.94		2.18		ns	
		MachXO3L/LF-6900	1.98		2.23	_	ns	
		MachXO3L/LF-9400	1.99		2.24		ns	
		MachXO3L/LF-1300	1.61		1.76		ns	
		MachXO3L/LF-2100	1.61		1.76		ns	
t _{SU_DEL}	Clock to Data Setup - PIO Input Register	MachXO3L/LF-4300	1.66		1.81		ns	
JU_DLL	with Data Input Delay	MachXO3L/LF-6900	1.53		1.67		ns	
		MachXO3L/LF-9400	1.65		1.80		ns	
		MachXO3L/LF-1300	-0.23		-0.23		ns	
		MachXO3L/LF-2100	-0.23		-0.23		ns	
t _{H_DEL}	Clock to Data Hold - PIO Input Register with	MachXO3L/LF-4300	-0.25		-0.25		ns	
ILUEL	Input Data Delay	MachXO3L/LF-6900	-0.21	_	-0.21		ns	
		MachXO3L/LF-9400	-0.24	_	-0.24		ns	
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO3L/LF devices		388		323	MHz	

Over Recommended Operating Conditions

			_	-6		5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Units
MIPI D-PHY	Inputs with Clock and Data Centered at P	in Using PCLK Pin for Cloo	k Input	-			
	X.ECLK.Centered ^{10, 11, 12}		1	I	I		I
t _{SU} ¹⁵	Input Data Setup Before ECLK		0.200	—	0.200		UI
t _{HO} ¹⁵	Input Data Hold After ECLK	All MachXO3L/LF	0.200	—	0.200	—	UI
f _{DATA} ¹⁴	MIPI D-PHY Input Data Speed	devices, bottom side only		900	—	900	Mbps
f _{DDRX4} ¹⁴	MIPI D-PHY ECLK Frequency			450	—	450	MHz
f _{SCLK} ¹⁴	SCLK Frequency			112.5	—	112.5	MHz
Generic DDI	R Outputs with Clock and Data Aligned at I	Pin Using PCLK Pin for Clo	ck Input	– GDDF	RX1_TX.	SCLK.A	ligned ⁸
t _{DIA}	Output Data Invalid After CLK Output			0.520	—	0.550	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO3L/LF devices.		0.520	—	0.550	ns
f _{DATA}	DDRX1 Output Data Speed	all sides	—	300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK frequency			150	—	125	MHz
	R Outputs with Clock and Data Centered at	Pin Using PCLK Pin for Cloo	k Input	– GDDR	X1_TX.9	SCLK.Ce	entered ⁸
t _{DVB}	Output Data Valid Before CLK Output		1.210		1.510		ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO3L/LF	1.210		1.510		ns
f _{DATA}	DDRX1 Output Data Speed	devices,		300	—	250	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)	all sides	_	150	_	125	MHz
Generic DDF	RX2 Outputs with Clock and Data Aligned a	t Pin Using PCLK Pin for Clo	ock Inpu	t – GDD	RX2_TX	.ECLK.A	ligned ⁸
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	—	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output			0.200	—	0.215	ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices,		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK frequency	top side only		332	_	277	MHz
f _{SCLK}	SCLK Frequency			166	_	139	MHz
	RX2 Outputs with Clock and Data Centere	ed at Pin Using PCLK Pin fo	or Clock	Input –			
	K.ECLK.Centered ^{8, 9}	0		•			
t _{DVB}	Output Data Valid Before CLK Output		0.535		0.670	_	ns
t _{DVA}	Output Data Valid After CLK Output		0.535	—	0.670		ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO3L/LF devices,		664	—	554	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency (minimum limited by PLL)	top side only	_	332	_	277	MHz
f _{SCLK}	SCLK Frequency			166	—	139	MHz
Generic DD	L RX4 Outputs with Clock and Data Aligned K.ECLK.Aligned ^{8, 9}	at Pin Using PCLK Pin for	Clock I	nput –	1		
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	—	0.215	ns
t _{DIB}	Output Data Invalid Before CLK Output	-		0.200		0.215	ns
f _{DATA}	DDRX4 Serial Output Data Speed	MachXO3L/LF devices,		800		630	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	top side only		400		315	MHz
f _{SCLK}	SCLK Frequency	-		100		79	MHz
SOLK					1		

	MachXO3L/LF-9400C					
	CSFBGA256	CABGA256	CABGA400	CABGA484		
General Purpose IO per Bank		•		•		
Bank 0	50	50	83	95		
Bank 1	52	52	84	96		
Bank 2	52	52	84	96		
Bank 3	16	16	28	36		
Bank 4	16	16	24	24		
Bank 5	20	20	32	36		
Total General Purpose Single Ended IO	206	206	335	383		
Differential IO per Bank		•		•		
Bank 0	25	25	42	48		
Bank 1	26	26	42	48		
Bank 2	26	26	42	48		
Bank 3	8	8	14	18		
Bank 4	8	8	12	12		
Bank 5	10	10	16	18		
Total General Purpose Differential IO	103	103	168	192		
Dual Function IO	37	37	37	45		
Number 7:1 or 8:1 Gearboxes	•			•		
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	20	20	22	24		
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	20	20	22	24		
High-speed Differential Outputs	•			•		
Bank 0	20	20	21	24		
VCCIO Pins	•			•		
Bank 0	4	4	5	9		
Bank 1	3	4	5	9		
Bank 2	4	4	5	9		
Bank 3	2	1	2	3		
Bank 4	2	2	2	3		
Bank 5	2	1	2	3		
VCC	8	8	10	12		
GND	24	24	33	52		
NC	0	1	0	0		
Reserved for Configuration	1	1	1	1		
Total Count of Bonded Pins	256	256	400	484		

MachXO3L Ultra Low Power Commercial and Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-640E-5MG121C	640	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-640E-6MG121C	640	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-640E-5MG121I	640	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-640E-6MG121I	640	1.2 V	6	Halogen-Free csfBGA	121	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-1300E-5UWG36CTR	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36CTR50	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36CTR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	COM
LCMXO3L-1300E-5UWG36ITR	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5UWG36ITR50	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5UWG36ITR1K	1300	1.2 V	5	Halogen-Free WLCSP	36	IND
LCMXO3L-1300E-5MG121C	1300	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-1300E-6MG121C	1300	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-1300E-5MG1211	1300	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-1300E-6MG121I	1300	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-1300E-5MG256C	1300	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-1300E-6MG256C	1300	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-1300E-5MG256I	1300	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-1300E-6MG256I	1300	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-1300C-5BG256C	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-1300C-6BG256C	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-1300C-5BG256I	1300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-1300C-6BG256I	1300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-2100E-5UWG49CTR	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49CTR50	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49CTR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	COM
LCMXO3L-2100E-5UWG49ITR	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5UWG49ITR50	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5UWG49ITR1K	2100	1.2 V	5	Halogen-Free WLCSP	49	IND
LCMXO3L-2100E-5MG121C	2100	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-2100E-6MG121C	2100	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-2100E-5MG121I	2100	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-2100E-6MG121I	2100	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-2100E-5MG256C	2100	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-2100E-6MG256C	2100	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-2100E-5MG256I	2100	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-2100E-6MG256I	2100	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-2100E-5MG324C	2100	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-2100E-6MG324C	2100	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-2100E-5MG324I	2100	1.2 V	5	Halogen-Free csfBGA	324	IND

Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-2100E-6MG324I	2100	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3L-2100C-5BG256C	2100	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	СОМ
LCMXO3L-2100C-6BG256C	2100	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-2100C-5BG256I	2100	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-2100C-6BG256I	2100	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-2100C-5BG324C	2100	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3L-2100C-6BG324C	2100	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	COM
LCMXO3L-2100C-5BG324I	2100	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3L-2100C-6BG324I	2100	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
				·		
Part Number	LUTs	Supply Voltage	Speed	Package	Leads	Temp.
LCMXO3L-4300E-5UWG81CTR	4300	1.2 V	5	Halogen-Free WLCSP	81	COM
LCMXO3L-4300E-5UWG81CTR50	4300	1.2 V	5	Halogen-Free WLCSP	81	COM
LCMXO3L-4300E-5UWG81CTR1K	4300	1.2 V	5	Halogen-Free WLCSP	81	COM
LCMXO3L-4300E-5UWG81ITR	4300	1.2 V	5	Halogen-Free WLCSP	81	IND
LCMXO3L-4300E-5UWG81ITR50	4300	1.2 V	5	Halogen-Free WLCSP	81	IND
LCMXO3L-4300E-5UWG81ITR1K	4300	1.2 V	5	Halogen-Free WLCSP	81	IND
LCMXO3L-4300E-5MG121C	4300	1.2 V	5	Halogen-Free csfBGA	121	COM
LCMXO3L-4300E-6MG121C	4300	1.2 V	6	Halogen-Free csfBGA	121	COM
LCMXO3L-4300E-5MG121I	4300	1.2 V	5	Halogen-Free csfBGA	121	IND
LCMXO3L-4300E-6MG121I	4300	1.2 V	6	Halogen-Free csfBGA	121	IND
LCMXO3L-4300E-5MG256C	4300	1.2 V	5	Halogen-Free csfBGA	256	COM
LCMXO3L-4300E-6MG256C	4300	1.2 V	6	Halogen-Free csfBGA	256	COM
LCMXO3L-4300E-5MG256I	4300	1.2 V	5	Halogen-Free csfBGA	256	IND
LCMXO3L-4300E-6MG256I	4300	1.2 V	6	Halogen-Free csfBGA	256	IND
LCMXO3L-4300E-5MG324C	4300	1.2 V	5	Halogen-Free csfBGA	324	COM
LCMXO3L-4300E-6MG324C	4300	1.2 V	6	Halogen-Free csfBGA	324	COM
LCMXO3L-4300E-5MG324I	4300	1.2 V	5	Halogen-Free csfBGA	324	IND
LCMXO3L-4300E-6MG324I	4300	1.2 V	6	Halogen-Free csfBGA	324	IND
LCMXO3L-4300C-5BG256C	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	COM
LCMXO3L-4300C-6BG256C	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	COM
LCMXO3L-4300C-5BG256I	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	256	IND
LCMXO3L-4300C-6BG256I	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	256	IND
LCMXO3L-4300C-5BG324C	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	COM
LCMXO3L-4300C-6BG324C	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	СОМ
LCMXO3L-4300C-5BG324I	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	324	IND
LCMXO3L-4300C-6BG324I	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	324	IND
LCMXO3L-4300C-5BG400C	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	СОМ
LCMXO3L-4300C-6BG400C	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	СОМ
LCMXO3L-4300C-5BG400I	4300	2.5 V / 3.3 V	5	Halogen-Free caBGA	400	IND
LCMXO3L-4300C-6BG400I	4300	2.5 V / 3.3 V	6	Halogen-Free caBGA	400	IND

MachXO3 Family Data Sheet Supplemental Information

January 2016

Advance Data Sheet DS1047

For Further Information

A variety of technical notes for the MachXO3 family are available on the Lattice web site.

- TN1282, MachXO3 sysCLOCK PLL Design and Usage Guide
- TN1281, Implementing High-Speed Interfaces with MachXO3 Devices
- TN1280, MachXO3 sysIO Usage Guide
- TN1279, MachXO3 Programming and Configuration Usage Guide
- TN1074, PCB Layout Recommendations for BGA Packages
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- AN8066, Boundary Scan Testability with Lattice sysIO Capability
- MachXO3 Device Pinout Files
- Thermal Management document
- Lattice design tools

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.