

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs001-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, included in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—		ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF		T2IF	—	-	—	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	—		INT2IF			-	—		—	—		INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	008A	-		—			l	PSEMIF		_	_		_	—		—	_	0000
IFS4	008C	—	_	—	_	_	_	—	_	_	—	_	—	—	_	U1EIF	—	0000
IFS5	008E	PWM2IF	PWM1IF	—	-	—	_	—	_	—	—	_	—	—	-	—	JTAGIF	0000
IFS6	0090	ADCP1IF	ADCP0IF	—	_	_	_	—	_	AC2IF	—	_	_	—	_	—	—	0000
IFS7	0092	—	_	—	_	_	_	—		—	—	_	ADCP6IF	—	_	—	ADCP2IF	0000
IEC0	0094	—	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE		T2IE	—	_	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096		_	INT2IE	_	_		_	_				INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC3	009A		_	_	_	_		PSEMIE	_				_	—	_	—		0000
IEC4	009C	—	—	—	—	—	—	—	—	—	—	—	—	—	—	U1EIE	—	0000
IEC5	009E	PWM2IE	PWM1IE	—	_	_	_	—	_	—	—	_	—	—	_	—	JTAGIE	0000
IEC6	00A0	ADCP1IE	ADCP0IE	—	_	_		—	_	AC2IE	—	_	—	—	_	—	—	0000
IEC7	00A2	—	—	—	—	_	_	—	—	—	—	—	ADCP6IE	—	—	_	ADCP2IE	0000
IPC0	00A4	—		T1IP<2:0>		_		OC1IP<2:0)>	—	IC1IP<2:0>		—		INT0IP<2:0>		4444	
IPC1	00A6			T2IP<2:0>			—	—	—	_	_	—	—	—		_		4000
IPC2	00A8			U1RXIP<2:0	>			SPI1IP<2:0)>	_	SPI1EIP<2:0>		—	—			4440	
IPC3	00AA		_		—		—	—	—			ADIP<2:0>)IP<2:0> — U1TXIP<2:0>		•	0044		
IPC4	00AC			CNIP<2:0>	•			AC1IP<2:0	>	_	Ν	/II2C1IP<2:0)>	—	ŝ	SI2C1IP<2:0>	>	4444
IPC5	00AE			—				_		_	_	—	—	—		INT1IP<2:0>		0004
IPC7	00B2			—				_		_		INT2IP<2:0	>	—		_		0040
IPC14	00C0	—	_	—	_	_	_	—	_	—	F	PSEMIP<2:0)>	—	—	_	—	0040
IPC16	00C4	—	_	—	_	_	_	—	_	—		U1EIP<2:0	>	—	—	_	_	0040
IPC20	00CC	—	—	—	—	_	_	—	—	—	—	_	—	—		JTAGIP<2:0>	•	0004
IPC23	00D2	—	I	PWM2IP<2:0)>	_	P	WM1IP<2:	0>	_	—	_	—	—	_	—	—	4400
IPC25	00D6	—		AC2IP<2:0	>	_	—	—	—	—	—	_	—	—	_	—	—	4000
IPC27	00DA	—	A	ADCP1IP<2:	0>	—	A	DCP0IP<2	:0>	—	—	—	—	—	—	—	—	4400
IPC28	00DC	—	_	—	—	—	_	—	—	—	—	_	—	—	A	DCP2IP<2:0	>	0004
IPC29	00DE	—	_	—	_	—	—	—	—	—	—	—	—	—	A	DCP6IP<2:0	>	0004
INTTREG	00E0	—	—	—	—		ILR<	3:0>		—			١	/ECNUM<6:0)>			0000

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS202A DEVICES ONLY

Addressing Mode	Description
File Register Direct	The address of the File register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-39: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.4.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (register offset)
	field is shared by both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- · Register Indirect Post-modified by 2
- · Register Indirect Post-modified by 4
- Register Indirect Post-modified by 6
- Register Indirect with Register Offset (Indexed)

4.4.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

FIGURE 4-8: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- alignment of data in the program and data spaces.
 - 2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred

bit 0 POR: Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

REGISTER 7	-6: IFS1: I	NTERRUPT	FLAG STAT	US REGISTE	ER 1							
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
	_	INT2IF		_	_	_	—					
bit 15							bit 8					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
		<u> </u>	INT1IF	CNIF	AC1IF ⁽¹	MI2C1IF	SI2C1IF					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown						
bit 15-14	Unimplement	ted: Read as ')'									
bit 13	INT2IF: Extern	nal Interrupt 2	Flag Status bi	it								
	1 = Interrupt r	equest has occ	curred									
bit 10 E		ted: Deed as '	, occurred									
bit 4		nal Interrunt 1) Elaa Status bi	+								
DIL 4	1 = Interrupt r		riay Status Di	it.								
	0 = Interrupt r	equest has not	occurred									
bit 3	CNIF: Input C	hange Notifica	tion Interrupt	Flag Status bit								
	1 = Interrupt r	equest has occ	curred	•								
	0 = Interrupt request has not occurred											
bit 2	AC1IF: Analog	g Comparator	1 Interrupt Fla	ag Status bit ⁽¹⁾								
	1 = Interrupt request has occurred											
h:4 4		equest has hol		an Chatura bit								
DIT				ag Status bit								
	0 = Interrupt r	equest has not	occurred									
bit 0	SI2C1IF: I2C1	1 Slave Events	Interrupt Flac	o Status bit								
	1 = Interrupt r	equest has occ	curred	,								
	0 = Interrupt r	equest has not	occurred									

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

10.9 Peripheral Pin Select Registers

The following registers are implemented for remappable peripheral configuration:

- 15 Input Remappable Peripheral Registers
- 19 Output Remappable Peripheral Registers
- Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.6.3.1 "Control Register Lock" for a specific command sequence.

Not all Output Remappable Peripheral registers are implemented on all devices. See the register description of the specific register for further details.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
-	—		INT1R<5:0>									
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_	_	_	_	_	_	_					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 7-0

bit 13-8 INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss
100011 = Input tied to RP35
100010 = Input tied to RP34
100001 = Input tied to RP33
100000 = Input tied to RP32
•
•
•
00000 = Input tied to RP0
Unimplemented: Read as '0'

bit 0

REGISTER 15-2:	PTCON2: PWM CLOCK DIVIDER SELECT REGISTER 2
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	_		—	_		_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	_	—	—	PCLKDIV<2:0> ⁽¹⁾			
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPEF	R <15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R <7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at POR '1' =		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This	insures	that	the	first	fr	ame
	transmission a		after	initializa	ation	is	not
	shifte	shifted or corrupted.					

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- **Note:** Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI Shift register and is empty once the data transmission begins.

16.2 SPI Resources

Many useful resources related to SPI are provided on the Microchip web site (www.microchip.com).

16.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33F/PIC24H Family Reference Manual"* Sections
- · Development Tools

REGISTER 19-7: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3⁽¹⁾ (CONTINUED)

```
bit 4-0
              TRGSRC6<4:0>: Trigger 6 Source Selection bits
              Selects trigger source for conversion of analog channels AN13 and AN12.
               11111 = Timer2 period match
              11011 = Reserved
              11010 = PWM Generator 4 current-limit ADC trigger
              11001 = Reserved
              11000 = PWM Generator 2 current-limit ADC trigger
              10111 = PWM Generator 1 current-limit ADC trigger
              10110 = Reserved
              10010 = Reserved
              10001 = PWM Generator 4 secondary trigger is selected
              10000 = Reserved
              01111 = PWM Generator 2 secondary trigger is selected
              01110 = PWM Generator 1 secondary trigger is selected
              01101 = Reserved
```

01100 = Timer1 period match • 01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00110 = Reserved 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00011 = Global software trigger is selected 00001 = Individual software trigger is selected 00000 = No conversion is enabled

- **Note 1:** If other conversions are in progress, conversion will be performed when the conversion resources are available.
 - 2: AN13 is internally connected to Vref in all devices. AN12 is internally connected to the EXTREF pin in the dsPIC33FJ06001/202A and dsPIC33FJ09GS302 devices. The dsPIC33FJ06GS101A/102A devices not have an EXTREF pin; therefore, any data read on the corresponding AN12 input will be invalid.

	(1)			K/VV-U			
CMPON		CMPSIDL	HISSE	L<1:0>(*)	FLIREN	FULKSEL	DACOE
Dit 15							bit 8
DAMA	DAMA	DAMA	DAMA	D 444 0	DANA		DAMA
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INS	SEL<1:0>(")	EXTREP	HYSPOL	CMPSIAT	HGAIN	CMPPOL ⁽¹⁾	RANGE("
bit 7							bit 0
Legena:	abla bit		- :4		anted hit read		
R = Reada			DIT	U = Unimplem	ented bit, read		
-n = value	at POR	"1" = Bit is set		.0. = Bit is clea	red	x = Bit is unkno	own
L:1 4 F			41	(1)			
DIC 15		nparator Opera	ung wode bit				
	0 = Comparat	tor module is di	sabled (redu	ces power consu	(noitam		
bit 14	Unimplemen	ted: Read as ')'		I /		
bit 13	CMPSIDL: St	op in Idle Mode	e bit ⁽¹⁾				
	1 = Discontin	ues module ope	eration when	device enters Id	le mode.		
	0 = Continues	s module opera	tion in Idle m	ode			
	If a device has	s multiple comp	parators, any	CMPSIDL bit the	at is set to '1' o	disables <i>all</i> comp	arators while
hit 10 11		>. Comparator	Uvotorogia S	alaat hita(1)			
DIL 12-11	11 = 45 mV h		nysteresis 5	elect bits, ,			
	10 = 30 mV h	vsteresis					
	01 = 15 mV h	ysteresis					
	00 = No hyste	eresis is selecte	ed				
bit 10	FLTREN: Dig	ital Filter Enabl	e bit ⁽¹⁾				
	1 = Digital filte	er is enabled					
h:1 0		er is disabled			ь: . (1)		
DIT 9		igital Fliter and	Puise Stretcr	ter Clock Select			
	1 = Digital filte	er and pulse str	etcher opera	te with the syste	m clock		
bit 8	DACOE: DAC	C Output Enable					
	1 = DAC anal	og voltage is o	- utput to DAC	OUT pin ⁽²⁾			
	0 = DAC anal	og voltage is n	ot connected	to DACOUT pin			
bit 7-6	INSEL<1:0>:	Input Source S	elect for Con	nparator bits ⁽¹⁾			
	11 = Select C	MPxD input pir	า				
	10 = Select C	MPxC input pir	ו				
		MPXB input pir	1				
		in vi input pli					
Note 1:	This bit is not imple	emented in dsF	IC33FJ06GS	3101A/102A devi	ices.		
2:	DACOUT can be a	ssociated only	with a single	comparator at a	ny given time.	The software m	ust ensure
	that multiple compa	arators do not e	enable the DA	AC output by set	ting their resp	ective DACOE bi	it.

REGISTER 20-1: CMPCONX: COMPARATOR CONTROL x REGISTER

3: For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in Section 25.0 "Electrical Characteristics".

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

DC CHARACT	ERISTICS		Standard O Operating te	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param.	Typical ⁽¹⁾	Max.	Units	Units Conditions					
Power-Down	Current (IPD)	(2,4)							
DC60d	125	500	μA	-40°C					
DC60a	135	500	μA	+25°C	3 3//	Base Power-Down Current			
DC60b	235	500	μA	+85°C	3.3V				
DC60c	565	950	μA	+125°C					
DC61d	40	50	μA	-40°C					
DC61a	40	50	μA	+25°C	2 21/	Matchdog Timor Current: Alapt(3)			
DC61b	40	50	μA	+85°C	3.3V				
DC61c	80	90	μA	+125°C					

TABLE 25-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

- 2: IPD current is measured as follows:
 - CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
 - CLKO is configured as an I/O input pin in the Configuration Word
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD, WDT and FSCM are disabled
 - All peripheral modules are disabled (PMDx bits are all '1's)
 - VREGS bit (RCON<8>) = 1 (i.e., core regulator is set to standby while the device is in Sleep mode)
 - **3:** The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
 - 4: These currents are measured on the device containing the most memory in this family.

DC CHARACTERISTICS			Standard (unless Operatin	d Opera otherwi g tempe	iting Co se state erature	s: 3.0V to 3.6V ≤ Ta ≤ +85°C for Industrial ≤ Ta ≤ +125°C for Extended	
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA2, RB0-RB2, RB5-RB10, RB15	_	_	0.4	V	IOL ≤ 6 mA, VDD = 3.3V ⁽¹⁾
		Output Low Voltage I/O Pins: 16x Sink Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	_	_	0.4	V	IOL ≤ 18 mA, VDD = 3.3V ⁽¹⁾
DO20 Voh	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5-RB10, RB15	2.4	_	_	V	IOH ≥ -6 mA, VDD = 3.3V ⁽¹⁾
		Output High Voltage I/O Pins: 16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	2.4	_	_	V	IOH ≥ -18 mA, VDD = 3.3V ⁽¹⁾
DO20A	VoH1	Output High Voltage	1.5	—	—	V	$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$
		4x Source Driver Pins – RA0-RA2,	2.0	_			$IOH \ge -11 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$
		RB0-RB2, RB5-RB10, RB15	3.0		_		$IOH \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$
		Output High Voltage	1.5	_	—	V	$IOH \ge -30 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$
		I/O Pins: 16x Source Driver Pins – RA3,	2.0	—	—	Ì	$IOH \ge -25 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$
	RA4, RB3, RB4, RB11-RB14	3.0		—		$IOH \ge -8 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$	

TABLE 25-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: These parameters are characterized, but not tested.

TABLE 25-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Oper (unless otherw Operating temp	ating Co ise state erature	ondition ed) -40°C ⊴ -40°C ≤	s: 3.0V 1 ≤ Ta ≤ +8 ≤ Ta ≤ +1	t o 3.6V⁽³⁾ 5°C for Ir 25°C for I	ndustrial Extended	
Param.	Symbol	Characteristic		Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Tra High-to-Low BOR Event is Tied to V Voltage Decrease	BOR Event on VDD Transition High-to-Low BOR Event is Tied to VDD Core Voltage Decrease			2.96	V	(See Note 2)

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: The device will operate as normal until the VDDMIN threshold is reached.

3: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

TABLE 25-33:SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria					
			$-40^{\circ}\text{C} \le \text{TA} \le +00^{\circ}\text{C}$ for External $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for External $-40^{\circ}\text{C} \le 10^{\circ}\text{C}$ s and $-40^{\circ}\text{C} \ge 10^{\circ}\text{C}$ s and $-40^{\circ}\text{C} \simeq 10^{\circ}\text{C}$ s and $-40^{\circ}\text{C} $			+125°C for Extended		
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	_	_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	-	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

АС СНА	RACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	I Characteristic		Min. ⁽¹⁾	Max.	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs		
IM20	TF:SCL	SDA1 and SCL1	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21	TR:SCL	SDA1 and SCL1	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 pF	
			1 MHz mode ⁽²⁾		300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns		
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	40	_	ns		
IM26	IM26 THD:DAT Data Inpu		100 kHz mode	0	_	μs		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2	_	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns		
		From Clock	400 kHz mode	_	1000	ns		
			1 MHz mode ⁽²⁾		400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be	
			400 kHz mode	1.3	_	μS	free before a new	
			1 MHz mode ⁽²⁾	0.5	_	μS	transmission can start	
IM50	Св	Bus Capacitive L	oading	—	400	pF		
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3	

TABLE 25-37: I2C1 BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

рс сн	ARACTER	ISTICS ⁽¹⁾	Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments		
DA11	Rload	Resistive Output Load Impedance	ЗK	_	—	Ohm			
_	CLOAD	Output Load Capacitance	—	—	35	pF	Including output pin capacitance		
DA12	Ιουτ	Output Current Drive Strength	200	300	—	μA	Sink and source		
DA13	VRANGE	Output Drive Voltage Range at Current Drive of 200 mA	AVss + 250 mV	_	AVDD – 900 mV	V			
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 mA	AVss + 5 mV	—	AVDD – 500 mV	V			
DA15	IDD	Current Consumed when Module Is Enabled	_	—	1.3 x Iоυт	μΑ	Module will always con- sume this current even if no load is connected to the output		
DA16	ROUTON	Output Impedance when Module is Enabled	_	820	_	Ohms			
DA30	VOFFSET	Input Offset Voltage	—	±10	10	mV			

TABLE 25-43: DAC OUTPUT (DACOUT PIN) DC SPECIFICATIONS

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

TABLE 25-44: DAC GAIN STAGE TO COMPARATOR SPECIFICATIONS

DC CHARACTERISTICS ⁽¹⁾				$\begin{array}{l} \mbox{Standard Operating Conditions} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature: } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DA15	IDD	Current Consumed when Module Is Enabled.	_	60	_	μA	Module will always consume this current even if no load is connected to the output	
DA32	G	Amplifier Gain	—	1.0	_	_		
			—	1.8		_		
DA33	GBWP	Gain Bandwidth Product		2.0		MHz	At 1 pF load capacitance. Measured with sine wave output signal of 1V peak-to-peak with a midpoint value of 1.2V. Voltage excursion from 0.7 to 1.7V.	
DA34	SR	Slew Rate	—	5	_	V/µs	Slew rate between 10% and 90% of AVDD	
DA07	Ts	Settling Time	_	200		ns	Settling time to 3%	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

26.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX			
Number of Pins	Ν		28				
Pitch	е		0.65 BSC				
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	Е	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	с	0.09	-	0.25			
Foot Angle	¢	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

INDEX

Α	
AC Characteristics	282
Internal LPRC Accuracy	285
Internal RC Accuracy	285
Load Conditions	282
Temperature and Voltage Specifications	282
Alternate Interrupt Vector Table (AIVT)	87
Arithmetic Logic Unit (ALU)	31
Assembler	
MPASM Assembler	268
Auxiliary Clock Generation	125
В	
Bit-Reversed Addressing	69
Example	70
Implementation	69
Sequence Table (16-Entry)	70
Block Diagrams	
16-Bit Timer1 Module	173
Boost Converter Implementation	21
Connections for On-Chip Voltage Regulator	256
Constant Current Source	249
CPU Core	26
Digital PFC	21
DSP Engine	32
dsPIC33FJ06GS001 Device ADC	226
dsPIC33FJ06GS001/101A/102A/202A	and
dsPIC33FJ09GS302	14
dsPIC33FJ06GS101A Device ADC	227
dsPIC33FJ06GS102A Device ADC	228
dsPIC33FJ06GS202A Device ADC	229
dsPIC33FJ09GS302 Device ADC	230
High-Speed Analog Comparator	243
	245
	212
Input Capture	1//
Interleaved PFC	22
MULR PIN Connections	18
	. 150
Output Compare	170
Dutput Compare	179
Partitioned Output Pair, Complementary	196
P WWW WOULE	100 22
Phase-Shinted Full-Bhage Converter	125
Recommended Minimum Connection	120
Remanable MUX Input for U1RX	148
Reset System	140
Shared Port Structure	146
Simplified Conceptual High-Speed PWM	185
Single-Phase Synchronous Buck Converter	22
SPI	205
Type B Timer2	175
UART	210
Watchdog Timer (WDT)	257
Brown-out Reset (BOR)	. 256
	,

С

C Compilers	
MPLAB C18	268
Capacitor on Internal Voltage Regulator (VCAP)	18
Clock Switching	134
Enabling	134
Sequence	134
Code Examples	
Port Write/Read	147
PWRSAV Instruction Syntax	137
Code Protection	251
Configuration Bits	251
Description	254
Configuring Analog Port Pins	147
Constant Current Source	
Description	249
Features	249
CPU	
Barrel Shifter	35
Control Registers	28
Data Addressing Overview	25
DSP Engine Overview	25
MCU Special Features	
Special Features	251
CPU Clocking System	124
PLL Configuration	125
Selection	124
Sources	124
Customer Change Notification Service	346
Customer Notification Service	346
Customer Support	346

D

DAC	244
Buffer Gain	244
Output Range	245
Data Accumulators and Adder/Subtracter	33
Data Space Write Saturation	35
Overflow and Saturation	33
Round Logic	34
Write Back	34
Data Address Space	39
Alignment	39
Memory Map for Devices with 1 Kbyte of RAM	41
Memory Map for Devices with 256 Bytes of RAM.	40
Near Data Space	39
Software Stack	66
Width	39
X and Y Data	42
DC and AC Characteristics	
Graphs and Tables	315
DC Characteristics	
Doze Current (IDOZE)	277
I/O Pin Input Specifications	278
I/O Pin Output Specifications	280
Idle Current (IIDLE)	275
Operating Current (IDD)	274
Operating MIPS vs. Voltage	272
Power-Down Current (IPD)	276
Program Memory	281
Temperature and Voltage Specifications	273