

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs001-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 4-34: PMD REGISTER MAP FOR dsPIC33FJ06GS001

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	_	_	T2MD	T1MD	_	PWMMD	-	I2C1MD	_	—	—		_		ADCMD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	_	_	0000
PMD4	0776	_	_	_		—	_			_		—	—	REFOMD	_	_	_	0000
PMD6	077A	_	_	_		PWM4MD	_		PWM1MD	_		—	—		_	_	_	0000
PMD7	077C	_	_	_		—	_	CMPMD2	CMPMD1	_	_	_	—		_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PMD REGISTER MAP FOR dsPIC33FJ06GS101A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770		—		T2MD	T1MD	_	PWMMD	-	I2C1MD		U1MD	_	SPI1MD	_	_	ADCMD	0000
PMD2	0772	_	_	_		_	_		_			—	_		_		OC1MD	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_		_	REFOMD		_	_	0000
PMD6	077A	—	_	-		PWM4MD	_	-	PWM1MD			_	—		_			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PMD REGISTER MAP FOR dsPIC33FJ06GS102A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770			_	T2MD	T1MD	_	PWMMD	_	I2C1MD	_	U1MD	_	SPI1MD	_	_	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	_	_	_		_	_	_	_	_	OC1MD	0000
PMD4	0776	_	_	_	_	_	_	_	_	_		_	_	REFOMD	_	_	_	0000
PMD6	077A	_	_	_	_	_	_	PWM2MD	PWM1MD	_	_	—	_	-	_	—	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.10 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note:	The status bits in the RCON register
	should be cleared after they are read so
	that the next RCON register value, after a
	device Reset, will be meaningful.

TABLE 6-3: RESET FLAG BIT OPERATION

Flag Bit Set by: Cleared by: TRAPR (RCON<15>) Trap conflict event POR, BOR IOPWR (RCON<14>) POR, BOR Illegal opcode or uninitialized W register access or Security Reset CM (RCON<9>) **Configuration Mismatch** POR, BOR EXTR (RCON<7>) MCLR Reset POR SWR (RCON<6>) RESET instruction POR, BOR WDTO (RCON<4>) WDT time-out PWRSAV instruction, CLRWDT instruction, POR, BOR SLEEP (RCON<3>) PWRSAV #SLEEP instruction POR, BOR POR, BOR IDLE (RCON<2>) PWRSAV #IDLE instruction BOR (RCON<1>) POR, BOR POR (RCON<0>) POR

Note: All Reset flag bits can be set or cleared by user software.

Table 6-3 provides a summary of the Reset flag bit operation.

REGISTER	7-13: IEC1:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 1					
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
_		INT2IE	—	_	_	_				
bit 15					•		bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	_	—	INT1IE	CNIE	AC1IE ⁽¹⁾	MI2C1IE	SI2C1IE			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-14	-	ted: Read as '								
bit 13		rnal Interrupt 2								
		request is enab request is not e								
bit 12-5		ited: Read as '								
bit 4	-	rnal Interrupt 1								
Dil 4		request is enab								
		request is not e								
bit 3	CNIE: Input C	Change Notifica	tion Interrupt	Enable bit						
		request is enab								
	•	request is not e								
bit 2		og Comparator		able bit ⁽¹⁾						
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 									
bit 1	•	•		aabla bit						
	MI2C1IE: I2C1 Master Events Interrupt Enable bit 1 = Interrupt request is enabled									
	0 = Interrupt request is not enabled									
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit									
		request is enab	•							
	0 = Interrupt r	request is not e	nabled							

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER 7	-17: IEC6: I	INTERRUPT	ENABLE CO		GISTER 6				
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
ADCP1IE	ADCP0IE		—	_	—	—	_		
bit 15							bit 8		
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
AC2IE ⁽¹⁾			—	—		PWM4IE ⁽²⁾	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 14	 ADCP1IE: ADC Pair 1 Conversion Done Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled ADCP0IE: ADC Pair 0 Conversion Done Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 								
bit 13-8	Unimplemen	ted: Read as '	C						
bit 7	AC2IE: Analog Comparator 2 Interrupt Enable bit ⁽¹⁾ 1 = Interrupt request is enabled 0 = Interrupt request is not enabled								
bit 6-2	Unimplemented: Read as '0'								
bit 1	PWM4IE: PWM4 Interrupt Enable bit ⁽²⁾								
		request is enab request is not e							
bit 0	Unimplemen	ted: Read as '	כי						

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

2: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—		ILI	R<3:0>	
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
—				VECNUM<6:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpleme	nted bit, re	ad as '0'	
-n = Value at	POR		'0' = Bit is cleare	ed	x = Bit is unkn	own	
bit 15-12	Unimpleme	nted: Read as '0'					
bit 11-8	ILR<3:0>: ℕ	lew CPU Interrupt	t Priority Lev	/el bits			
	1111 = CPL	J Interrupt Priority	Level is 15				
	•						
	•						
	• 0001 = CPI	J Interrupt Priority	l evel is 1				
		J Interrupt Priority					
bit 7	Unimpleme	nted: Read as '0'					
bit 6-0	-	:0>: Vector Numb		ng Interrupt bits			
		Interrupt vector pe		•			
	•	··· · · · · · · · · · ·	J				
	•						
	•	Interruption	anding in Ne	mbor 0			
		Interrupt vector pe Interrupt vector pe	•				
	- 0000000 -						

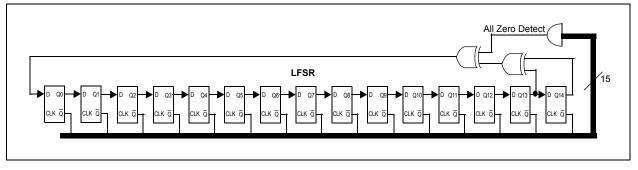
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ROON		ROSSLP	ROSEL		RODIV	′<3:0>(1)					
bit 15			1	l			bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
		_		_	—	_					
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	ROON: Ref	erence Oscillato	r Output Enab	le bit							
	1 = Referen	ce oscillator out	out is enabled	on REFCLK0	pin ⁽²⁾						
	0 = Referen	ce oscillator out	out is disabled	I							
bit 14	Unimpleme	Unimplemented: Read as '0'									
bit 13	ROSSLP: R	Reference Oscilla	tor Run in Sle	ep bit							
	1 = Referen	ce oscillator out	out continues	to run in Sleep)						
	0 = Referen	ce oscillator out	out is disabled	l in Sleep							
bit 12	ROSEL: Re	ference Oscillato	or Source Sele	ect bit							
		or crystal used as clock used as th									
bit 11-8	RODIV<3:0>: Reference Oscillator Divider bits ⁽¹⁾										
	1111 = Reference clock divided by 32,768										
	1110 = Reference clock divided by 16,384										
	1101 = Reference clock divided by 8,192										
	1100 = Reference clock divided by 4,096										
	1011 = Reference clock divided by 2,048										
	1010 = Reference clock divided by 1,024 1001 = Reference clock divided by 512										
		erence clock divi									
		erence clock divi									
		erence clock divi									
	0101 = Reference clock divided by 32 0100 = Reference clock divided by 16										
		erence clock divi									
		erence clock divi	•								
		erence clock divi									
	0001 = Refe										

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable; refer to Section 10.6 "Peripheral Pin Select (PPS)" for more information.

8.6 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate, even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.


If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

8.7 Pseudo-Random Generator

The pseudo-random generator is implemented with a 15-bit Linear Feedback Shift Register (LFSR), which is a shift register with a few exclusive OR gates. The shift register is clocked by the PWM clock and is a read-only register. The purpose of this feature is to provide the ability to randomly change the period or the active portion of the PWM.

A firmware routine can be used to read "n" random bits from the LFSR register and combine them, by either summing or performing another logical operation with the PWM period of the Duty Cycle registers. The result will be a PWM signal whose nominal period (or duty cycle) is the desired one, but whose effective value changes randomly. This capability will help in reducing the EMI/EMC emissions by spreading the power over a wider frequency range.

Figure 8-3 provides a block diagram of the LFSR.

9.5 PMD Control Registers

U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_			T2MD	T1MD	_	PWMMD ⁽¹⁾	
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	_	U1MD ⁽²⁾	_	SPI1MD ⁽²⁾	_	—	ADCMD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	T2MD: Timer2 Module Disable bit
	1 = Timer2 module is disabled
	0 = Timer2 module is enabled
bit 11	T1MD: Timer1 Module Disable bit
	1 = Timer1 module is disabled
	0 = Timer1 module is enabled
bit 10	Unimplemented: Read as '0'
bit 9	PWMMD: PWM Module Disable bit ⁽¹⁾
	1 = PWM module is disabled
	0 = PWM module is enabled
bit 8	Unimplemented: Read as '0'
bit 7	I2C1MD: I2C1 Module Disable bit
	1 = I2C1 module is disabled
1.11.0	0 = I2C1 module is enabled
bit 6	Unimplemented: Read as '0'
bit 5	U1MD: UART1 Module Disable bit ⁽²⁾
	1 = UART1 module is disabled 0 = UART1 module is enabled
h:t 4	
bit 4	Unimplemented: Read as '0'
bit 3	SPI1MD: SPI1 Module Disable bit ⁽²⁾
	1 = SPI1 module is disabled 0 = SPI1 module is enabled
bit 2-1	Unimplemented: Read as '0'
	ADCMD: ADC Module Disable bit
bit 0	
	1 = ADC module is disabled 0 = ADC module is enabled
Note 1:	Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be
11010 11	

- **Note 1:** Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be re-initialized.
 - 2: This bit is not implemented in the dsPIC33FJ06GS001 device.

11.1 Timer1 Control Register

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON		TSIDL					—			
bit 15						1	bit			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
—	TGATE	TCKP	S<1:0>		TSYNC	TCS				
bit 7							bit			
Legend:	- 1-14		L 14			l (0'				
R = Readabl		W = Writable		-	mented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own			
		0.1.1								
bit 15	TON: Timer1									
	1 = Starts 16 0 = Stops 16									
bit 14	-	nted: Read as '	∩'							
bit 13	-									
	TSIDL: Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode									
		s module opera								
bit 12-7	Unimplemented: Read as '0'									
bit 6	TGATE: Time	er1 Gated Time	Accumulatio	n Enable bit						
	<u>When TCS = 1:</u> This bit is ignored.									
	When TCS = 0:									
	1 = Gated time accumulation is enabled									
		ne accumulatio								
bit 5-4		Timer1 Input	Clock Presca	ale Select bits						
	11 = 1:256 10 = 1:64									
	01 = 1:8									
	00 = 1:1									
bit 3	Unimplemer	nted: Read as '	0'							
bit 2	TSYNC: Time	er1 External Cl	ock Input Syr	hchronization S	elect bit					
	When TCS =									
		nizes external o		innut						
	When TCS =	synchronize e		input						
	This bit is ign									
bit 1	•	Clock Source	Select bit							
		clock from T1C		risina edae)						
	0 = Internal c		P (* * *	5 - 5 - 7						

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER

bit 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			DTR	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

hit	0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			ALTDT	Rx<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-U	R/W-U	R/W-U			R/W-U	R/W-U	K/W-U
			ALTD	FR <7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This	insures	that	the	first	fr	ame
	transr	nission	after	initializ	ation	is	not
	shifted or corrupted.						

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI Shift register and is empty once the data transmission begins.

16.2 SPI Resources

Many useful resources related to SPI are provided on the Microchip web site (www.microchip.com).

16.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33F/PIC24H Family Reference Manual"* Sections
- · Development Tools

REGISTER 18-1: U1MODE: UART1 MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit ⁽³⁾
	1 = U1RX Idle state is '0'
	0 = U1RX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit ⁽³⁾
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits ⁽³⁾
	11 = 9-bit data, no parity
	10 = 8-bit data, odd parity
	01 = 8-bit data, even parity
	00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit ⁽³⁾
	1 = Two Stop bits
	0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).
 - 3: This bit is not available in the dsPIC33FJ06GS001 device.

TABLE 22-3: 0	ISPIC33F CONFIGURATION BITS DESCRIPTION
Bit Field	Description
GCP	General Segment Code-Protect bit
	1 = User program memory is not code-protected
	0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit
	1 = User program memory is not write-protected
	0 = User program memory is write-protected
IESO	Two-Speed Oscillator Start-up Enable bit
	1 = Start up device with FRC, then automatically switch to the user-selected oscillator source
	when ready
	0 = Start up device with user-selected oscillator source
FNOSC<2:0>	Oscillator Selection bits
	111 = Fast RC Oscillator with divide-by-N (FRCDIVN)
	110 = Reserved; do not use
	101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use
	011 = Primary Oscillator with PLL module (MS + PLL, EC + PLL)
	010 = Primary Oscillator (MS, HS, EC)
	001 = Fast RC Oscillator with divide-by-N with PLL module
	(FRCDIVN + PLL)
	000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits
	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit
	1 = Allow only one reconfiguration
	0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in MS and HS modes)
	1 = OSC2 is the clock output
	0 = OSC2 is the general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits
	11 = Primary Oscillator is disabled10 = HS Crystal Oscillator mode (10 MHz-32 MHz)
	01 = MS Crystal Oscillator mode (3 MHz-10 MHz)
	00 = EC (External Clock) mode (DC-32 MHz)
FWDTEN	Watchdog Timer Enable bit
	1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN
	bit in the RCON register will have no effect)
	0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing
	the SWDTEN bit in the RCON register)
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1 :32,768
	1110 = 1:16,384
	•
	•
	•
	0001 = 1:2
	0000 = 1:1

TABLE 22-3: dsPIC33F CONFIGURATION BITS DESCRIPTION

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
62	RETURN	RETURN	£	Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f f NDEC	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f Wd = Rotate Left through Carry Ws	1	1	C,N,Z C,N,Z
64	PLNC	RLC	Ws,Wd f	f = Rotate Left (No Carry) f	1	1	N,Z
04	RLNC	RLNC		WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	Web = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RLNC	Ws,Wd f	f = Rotate Right through Carry f	1	1	C,N,Z
50	1/1/0	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z C,N,Z
		RRC	Ws,Wd	Web = Rotate Right through Carry Ws	1	1	C,N,Z C,N,Z

TABLE 23-2 :	INSTRUCTION SET OVERVIEW	(CONTINUED)

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	ram. Symbol Characteristic Min. Typ. ⁽¹⁾ Max. Units			Conditions				
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8		8	MHz	ECPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency	100	—	200	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	mS		
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	Measured over 100 ms period	

TABLE 25-17:PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCK) is 2 MHz.

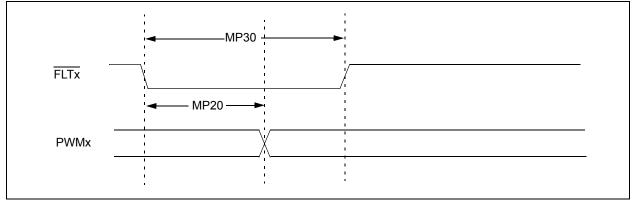
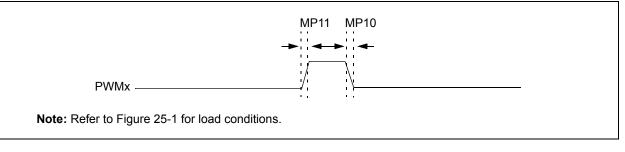

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$

TABLE 25-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)


			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS56	Fhpout	On-Chip 16x PLL CCO Frequency	112	118	120	MHz	
OS57	Fhpin	On-Chip 16x PLL Phase Detector Input Frequency	7.0	7.37	7.5	MHz	
OS58	Tsu	Frequency Generator Lock Time	—	—	10	μs	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

FIGURE 25-10: HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS

TABLE 25-28: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				Conditions
MP10	TFPWM	PWM Output Fall Time	_	2.5	_	ns	
MP11	TRPWM	PWM Output Rise Time	_	2.5	_	ns	
MP20	Tfd	Fault Input ↓ to PWM I/O Change	—	_	15	ns	
MP30	Тғн	Minimum PWM Fault Pulse Width	8		_	ns	DTC<10> = 10
MP31	TPDLY	Tap Delay	1.04	—	—	ns	Аськ = 120 MHz
MP32	ACLK	PWM Input Clock	—	—	120	MHz	See Note 2, Note 3

Note 1: These parameters are characterized but not tested in manufacturing.

2: This parameter is a maximum allowed input clock for the PWM module.

3: The maximum value for this parameter applies to dsPIC33FJ06GS101A/102A/202A/302 devices only.

TABLE 25-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx Input	120			ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

RPINR7 (Peripheral Pin Select Input 7)	157
RPOR0 (Peripheral Pin Select Output 0)	168
RPOR1 (Peripheral Pin Select Output 1)	168
RPOR16 (Peripheral Pin Select Output 16)	
RPOR17 (Peripheral Pin Select Output 17)	
RPOR2 (Peripheral Pin Select Output 2)	169
RPOR3 (Peripheral Pin Select Output 3)	
RPOR4 (Peripheral Pin Select Output 4)	
RPOR5 (Peripheral Pin Select Output 5)	
RPOR6 (Peripheral Pin Select Output 6)	
RPOR7 (Peripheral Pin Select Output 7)	171
SDCx (PWMx Secondary Duty Cycle)	
SEVTCMP (PWM Special Event Compare)	
SPHASEx (PWMx Secondary Phase Shift)	194
SPIxCON1 (SPIx Control 1)	208
SPIxCON2 (SPIx Control 2)	210
SPIxSTAT (SPIx Status and Control)	
SR (CPU STATUS)	
SR (CPU Status)	
STRIGx (PWMx Secondary Trigger	
Compare Value)	
T1CON (Timer1 Control)	174
T2CON (Timer2 Control)	
TRGCONx (PWMx Trigger Control)	196
TPICy (DM/My Drimony Triggor Compare Value)	
TRIGx (PWMx Primary Trigger Compare Value).	
U1MODE (UART1 Mode)	221
U1MODE (UART1 Mode) U1STA (UART1 Status and Control)	221
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset	221 223
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR)	221 223 79, 84
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM)	221 223 79, 84 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR)	221 223 79, 84 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode	221 223 79, 84 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security	221 223 79, 84 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register	221 223 79, 84 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset	
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode	
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR)	221 223 79, 84 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR)	221 223 79, 84 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT)	221 223 79, 84 79 79 79 79 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction	221 223 79, 84 79 79 79 79 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset	221 223 79, 84 79 79 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset	221 223 79, 84 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset	221 223 79, 84 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict	221 223 79, 84 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR)	221 223 79, 84 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register	221 223 79, 84 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register Watchdog Timer Out Reset (WDTO)	221 223 79, 84 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register	221 223 79, 84 79 79 79 79 79 79 79

S

Serial Peripheral Interface (SPI) SFR Maps	205
Change Notification for	
dsPIC33FJ06GS001, dsPIC33FJ06GS101A	45
Change Notification for dsPIC33FJ06GS102A,	
dsPIC33FJ06GS202A, dsPIC33FJ09GS302	45
Constant Current Source	56
CPU Core	43
High-Speed 10-Bit ADC for dsPIC33FJ06GS001,	
dsPIC33FJ06GS101A	56
High-Speed 10-Bit ADC for dsPIC33FJ06GS102A,	
dsPIC33FJ06GS202A	57
High-Speed 10-Bit ADC for dsPIC33FJ09GS302	58
High-Speed PWM	52
High-Speed PWM Generator 1	52

High-Speed PWM Generator 2 for
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS30253
High-Speed PWM Generator 4 for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A, dsPIC33FJ09GS30254 I2C1
Input Capture for dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Interrupt Controller for dsPIC33FJ06GS00146
Interrupt Controller for dsPIC33FJ06GS002A48
Interrupt Controller for dsPIC33FJ06GS101A47
Interrupt Controller for dsPIC33FJ06GS202A
NVM
Output Compare for dsPIC33FJ06GS101A,
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS30251
Peripheral Pin Select Input for dsPIC33FJ06GS001 59
Peripheral Pin Select Input for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A
Peripheral Pin Select Input for dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Peripheral Pin Select Output for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A60
Peripheral Pin Select Output for dsPIC33FJ06GS102A,
dsPIC33FJ06GS202A, dsPIC33FJ09GS30261 PMD for dsPIC33FJ06GS00164
PMD for dsPIC33FJ06GS101A
PMD for dsPIC33FJ06GS102A
PMD for dsPIC33FJ06GS202A
PMD for dsPIC33FJ09GS30265
PORTA
PORTB for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A62 PORTB for dsPIC33FJ06GS102A,
dsPIC33FJ06GS202A, dsPIC33FJ09GS30262
SPI1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A,
dsPIC33FJ09GS202A, dsPIC33FJ09GS30255
System Control63
Timers51
UART1 for dsPIC33FJ06GS101A,
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Software Simulator (MPLAB SIM)
Software Stack Pointer, Frame Pointer
CALL Stack Frame 66
Symbols Used in Opcode Descriptions
т
Thermal Packaging Characteristics
Timer1
Timer2
Timing Diagrams
Analog-to-Digital Conversion per Input
Brown-out Situations
External Clock
High-Speed PWM
I/O
I2C1 Bus Data (Master Mode)
I2C1 Bus Data (Slave Mode) 307
I2C1 Bus Start/Stop Bits (Master Mode) 305
I2C1 Bus Start/Stop Bits (Master Mode)
I2C1 Bus Start/Stop Bits (Master Mode) 305

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support