



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 40 MIPs                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                           |
| Number of I/O              | 13                                                                              |
| Program Memory Size        | 6KB (2K x 24)                                                                   |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 256 x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 6x10b                                                                       |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 20-SSOP (0.209", 5.30mm Width)                                                  |
| Supplier Device Package    | 20-SSOP                                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs001-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

| bit 7-5 | IPL<2:0>: CPU Interrupt Priority Level Status bits <sup>(2,3)</sup>                                                                                                                                    |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled<br>110 = CPU Interrupt Priority Level is 6 (14)                                                                                 |
|         | 101 = CPU Interrupt Priority Level is 5 (13)<br>100 = CPU Interrupt Priority Level is 4 (12)                                                                                                           |
|         | 011 = CPU Interrupt Priority Level is 3 (11)                                                                                                                                                           |
|         | 010 = CPU Interrupt Priority Level is 2 (10)                                                                                                                                                           |
|         | 001 = CPU Interrupt Priority Level is 1 (9)<br>000 = CPU Interrupt Priority Level is 0 (8)                                                                                                             |
| bit 4   | RA: REPEAT Loop Active bit                                                                                                                                                                             |
|         | 1 = REPEAT loop in progress                                                                                                                                                                            |
|         | 0 = REPEAT loop not in progress                                                                                                                                                                        |
| bit 3   | N: MCU ALU Negative bit                                                                                                                                                                                |
|         | <ul><li>1 = Result was negative</li><li>0 = Result was non-negative (zero or positive)</li></ul>                                                                                                       |
| bit 2   | OV: MCU ALU Overflow bit                                                                                                                                                                               |
|         | This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state.                                                             |
|         | <ul> <li>1 = Overflow occurred for signed arithmetic (in this arithmetic operation)</li> <li>0 = No overflow occurred</li> </ul>                                                                       |
| bit 1   | Z: MCU ALU Zero bit                                                                                                                                                                                    |
|         | <ul> <li>1 = An operation that affects the Z bit has set it at some time in the past</li> <li>0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)</li> </ul> |
| bit 0   | C: MCU ALU Carry/Borrow bit                                                                                                                                                                            |
|         | <ul> <li>1 = A carry-out from the Most Significant bit of the result occurred</li> <li>0 = No carry-out from the Most Significant bit of the result occurred</li> </ul>                                |
|         |                                                                                                                                                                                                        |

Note 1: This bit can be read or cleared (not set).

- 2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
- 4: Clearing this bit will clear SA and SB.

#### TABLE 4-12: HIGH-SPEED PWM REGISTER MAP

| File Name | Addr<br>Offset | Bit 15                | Bit 14         | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9     | Bit 8   | Bit 7  | Bit 6 | Bit 5 | Bit 4   | Bit 3 | Bit 2 | Bit 1     | Bit 0 | All<br>Resets |
|-----------|----------------|-----------------------|----------------|--------|--------|--------|--------|-----------|---------|--------|-------|-------|---------|-------|-------|-----------|-------|---------------|
| PTCON     | 0400           | PTEN                  | —              | PTSIDL | SESTAT | SEIEN  | EIPU   | SYNCPOL   | SYNCOEN | SYNCEN | —     | SYNCS | RC<1:0> |       | SEVT  | PS<3:0>   |       | 0000          |
| PTCON2    | 0402           | _                     | _              | _      | _      | _      | _      | _         | _       | _      | _     | _     | _       |       | PC    | CLKDIV<2: | 0>    | 0000          |
| PTPER     | 0404           | PTPER<15:0> FFI       |                |        |        |        |        |           |         |        | FFF8  |       |         |       |       |           |       |               |
| SEVTCMP   | 0406           |                       |                |        |        |        | SEVTCM | /IP<15:3> |         |        |       |       |         |       | _     | _         | _     | 0000          |
| MDC       | 040A           |                       | MDC<15:0> 0000 |        |        |        |        |           |         |        |       | 0000  |         |       |       |           |       |               |
| CHOP      | 041A           | CHPCLKEN CHOPCLK<6:0> |                |        |        |        |        |           | 0000    |        |       |       |         |       |       |           |       |               |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-13: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP

| File Name | Addr<br>Offset | Bit 15  | Bit 14            | Bit 13                             | Bit 12 | Bit 11   | Bit 10  | Bit 9   | Bit 8     | Bit 7 | Bit 6  | Bit 5 | Bit 4   | Bit 3   | Bit 2    | Bit 1   | Bit 0   | All<br>Resets |
|-----------|----------------|---------|-------------------|------------------------------------|--------|----------|---------|---------|-----------|-------|--------|-------|---------|---------|----------|---------|---------|---------------|
| PWMCON1   | 0420           | FLTSTAT | CLSTAT            | TRGSTAT                            | FLTIEN | CLIEN    | TRGIEN  | ITB     | MDCS      | DTC<  | :1:0>  | _     | _       | _       | CAM      | XPRES   | IUE     | 0000          |
| IOCON1    | 0422           | PENH    | PENL              | POLH                               | POLL   | PMOD     | )<1:0>  | OVRENH  | OVRENL    | OVRDA | T<1:0> | FLTDA | T<1:0>  | CLDA    | \T<1:0>  | SWAP    | OSYNC   | 0000          |
| FCLCON1   | 0424           | IFLTMOD |                   | CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> |        |          |         |         |           |       | FLTPOL | FLTMC | )D<1:0> | 0000    |          |         |         |               |
| PDC1      | 0426           |         | PDC1<15:0> 0      |                                    |        |          |         |         |           |       |        | 0000  |         |         |          |         |         |               |
| PHASE1    | 0428           |         | PHASE1<15:0> 0    |                                    |        |          |         |         |           |       |        | 0000  |         |         |          |         |         |               |
| DTR1      | 042A           | —       | — — DTR1<13:0> 00 |                                    |        |          |         |         |           |       |        | 0000  |         |         |          |         |         |               |
| ALTDTR1   | 042C           | —       | ALTDTR1<13:0> 0   |                                    |        |          |         |         |           |       | 0000   |       |         |         |          |         |         |               |
| SDC1      | 042E           |         |                   |                                    |        |          |         | SE      | )C1<15:0> |       |        |       |         |         |          |         |         | 0000          |
| SPHASE1   | 0430           |         |                   |                                    |        |          |         | SPH     | ASE1<15:0 | >     |        |       |         |         |          |         |         | 0000          |
| TRIG1     | 0432           |         |                   |                                    |        |          | TRGCMP  | <15:3>  |           |       |        |       |         |         | _        | _       | _       | 0000          |
| TRGCON1   | 0434           |         | TRGDI             | V<3:0>                             |        | _        | _       | _       | _         | DTM   |        |       |         | TRO     | STRT<5:0 | )>      |         | 0000          |
| STRIG1    | 0436           |         |                   |                                    |        |          | STRGCMF | v<15:3> |           |       |        |       |         |         | _        | _       | _       | 0000          |
| PWMCAP1   | 0438           |         |                   |                                    |        |          | PWMCAP1 | <15:3>  |           |       |        |       |         |         | —        | _       | _       | 0000          |
| LEBCON1   | 043A           | PHR     | PHF               | PLR                                | PLF    | FLTLEBEN | CLLEBEN |         |           | LEI   | B<6:0> |       |         |         | _        | _       | _       | 0000          |
| AUXCON1   | 043E           | HRPDIS  | HRDDIS            | _                                  | _      | _        | _       | _       | _         | _     | _      |       | CHOPSE  | EL<3:0> |          | CHOPHEN | CHOPLEN | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# FIGURE 7-1: dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 INTERRUPT VECTOR TABLE

|      | Reset – GOTO Instruction    | 0x000000 |                                             |
|------|-----------------------------|----------|---------------------------------------------|
|      | Reset – GOTO Address        | 0x000002 |                                             |
|      | Reserved                    | 0x000002 |                                             |
|      | Oscillator Fail Tran Vector | 0,000004 |                                             |
|      | Address Error Tran Vector   |          |                                             |
|      | Stack Error Trap Vector     | _        |                                             |
|      | Math Error Trap Voctor      | _        |                                             |
|      | Recorved                    | _        |                                             |
|      | Besorved                    | _        |                                             |
|      | Reserved                    | _        |                                             |
|      |                             | 0,000014 | 1                                           |
|      | Interrupt Vector 1          | 0000014  |                                             |
|      |                             | _        |                                             |
|      | ~                           | _        |                                             |
|      | ~                           | _        |                                             |
|      | ~                           | 0,000,70 |                                             |
|      | Interrupt Vector 52         | 0x00007C | Interrupt Vector Table (IVT) <sup>(1)</sup> |
| ~    | Interrupt Vector 53         | 0x00007E |                                             |
| orit |                             | 0x000080 |                                             |
| L L  | ~                           | _        |                                             |
| e    | ~                           | _        |                                             |
| Drd  | Interrupt Vector 116        |          |                                             |
| a    | Interrupt Vector 117        |          | 1                                           |
| tura |                             | 0x0000FE |                                             |
| Na   | Reserved                    | 0x000100 |                                             |
| b    | Reserved                    | 0x000102 |                                             |
| asir | Reserved                    | _        |                                             |
| crea | Oscillator Fall Trap Vector | _        |                                             |
| Dec  | Address Error Trap Vector   | _        |                                             |
|      | Stack Error Trap Vector     | _        |                                             |
|      | Math Enor Trap vector       | _        |                                             |
|      | Reserved                    |          | 7                                           |
|      | Reserved                    | _        |                                             |
|      | Reserved                    | 0.000444 |                                             |
|      |                             | 0x000114 |                                             |
|      | Interrupt vector 1          | _        |                                             |
|      | ~                           | _        |                                             |
|      | ~                           | _        |                                             |
|      | ~                           | 0,000170 | Alternate interrupt vector Table (AIVI)     |
|      | Interrupt Vector 52         | 0x00017C |                                             |
|      |                             | 0x00017E |                                             |
|      | Interrupt vector 54         | 0x000180 |                                             |
|      | ~                           | _        |                                             |
|      | ~                           | -        |                                             |
|      | ~                           |          | Ţ                                           |
|      | Interrupt Vector 117        |          |                                             |
|      |                             |          |                                             |
| . ↓  | Start of Code               |          |                                             |

## dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

| REGISTER      | 7-26: IPC14   | : INTERRUP         |                | CONTROL F                          | REGISTER 1 | 4               |                    |  |  |  |
|---------------|---------------|--------------------|----------------|------------------------------------|------------|-----------------|--------------------|--|--|--|
| U-0           | U-0           | U-0                | U-0            | U-0                                | U-0        | U-0             | U-0                |  |  |  |
| —             | —             |                    | _              | —                                  | —          | —               | —                  |  |  |  |
| bit 15        |               |                    |                |                                    |            |                 | bit 8              |  |  |  |
| r             |               |                    |                |                                    |            |                 |                    |  |  |  |
| U-0           | R/W-1         | R/W-0              | R/W-0          | U-0                                | U-0        | U-0             | U-0                |  |  |  |
| —             |               | PSEMIP<2:0>        |                | —                                  | —          | —               | —                  |  |  |  |
| bit 7         |               |                    |                |                                    |            |                 | bit 0              |  |  |  |
|               |               |                    |                |                                    |            |                 |                    |  |  |  |
| Legend:       |               |                    |                |                                    |            |                 |                    |  |  |  |
| R = Readabl   | le bit        | W = Writable       | bit            | U = Unimplemented bit, read as '0' |            |                 |                    |  |  |  |
| -n = Value at | t POR         | '1' = Bit is set   |                | '0' = Bit is cle                   | ared       | x = Bit is unkr | x = Bit is unknown |  |  |  |
|               |               |                    |                |                                    |            |                 |                    |  |  |  |
| bit 15-7      | Unimplemen    | ted: Read as '     | 0'             |                                    |            |                 |                    |  |  |  |
| bit 6-4       | PSEMIP<2:0    | >: PWM Specia      | al Event Mato  | h Interrupt Prio                   | rity bits  |                 |                    |  |  |  |
|               | 111 = Interru | pt is Priority 7 ( | highest priori | ity interrupt)                     |            |                 |                    |  |  |  |
|               | •             |                    |                |                                    |            |                 |                    |  |  |  |
|               | •             |                    |                |                                    |            |                 |                    |  |  |  |
|               | •             |                    |                |                                    |            |                 |                    |  |  |  |

- 001 = Interrupt is Priority 1
- 000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

#### REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

| U-0     | U-0   | U-0                       | U-0   | U-0 | U-0 | U-0 | U-0   |
|---------|-------|---------------------------|-------|-----|-----|-----|-------|
| —       | —     |                           | —     | —   |     |     | —     |
| bit 15  |       |                           |       |     |     |     | bit 8 |
|         |       |                           |       |     |     |     |       |
| U-0     | R/W-1 | R/W-0                     | R/W-0 | U-0 | U-0 | U-0 | U-0   |
| —       |       | U1EIP<2:0> <sup>(1)</sup> |       | —   | —   | —   | —     |
| bit 7   |       |                           |       |     |     |     | bit 0 |
|         |       |                           |       |     |     |     |       |
| Legend: |       |                           |       |     |     |     |       |

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |

| bit 15-7 | Unimplemented: Read as '0'                                     |
|----------|----------------------------------------------------------------|
| bit 6-4  | U1EIP<2:0>: UART1 Error Interrupt Priority bits <sup>(1)</sup> |
|          | 111 = Interrupt is Priority 7 (highest priority interrupt)     |
|          | •                                                              |
|          | •                                                              |
|          | •                                                              |
|          | 001 = Interrupt is Priority 1                                  |
|          | 000 = Interrupt source is disabled                             |
| bit 3-0  | Unimplemented: Read as '0'                                     |
|          |                                                                |

**Note 1:** These bits are not implemented in the dsPIC33FJ06GS001 device.

#### **REGISTER 8-1:** OSCCON: OSCILLATOR CONTROL REGISTER<sup>(1,3)</sup> (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit (read/clear by application)
  - 1 = FSCM has detected clock failure
  - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
  - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
  - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" for details.
  - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
  - 3: This register is reset only on a Power-on Reset (POR).

#### 8.5 Clock Switching Operation

Applications are free to switch among any of the four clock sources (primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

#### 8.5.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC<2:0> control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

#### 8.5.2 OSCILLATOR SWITCHING SEQUENCE

To perform a clock switch, the following basic sequence is required:

- 1. If desired, read the COSC<2:0> bits to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC<2:0> control bits for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSC<2:0> status bits with the new value of the NOSC<2:0> control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC<2:0> bit values are transferred to the COSC<2:0> status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled).

Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

- 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
- 3: Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/ PIC24H Family Reference Manual" for details.

### 13.1 Input Capture Registers

| U-0                  | U-0                                                            | R/W-0                              | U-0                       | U-0             | U-0             | U-0                | U-0           |  |  |  |
|----------------------|----------------------------------------------------------------|------------------------------------|---------------------------|-----------------|-----------------|--------------------|---------------|--|--|--|
| _                    | _                                                              | ICSIDL                             | —                         | _               | —               | _                  | _             |  |  |  |
| bit 15               |                                                                | •                                  |                           |                 | I               |                    | bit 8         |  |  |  |
|                      |                                                                |                                    |                           |                 |                 |                    |               |  |  |  |
| R/W-0                | R/W-0                                                          | R/W-0                              | R-0, HC                   | R-0, HC         | R/W-0           | R/W-0              | R/W-0         |  |  |  |
| ICTMR <sup>(1)</sup> | ICI<                                                           | <1:0>                              | ICOV                      | ICBNE           |                 | ICM<2:0>           |               |  |  |  |
| bit 7                |                                                                |                                    |                           |                 |                 |                    | bit 0         |  |  |  |
|                      |                                                                | 110                                |                           |                 |                 |                    |               |  |  |  |
| Legend:              | <b>L</b> :4                                                    | HC = Hardward                      | e Clearable bit           |                 | manted bit wa   |                    |               |  |  |  |
| R = Readable         |                                                                | vv = vvritable b                   |                           | 0 = 0           | nented bit, re  | au as u            | 014/2         |  |  |  |
|                      | OR                                                             | I = DILIS SEL                      |                           |                 | areu            |                    | OWI           |  |  |  |
| bit 15-14            | Unimplemen                                                     | ted: Read as '0                    | ,                         |                 |                 |                    |               |  |  |  |
| bit 13               | ICSIDL: Input                                                  | Capture Modul                      | e Stop in Idle C          | ontrol bit      |                 |                    |               |  |  |  |
|                      | 1 = Input capture module halts in CPU Idle mode                |                                    |                           |                 |                 |                    |               |  |  |  |
|                      | 0 = Input capture module continues to operate in CPU Idle mode |                                    |                           |                 |                 |                    |               |  |  |  |
| bit 12-8             | Unimplemented: Read as '0'                                     |                                    |                           |                 |                 |                    |               |  |  |  |
| bit 7                | ICTMR: Input                                                   | Capture Timer                      | Select bit <sup>(1)</sup> |                 |                 |                    |               |  |  |  |
|                      | 1 = TMR2 cor<br>0 = Reserved                                   | ntents are captu                   | red on capture            | event           |                 |                    |               |  |  |  |
| bit 6-5              | ICI<1:0>: Sel                                                  | ect Number of C                    | Captures per Int          | errupt bits     |                 |                    |               |  |  |  |
|                      | 11 = Interrupt                                                 | on every fourth                    | capture event             |                 |                 |                    |               |  |  |  |
|                      | 10 = Interrupt                                                 | on every third o                   | capture event             | .+              |                 |                    |               |  |  |  |
|                      | 00 = Interrupt                                                 | on every captu                     | re event                  | IL              |                 |                    |               |  |  |  |
| bit 4                | ICOV: Input C                                                  | apture Overflov                    | v Status Flag bi          | t (read-only)   |                 |                    |               |  |  |  |
|                      | 1 = Input capt                                                 | ture overflow oc                   | curred                    |                 |                 |                    |               |  |  |  |
|                      | 0 = No input o                                                 | capture overflow                   | occurred                  |                 |                 |                    |               |  |  |  |
| bit 3                | ICBNE: Input                                                   | Capture Buffer                     | Empty Status b            | it (read-only)  |                 |                    |               |  |  |  |
|                      | 1 = Input capt                                                 | ture buffer is not                 | : empty, at leasi<br>intv | t one more cap  | oture value ca  | an be read         |               |  |  |  |
| bit 2-0              | ICM<2:0>: Int                                                  | out Capture Mo                     | de Select bits            |                 |                 |                    |               |  |  |  |
| 2.1.2.0              | 111 = Input ca                                                 | apture functions                   | as interrupt pir          | n only when de  | evice is in Sle | ep or Idle mode    | . Rising edge |  |  |  |
|                      | detect of                                                      | only; all other co                 | ontrol bits are n         | ot applicable.  |                 |                    | 0 0           |  |  |  |
|                      | 110 = Unused                                                   | d (module disab                    | led)                      |                 |                 |                    |               |  |  |  |
|                      | 101 = Capture<br>100 = Capture                                 | e mode, every 1<br>e mode, every 4 | oth rising eage           |                 |                 |                    |               |  |  |  |
|                      | 011 = Capture                                                  | e mode, every r                    | ising edge                |                 |                 |                    |               |  |  |  |
|                      | 010 = Capture                                                  | e mode, every fa                   | alling edge               |                 | 0. http://      |                    |               |  |  |  |
|                      | for this                                                       | e moae, every e<br>mode.           | eage (rising and          | railing). ICI<1 | .u> dits do no  | or control interru | pt generation |  |  |  |

#### REGISTER 13-1: IC1CON: INPUT CAPTURE 1 CONTROL REGISTER

000 = Input capture module is turned off



#### 14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OC1CON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user

TABLE 14-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

| Note: | Refer to Section 13. "Output Compare" |  |  |  |  |  |  |  |  |
|-------|---------------------------------------|--|--|--|--|--|--|--|--|
|       | (DS70209) in the "dsPIC33F/PIC24H     |  |  |  |  |  |  |  |  |
|       | Family Reference Manual" for OC1R and |  |  |  |  |  |  |  |  |
|       | OC1RS register restrictions.          |  |  |  |  |  |  |  |  |

| OCM<2:0> | Mode                         | OC1 Pin Initial State                                                  | OC1 Interrupt Generation         |  |
|----------|------------------------------|------------------------------------------------------------------------|----------------------------------|--|
| 000      | Module Disabled              | Controlled by GPIO register                                            |                                  |  |
| 001      | Active-Low One-Shot          | 0                                                                      | OC1 rising edge                  |  |
| 010      | Active-High One-Shot         | 1                                                                      | OC1 falling edge                 |  |
| 011      | Toggle                       | Current output is maintained                                           | OC1 rising and falling edge      |  |
| 100      | Delayed One-Shot             | 0                                                                      | OC1 falling edge                 |  |
| 101      | Continuous Pulse             | 0                                                                      | OC1 falling edge                 |  |
| 110      | PWM without Fault Protection | <ul><li>'0' if OC1R is zero,</li><li>'1' if OC1R is non-zero</li></ul> | No interrupt                     |  |
| 111      | PWM with Fault Protection    | <ul><li>'0' if OC1R is zero,</li><li>'1' if OC1R is non-zero</li></ul> | OCFA falling edge for OC1 to OC4 |  |





NOTES:

#### REGISTER 18-2: U1STA: UART1 STATUS AND CONTROL REGISTER (CONTINUED)

| bit 7-6     | URXISEL<1:0>: Receive Interrupt Mode Selection bits <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                         |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | <ul> <li>11 = Interrupt is set on U1RSR transfer, making the receive buffer full (i.e., has 4 data characters)</li> <li>10 = Interrupt is set on U1RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)</li> <li>0x = Interrupt is set when any character is received and transferred from the U1RSR to the receive buffer; receive buffer has one or more characters</li> </ul> |
| bit 5       | <b>ADDEN:</b> Address Character Detect bit (bit 8 of received data = $1)^{(2)}$                                                                                                                                                                                                                                                                                                                            |
|             | <ul> <li>1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect</li> <li>0 = Address Detect mode is disabled</li> </ul>                                                                                                                                                                                                                                              |
| bit 4       | RIDLE: Receiver Idle bit (read-only) <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                        |
|             | 1 = Receiver is Idle<br>0 = Receiver is active                                                                                                                                                                                                                                                                                                                                                             |
| bit 3       | PERR: Parity Error Status bit (read-only) <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                   |
|             | <ul> <li>Parity error has been detected for the current character (character at the top of the receive FIFO)</li> <li>Parity error has not been detected</li> </ul>                                                                                                                                                                                                                                        |
| bit 2       | FERR: Framing Error Status bit (read-only) <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                  |
|             | 1 = Framing error has been detected for the current character (character at the top of the receive FIFO)                                                                                                                                                                                                                                                                                                   |
|             | 0 = Framing error has not been detected                                                                                                                                                                                                                                                                                                                                                                    |
| bit 1       | OERR: Receive Buffer Overrun Error Status bit (clear/read-only) <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                             |
|             | <ul> <li>1 = Receive buffer has overflowed</li> <li>0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset<br/>the receiver buffer and the U1RSR to the empty state.</li> </ul>                                                                                                                                                                           |
| bit 0       | URXDA: Receive Buffer Data Available bit (read-only) <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                        |
|             | <ul> <li>1 = Receive buffer has data, at least one more character can be read</li> <li>0 = Receive buffer is empty</li> </ul>                                                                                                                                                                                                                                                                              |
| Note 1: Ref | er to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for                                                                                                                                                                                                                                                                                                                    |

- information on enabling the UART module for transmit operation.
  - **2:** This bit is not available in the dsPIC33FJ06GS001 device.

| Base<br>Instr<br># | Assembly<br>Mnemonic |         | Assembly Syntax       | Description                                 | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|--------------------|----------------------|---------|-----------------------|---------------------------------------------|---------------|----------------|--------------------------|
| 10                 | BTSC                 | BTSC    | f,#bit4               | Bit Test f, Skip if Clear                   | 1             | 1<br>(2 or 3)  | None                     |
|                    |                      | BTSC    | Ws,#bit4              | Bit Test Ws, Skip if Clear                  | 1             | 1<br>(2 or 3)  | None                     |
| 11                 | BTSS                 | BTSS    | f,#bit4               | Bit Test f, Skip if Set                     | 1             | 1<br>(2 or 3)  | None                     |
|                    |                      | BTSS    | Ws,#bit4              | Bit Test Ws, Skip if Set                    | 1             | 1<br>(2 or 3)  | None                     |
| 12                 | BTST                 | BTST    | f,#bit4               | Bit Test f                                  | 1             | 1              | Z                        |
|                    |                      | BTST.C  | Ws,#bit4              | Bit Test Ws to C                            | 1             | 1              | С                        |
|                    |                      | BTST.Z  | Ws,#bit4              | Bit Test Ws to Z                            | 1             | 1              | Z                        |
|                    |                      | BTST.C  | Ws,Wb                 | Bit Test Ws <wb> to C</wb>                  | 1             | 1              | С                        |
|                    |                      | BTST.Z  | Ws,Wb                 | Bit Test Ws <wb> to Z</wb>                  | 1             | 1              | Z                        |
| 13                 | BTSTS                | BTSTS   | f,#bit4               | Bit Test then Set f                         | 1             | 1              | Z                        |
|                    |                      | BTSTS.C | Ws,#bit4              | Bit Test Ws to C, then Set                  | 1             | 1              | С                        |
|                    |                      | BTSTS.Z | Ws,#bit4              | Bit Test Ws to Z, then Set                  | 1             | 1              | Z                        |
| 14                 | CALL                 | CALL    | lit23                 | Call Subroutine                             | 2             | 2              | None                     |
|                    |                      | CALL    | Wn                    | Call Indirect Subroutine                    | 1             | 2              | None                     |
| 15                 | CLR                  | CLR     | f                     | f = 0x0000                                  | 1             | 1              | None                     |
|                    |                      | CLR     | WREG                  | WREG = 0x0000                               | 1             | 1              | None                     |
|                    |                      | CLR     | Ws                    | Ws = 0x0000                                 | 1             | 1              | None                     |
|                    |                      | CLR     | Acc,Wx,Wxd,Wy,Wyd,AWB | Clear Accumulator                           | 1             | 1              | OA,OB,SA,SB              |
| 16                 | CLRWDT               | CLRWDT  |                       | Clear Watchdog Timer                        | 1             | 1              | WDTO,Sleep               |
| 17                 | COM                  | COM     | f                     | f = <del>f</del>                            | 1             | 1              | N,Z                      |
|                    |                      | COM     | f,WREG                | WREG = f                                    | 1             | 1              | N,Z                      |
|                    |                      | COM     | Ws,Wd                 | $Wd = \overline{Ws}$                        | 1             | 1              | N,Z                      |
| 18                 | CP                   | CP      | f                     | Compare f with WREG                         | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CP      | Wb,#lit5              | Compare Wb with lit5                        | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CP      | Wb,Ws                 | Compare Wb with Ws (Wb – Ws)                | 1             | 1              | C,DC,N,OV,Z              |
| 19                 | CP0                  | CP0     | f                     | Compare f with 0x0000                       | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CP0     | Ws                    | Compare Ws with 0x0000                      | 1             | 1              | C,DC,N,OV,Z              |
| 20                 | CPB                  | CPB     | f                     | Compare f with WREG, with Borrow            | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CPB     | Wb,#lit5              | Compare Wb with lit5, with Borrow           | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CPB     | Wb,Ws                 | Compare Wb with Ws, with Borrow             | 1             | 1              | C,DC,N,OV,Z              |
| 0.1                |                      |         |                       | $(Wb - Ws - \overline{C})$                  |               |                |                          |
| 21                 | CPSEQ                | CPSEQ   | Wb, Wn                | Compare vvb with vvh, Skip if =             | 1             | 1<br>(2 or 3)  | None                     |
| 22                 | CPSGT                | CPSGT   | Wb, Wn                | Compare Wb with Wn, Skip if >               | 1             | 1<br>(2 or 3)  | None                     |
| 23                 | CPSLT                | CPSLT   | Wb, Wn                | Compare Wb with Wn, Skip if <               | 1             | 1<br>(2 or 3)  | None                     |
| 24                 | CPSNE                | CPSNE   | Wb, Wn                | Compare Wb with Wn, Skip if ≠               | 1             | 1<br>(2 or 3)  | None                     |
| 25                 | DAW                  | DAW     | Wn                    | Wn = Decimal Adjust Wn                      | 1             | 1              | С                        |
| 26                 | DEC                  | DEC     | f                     | f = f - 1                                   | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC     | f,WREG                | WREG = f – 1                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC     | Ws,Wd                 | Wd = Ws - 1                                 | 1             | 1              | C,DC,N,OV,Z              |
| 27                 | DEC2                 | DEC2    | f                     | f = f – 2                                   | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC2    | f,WREG                | WREG = f – 2                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC2    | Ws,Wd                 | Wd = Ws - 2                                 | 1             | 1              | C,DC,N,OV,Z              |
| 28                 | DISI                 | DISI    | #lit14                | Disable Interrupts for k Instruction Cycles | 1             | 1              | None                     |

#### TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

#### 24.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

#### 24.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

#### 24.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel<sup>®</sup> standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

#### 24.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

#### 24.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

| DC CHARACTERISTICS |        | ISTICS                                                                                               | Standard<br>(unless<br>Operatin | d Opera<br>otherwi<br>g tempe | iting Co<br>se state<br>erature | nditions<br>ed)<br>-40°C :<br>-40°C : | s: 3.0V to 3.6V<br>≤ Ta ≤ +85°C for Industrial<br>≤ Ta ≤ +125°C for Extended |
|--------------------|--------|------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------------|------------------------------------------------------------------------------|
| Param.             | Symbol | Characteristic                                                                                       | Min.                            | Тур.                          | Max.                            | Units                                 | Conditions                                                                   |
| DO10               | Vol    | Output Low Voltage<br>I/O Pins:<br>4x Sink Driver Pins – RA0-RA2,<br>RB0-RB2, RB5-RB10, RB15         | _                               | _                             | 0.4                             | V                                     | IOL ≤ 6 mA, VDD = 3.3V <sup>(1)</sup>                                        |
|                    |        | <b>Output Low Voltage</b><br>I/O Pins:<br>16x Sink Driver Pins – RA3, RA4,<br>RB3, RB4, RB11-RB14    | _                               | _                             | 0.4                             | V                                     | IOL ≤ 18 mA, VDD = 3.3V <sup>(1)</sup>                                       |
| DO20               | Vон    | Output High Voltage<br>I/O Pins:<br>4x Source Driver Pins – RA0-RA2,<br>RB0-RB2, RB5-RB10, RB15      | 2.4                             | _                             | _                               | V                                     | IOH ≥ -6 mA, VDD = 3.3V <sup>(1)</sup>                                       |
|                    |        | <b>Output High Voltage</b><br>I/O Pins:<br>16x Source Driver Pins – RA3,<br>RA4, RB3, RB4, RB11-RB14 | 2.4                             | _                             | _                               | V                                     | IOH ≥ -18 mA, VDD = 3.3V <sup>(1)</sup>                                      |
| DO20A              | VoH1   | Output High Voltage                                                                                  | 1.5                             | —                             | —                               | V                                     | $IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$                   |
|                    |        | 4x Source Driver Pins – RA0-RA2,                                                                     | 2.0                             | _                             |                                 |                                       | $IOH \ge -11 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$                   |
|                    |        | RB0-RB2, RB5-RB10, RB15                                                                              | 3.0                             |                               | _                               |                                       | $IOH \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$                    |
|                    |        | Output High Voltage                                                                                  | 1.5                             | _                             | —                               | V                                     | $IOH \ge -30 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$                   |
|                    |        | 16x Source Driver Pins – RA3,                                                                        | 2.0                             | —                             | —                               |                                       | $IOH \ge -25 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$                   |
|                    |        | RA4, RB3, RB4, RB11-RB14                                                                             | 3.0                             |                               | —                               |                                       | $IOH \ge -8 \text{ mA}, \text{ VDD} = 3.3 \text{V}^{(1)}$                    |

#### TABLE 25-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: These parameters are characterized, but not tested.

#### TABLE 25-11: ELECTRICAL CHARACTERISTICS: BOR

| DC CHAR | ACTERIST | ICS                                                                               | Standard Oper<br>(unless otherw<br>Operating temp | ating Co<br>ise state<br>erature | ondition<br>ed)<br>-40°C ⊴<br>-40°C ≤ | <b>s: 3.0V 1</b><br>≤ Ta ≤ +8<br>≤ Ta ≤ +1 | t <b>o 3.6V<sup>(3)</sup></b><br>5°C for Ir<br>25°C for I | ndustrial<br>Extended |
|---------|----------|-----------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|---------------------------------------|--------------------------------------------|-----------------------------------------------------------|-----------------------|
| Param.  | Symbol   | Character                                                                         | istic                                             | Min. <sup>(1)</sup>              | Тур.                                  | Max.                                       | Units                                                     | Conditions            |
| BO10    | VBOR     | BOR Event on VDD Tra<br>High-to-Low<br>BOR Event is Tied to V<br>Voltage Decrease | ansition<br>/DD Core                              | 2.55                             |                                       | 2.96                                       | V                                                         | (See Note 2)          |

**Note 1:** These parameters are for design guidance only and are not tested in manufacturing.

2: The device will operate as normal until the VDDMIN threshold is reached.

**3:** Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

### dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

#### FIGURE 25-6: INPUT CAPTURE (CAP1) TIMING CHARACTERISTICS



#### TABLE 25-25: INPUT CAPTURE TIMING REQUIREMENTS

| АС СНА | RACTERI | STICS               |                       | Standard Operation (unless otherwise Operating temperating tempera | ting Conditions<br>ature -40°C<br>-40°C | ons: 3.0V<br>≤ Ta ≤ +8<br>≤ Ta ≤ +1 | 7 <b>to 3.6V</b><br>5°C for Industrial<br>25°C for Extended |
|--------|---------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------------------------------|
| Param. | Symbol  | Characte            | ristic <sup>(1)</sup> | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max.                                    | Units                               | Conditions                                                  |
| IC10   | TccL    | IC1 Input Low Time  | No prescaler          | 0.5 Tcy + 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ns                                  |                                                             |
|        |         |                     | With prescaler        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                       | ns                                  |                                                             |
| IC11   | TccH    | IC1 Input High Time | No prescaler          | 0.5 Tcy + 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —                                       | ns                                  |                                                             |
|        |         |                     | With prescaler        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                       | ns                                  |                                                             |
| IC15   | TccP    | IC1 Input Period    |                       | (Tcy + 40)/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ns                                  | N = prescale value<br>(1, 4, 16)                            |

Note 1: These parameters are characterized but not tested in manufacturing.

#### FIGURE 25-7: OUTPUT COMPARE MODULE (OC1) TIMING CHARACTERISTICS



#### TABLE 25-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

| АС СНА | ARACTER | ISTICS                        | <b>Standar</b><br>(unless<br>Operatir | d Operat<br>otherwis | ing Condit<br>e stated)<br>ature -40<br>-40 | °C ≤ TA ≤<br>°C ≤ TA ≤ | <b>0V to 3.6V</b><br>≤ +85°C for Industrial<br>≤ +125°C for Extended |
|--------|---------|-------------------------------|---------------------------------------|----------------------|---------------------------------------------|------------------------|----------------------------------------------------------------------|
| Param. | Symbol  | Characteristic <sup>(1)</sup> | Min.                                  | Тур.                 | Max.                                        | Units                  | Conditions                                                           |
| OC10   | TccF    | OC1 Output Fall Time          | —                                     | _                    |                                             | ns                     | See Parameter DO32                                                   |
| OC11   | TccR    | OC1 Output Rise Time          | —                                     |                      | —                                           | ns                     | See Parameter DO31                                                   |

Note 1: These parameters are characterized but not tested in manufacturing.



#### FIGURE 25-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

# TABLE 25-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

| АС СНА       | RACTERIST             | ICS                                           | Standard<br>(unless o<br>Operating | Operatin<br>therwise<br>temperat | g Condition<br>stated)<br>ture -40°<br>-40° | ons: 3.0V<br>°C ≤ TA ≤<br>°C ≤ TA ≤ | <b>' to 3.6V</b><br>+85°C for Industrial<br>+125°C for Extended |
|--------------|-----------------------|-----------------------------------------------|------------------------------------|----------------------------------|---------------------------------------------|-------------------------------------|-----------------------------------------------------------------|
| Param<br>No. | Symbol                | Characteristic <sup>(1)</sup>                 | Min                                | Тур <sup>(2)</sup>               | Max                                         | Units                               | Conditions                                                      |
| SP10         | TscP                  | Maximum SCKx Frequency                        | —                                  | —                                | 9                                           | MHz                                 | See Note 3                                                      |
| SP20         | TscF                  | SCKx Output Fall Time                         | —                                  | _                                | —                                           | ns                                  | See Parameter DO32 and <b>Note 4</b>                            |
| SP21         | TscR                  | SCKx Output Rise Time                         | —                                  | _                                | —                                           | ns                                  | See Parameter DO31 and <b>Note 4</b>                            |
| SP30         | TdoF                  | SDOx Data Output Fall Time                    | _                                  |                                  |                                             | ns                                  | See Parameter DO32 and <b>Note 4</b>                            |
| SP31         | TdoR                  | SDOx Data Output Rise Time                    | _                                  |                                  |                                             | ns                                  | See Parameter DO31 and <b>Note 4</b>                            |
| SP35         | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge     | —                                  | 6                                | 20                                          | ns                                  |                                                                 |
| SP36         | TdoV2sc,<br>TdoV2scL  | SDOx Data Output Setup to<br>First SCKx Edge  | 30                                 | _                                | —                                           | ns                                  |                                                                 |
| SP40         | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data<br>Input to SCKx Edge | 30                                 | —                                | —                                           | ns                                  |                                                                 |
| SP41         | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge     | 30                                 | —                                | _                                           | ns                                  |                                                                 |

**Note 1:** These parameters are characterized, but are not tested in manufacturing.

**2:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

| TABLE 25-41: | : HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS |
|--------------|------------------------------------------------------|
|--------------|------------------------------------------------------|

| DC CHA | RACTER | ISTICS <sup>(2)</sup>                             | Standard Operating Conditions (unless otherwise stated)Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |         |      |       |                                                                                                                         |
|--------|--------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|-------------------------------------------------------------------------------------------------------------------------|
| Param. | Symbol | Characteristic                                    | Min.                                                                                                                                                                                     | Тур.    | Max. | Units | Comments                                                                                                                |
| CM10   | VIOFF  | Input Offset Voltage                              | -58                                                                                                                                                                                      | +14/-40 | 66   | mV    |                                                                                                                         |
| CM11   | VICM   | Input Common-Mode<br>Voltage Range <sup>(1)</sup> | 0                                                                                                                                                                                        | -       | AVDD | V     |                                                                                                                         |
| CM14   | TRESP  | Large Signal Response                             | 21                                                                                                                                                                                       | 30      | 49   | ns    | V+ input step of 100 mv while<br>V- input held at AVDD/2. Delay<br>measured from analog input pin to<br>PWM output pin. |

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

| AC and | DC CHAR | ACTERISTICS <sup>(2)</sup>                | <b>Standar</b><br>Operatir | rd Opera<br>ng tempe | nting Condition<br>erature: -40°C<br>-40°C | ons (unl<br>≤ Ta ≤ +<br>≤ Ta ≤ + | ess otherwise stated)<br>85°C for Industrial<br>-125°C for Extended                                     |
|--------|---------|-------------------------------------------|----------------------------|----------------------|--------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------|
| Param. | Symbol  | Characteristic                            | Min.                       | Тур.                 | Max.                                       | Units                            | Comments                                                                                                |
| DA01   | EXTREF  | External Voltage Reference <sup>(1)</sup> | 0                          | _                    | AVDD – 1.6                                 | V                                |                                                                                                         |
| DA08   | INTREF  | Internal Voltage Reference <sup>(1)</sup> | 1.15                       | 1.25                 | 1.35                                       | V                                |                                                                                                         |
| DA02   | CVRES   | Resolution                                |                            | 10                   |                                            | Bits                             |                                                                                                         |
| DA03   | INL     | Integral Nonlinearity Error               | -7                         | -1                   | +7                                         | LSB                              | AVDD = 3.3V,<br>DACREF = (AVDD/2)V                                                                      |
| DA04   | DNL     | Differential Nonlinearity Error           | -5                         | -0.5                 | +5                                         | LSB                              |                                                                                                         |
| DA05   | EOFF    | Offset Error                              | 0.4                        | -0.8                 | 2.6                                        | %                                |                                                                                                         |
| DA06   | EG      | Gain Error                                | 0.4                        | -1.8                 | 5.2                                        | %                                |                                                                                                         |
| DA07   | TSET    | Settling Time <sup>(1)</sup>              | 711                        | 1551                 | 2100                                       | ns                               | Measured when<br>RANGE = 1 (high range)<br>and the CMREF<9:0> bits<br>transition from 0x1FF to<br>0x300 |

#### TABLE 25-42: DAC MODULE SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

NOTES:

### dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### **RECOMMENDED LAND PATTERN**

|                          | Units  | Ν    |          | s    |
|--------------------------|--------|------|----------|------|
| Dimension                | Limits | MIN  | NOM      | MAX  |
| Contact Pitch            | Е      |      | 1.27 BSC |      |
| Contact Pad Spacing      | С      |      | 9.40     |      |
| Contact Pad Width (X28)  | Х      |      |          | 0.60 |
| Contact Pad Length (X28) | Y      |      |          | 2.00 |
| Distance Between Pads    | Gx     | 0.67 |          |      |
| Distance Between Pads    | G      | 7.40 |          |      |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

### dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

#### NOTE 1 NOTE 1 1 2 3 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 2 A 1 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2A 2

| 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPD |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

| Units                      |    | INCHES   |       |       |
|----------------------------|----|----------|-------|-------|
| Dimension Limits           |    | MIN      | NOM   | MAX   |
| Number of Pins             | Ν  | 28       |       |       |
| Pitch                      | е  | .100 BSC |       |       |
| Top to Seating Plane       | Α  | -        | -     | .200  |
| Molded Package Thickness   | A2 | .120     | .135  | .150  |
| Base to Seating Plane      | A1 | .015     | -     | -     |
| Shoulder to Shoulder Width | E  | .290     | .310  | .335  |
| Molded Package Width       | E1 | .240     | .285  | .295  |
| Overall Length             | D  | 1.345    | 1.365 | 1.400 |
| Tip to Seating Plane       | L  | .110     | .130  | .150  |
| Lead Thickness             | с  | .008     | .010  | .015  |
| Upper Lead Width           | b1 | .040     | .050  | .070  |
| Lower Lead Width           | b  | .014     | .018  | .022  |
| Overall Row Spacing §      | eB | _        | _     | .430  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

# 28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-124C Sheet 1 of 2