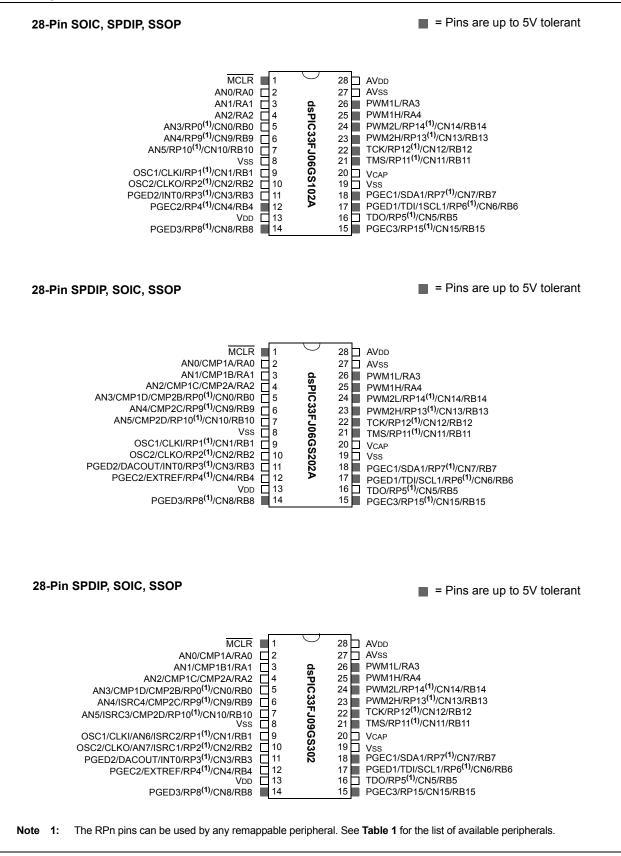


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs001t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

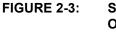
Pin Diagrams (Continued)

2.5 ICSP[™] Pins

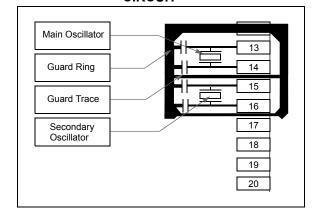
The PGECx and PGEDx pins are used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins, are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and Input Voltage High (VIH) and Input Voltage Low (VIL) pin requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.


For more information on MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site (www.microchip.com):

- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- "Multi-Tool Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" (DS51616)
- *"Using MPLAB[®] REAL ICE™"* (poster) (DS51749)


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

NOTES:

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies from device to device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a Data, Address or Address Offset register. The sixteenth working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits, right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

TABLE 4-16: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_		—	—	—	—	_				Receive	Register				0000
I2C1TRN	0202	_		_	_	-	_	_	_				Transmit	Register				OOFF
I2C1BRG	0204	_		_	_	-	_	_	Baud Rate Generator Register								0000	
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_		_	_	-	_		Address Register								0000	
I2C1MSK	020C	—	_		—	_	_		AMSK<9:0>							0000		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: UART1 REGISTER MAP FOR dsPiC33FJ06GS101A, dsPiC33FJ06GS102A, dsPiC33FJ06GS202A AND dsPiC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	-	_	_	_	-				UART	Transmit Re	egister				XXXX
U1RXREG	0226	_	_	-	_	_	_	-	UART Receive Register 0								0000	
U1BRG	0228		-			•		B	Baud Rate Generator Prescaler 0							0000		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18:SPI1 REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL					_		SPIROV	_	_	_	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL		_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Tran	smit and Re	ceive Buffe	er Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: SYSTEM CONTROL REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_		—	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{XXXX} (1)
OSCCON	0742	_	(COSC<2:0>		—	١	NOSC<2	:0>	CLKLOCK	IOLOCK	LOCK	_	CF	—	_	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI	[DOZE<2:0>		DOZEN	DOZEN FRCDIV<2:0> PLLPOST<1:0> — PLLPRE<4:0>						3040					
PLLFBD	0746	_	_	_	_	_						PL	LDIV<8:0	>				0030
OSCTUN	0748	_	_	_	_	_			_	_	_			TUN	<5:0>			0000
LFSR	074C	_								LFSR<1	4:0>							0000
REFOCON	074E	ROON	_	ROSSLP	ROSEL		RODI	V<3:0>		_	_	_	_	_	_	_	_	0000
ACLKCON	0750	ENAPLL	APLLCK	SELACLK	_	—	APS	STSCLR	<2:0>	ASRCSEL	FRCSEL	_	_	_	_	_	—	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The RCON register Reset values are dependent on the type of Reset.

2: The OSCCON register Reset values are dependent on the FOSCx Configuration bits and on type of Reset.

TABLE 4-33: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	_	—	_	_	_	ERASE	_	—		NVMOF	P<3:0>		0000 (1)
NVMKEY	0766	—	_	_	—	_	_	_	_				NVMKE	Y<7:0>				0000

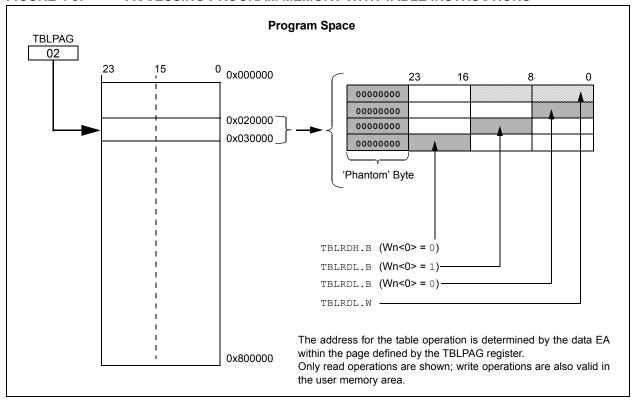
Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

4.7.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

FIGURE 7-1: dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 INTERRUPT VECTOR TABLE

1	Depet como Instruction		
	Reset - GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector	_	
	Address Error Trap Vector	_	
	Stack Error Trap Vector		
	Math Error Trap Vector	_	
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~	_	
	~	_	
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
>	Interrupt Vector 53	0x00007E	,
brit	Interrupt Vector 54	0x000080	
L re	~	_	
er	~	-	
Drd	Interrupt Vector 116	0x0000FC	
Decreasing Natural Order Priority	Interrupt Vector 117	0x0000FC	
fr		0x000100	
Za	Reserved Reserved	0x000100	
bu	Reserved	0x000102	
asi	Oscillator Fail Trap Vector	_	
e c	Address Error Trap Vector		
De	Stack Error Trap Vector		
_	Math Error Trap Vector		
	Reserved	_	
	Reserved		
	Reserved	-	
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~	1	
	~	1	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	,
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~]	
	Interrupt Vector 116		
↓ I	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
Note de O	Table 7 4 families list of image		
Note 1: See	Table 7-1 for the list of impleme	ented interrupt v	ectors.

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_	_	_	_	—	_	—					
bit 15	·					·	bit 8					
U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0					
_	—		ADCP6IF	—	—	ADCP3IF ⁽¹⁾	ADCP2IF ⁽²⁾					
bit 7							bit 0					
Legend:												
R = Readat	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	cleared x = Bit is unknown							
bit 15-5	Unimplemen	ted: Read as	'O'									
bit 4	ADCP6IF: A	DC Pair 6 Con	version Done I	nterrupt Flag S	Status bit							
	1 = Interrupt	request has o	curred									
	0 = Interrupt	request has no	ot occurred									
bit 3-2	Unimplemen	ted: Read as	'0'									
bit 1	ADCP3IF: A	DC Pair 3 Con	version Done I	nterrupt Flag S	Status bit ⁽¹⁾							
	1 = Interrupt	request has o	curred									
	0 = Interrupt	request has no	ot occurred									
bit 0	ADCP2IF: AI	DC Pair 2 Con	version Done I	nterrupt Flag S	Status bit ⁽²⁾							
	ADCP2IF: ADC Pair 2 Conversion Done Interrupt Flag Status bit ⁽²⁾ 1 = Interrupt request has occurred											
	0 = Interrupt request has not occurred											

- Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.
 - 2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

10.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some digital only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V), on any desired 5V tolerant pins, by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to the **"Pin Diagrams"** section for the available pins and their functionality.

10.3 Configuring Analog Port Pins

The ADPCFG and TRIS registers control the operation of the Analog-to-Digital port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin, defined as a digital input (including the ANx pins), can cause the input buffer to consume current that exceeds the device specifications.

10.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 10-1.

10.5 Input Change Notification

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States (COS), even in Sleep mode when the clocks are disabled. Depending on the device pin count, up to 16 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the CN module. The CNEN1 register contains the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pin.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately, using the CNPU1 register, which contains the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

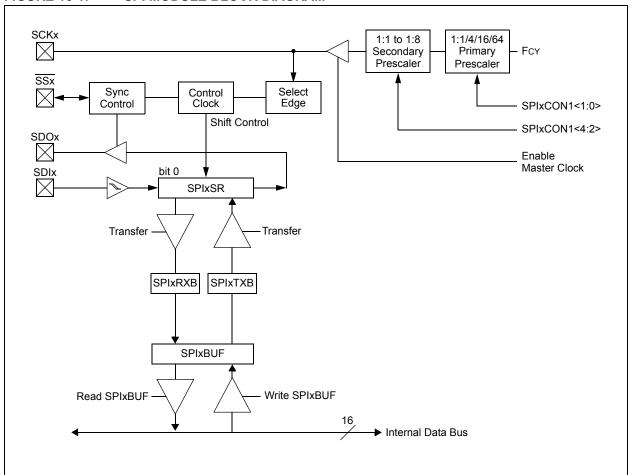
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	TRGDI	V<3:0>		—		_	
bit 15							bit
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DTM ⁽¹⁾				TRGS	TRT<5:0>		
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-12 bit 11-8	1111 = Trigg 1100 = Trigg 1100 = Trigg 1001 = Trigg 1010 = Trigg 1000 = Trigg 1000 = Trigg 0111 = Trigg 0110 = Trigg 0101 = Trigg 0100 = Trigg 0011 = Trigg 0010 = Trigg 0010 = Trigg 0001 = Trigg 0001 = Trigg 0000 = Trigg	>: Trigger # Ou yer output for ev yer output for ev yer output for ev yer output for ev yer output for ev yer output	very 16th trigg very 15th trigg very 15th trigg very 13th trigg very 12th trigg very 12th trigg very 10th trigg very 9th trigge very 8th trigge very 6th trigge very 5th trigge very 3th trigge very 3th trigge very 3th trigge very 3th trigge very 3th trigge very 3th trigge very 2nd trigge	er event er event er event er event er event er event r event r event r event r event r event r event r event r event r event er event er event			
bit 7		rigger Mode bit					
	1 = Seconda 0 = Seconda	ary trigger even	t is combined t is not combir	ned with the pri	ry trigger event mary trigger eve		
bit 6	Unimplemer	nted: Read as '	0'				
bit 5-0		5:0>: Trigger Po					
	111111 = W	ait 63 PWM cyc	cles before ge	nerating the fir	st trigger event	after the modul	e is enabled
	•						
	•						
	000001 = W	ait 1 PWM cycl	e before gene	erating the first	t trigger event a trigger event aft trigger event aft	er the module i	is enabled
Note 1: Th	ie secondary ge	enerator canno	t generate PV	VM triager inter	rupts.		

REGISTER 15-13: TRGCONX: PWMx TRIGGER CONTROL REGISTER

Note 1: The secondary generator cannot generate PWM trigger interrupts.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- · SDIx (serial data input)
- · SDOx (serial data output)
- · SCKx (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCKx is a clock output; in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

18.1 UART Helpful Tips

- In multinode, direct-connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (U1MODE<4>), which defines the Idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin, depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode, caused by activity on the UxRX pin of the UART module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized. This results in the first character being invalid; this is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the Microchip web site (www.microchip.com).

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related "dsPIC33F/PIC24H Family Reference Manual" Sections
- Development Tools

19.4 ADC Control Registers

The ADC module uses the following control and status registers:

- ADCON: ADC Control Register
- ADSTAT: ADC Status Register
- ADBASE: ADC Base Register(1)
- ADPCFG: ADC Port Configuration Register
- ADCPC0: ADC Convert Pair Control Register 0
- ADCPC1: ADC Convert Pair Control Register 1
- ADCPC3: ADC Convert Pair Control Register 3(1)

The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG register configures the port pins as analog inputs or as digital I/Os. The ADCPCx registers control the triggering of the ADC conversions. See Register 19-1 through Register 19-7 for detailed bit configurations.

Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual Sample-and-Hold circuits can be triggered independently of each other.

REGISTER 19-1: ADCON: ADC CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
ADON	—	ADSIDL	SLOWCLK ⁽¹⁾	—	GSWTRG	—	FORM ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ⁽¹⁾	SEQSAMP ⁽¹⁾	ASYNCSAMP ⁽¹⁾	_		ADCS<2:0>(1)	
bit 7							bit 0

Legend:							
R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set		W = Writable bit	U = Unimplemented bit, read as '0'				
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15	ADON: A	ADC Operating Mode bit					
		module is operating module is off					
bit 14	Unimple	mented: Read as '0'					
bit 13	ADSIDL: Stop in Idle Mode bit						
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 						
bit 12	SLOWCLK: Enable Slow Clock Divider bit ⁽¹⁾						
		C is clocked by the auxiliary PL C is clocked by the primary PLL					
bit 11	Unimplemented: Read as '0'						
bit 10	GSWTRG: Global Software Trigger bit						
	ADCPCx	-	igger conversions if selected by ared by the user prior to initiating				
bit 9	Unimple	mented: Read as '0'					

Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).

REGISTER	19-5: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)
bit 7	IRQEN0: Interrupt Request Enable 0 bit
	 1 = Enables IRQ generation when requested conversion of channels AN1 and AN0 is completed 0 = IRQ is not generated
bit 6	PEND0: Pending Conversion Status 0 bit
	 1 = Conversion of channels AN1 and AN0 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	SWTRG0: Software Trigger 0 bit 1 = Starts conversion of AN1 and AN0 (if selected by the TRGSRCx bits) ⁽¹⁾ This bit is automatically cleared by hardware when the PEND0 bit is set. 0 = Conversion has not started
bit 4-0	TRGSRC0<4:0>: Trigger 0 Source Selection bits Selects trigger source for conversion of analog channels AN1 and AN0. 11111 = Timer2 period match
	•
	•
	11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = Reserved
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved
	•
	•
	10010 = Reserved 10001 = PWM Generator 4 secondary trigger is selected
	10000 = Reserved
	01111 = PWM Generator 2 secondary trigger is selected
	01110 = PWM Generator 1 secondary trigger is selected
	01101 = Reserved 01100 = Timer1 period match
	•
	•
	•
	01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected
	00110 = Reserved
	00101 = PWM Generator 2 primary trigger is selected
	00100 = PWM Generator 1 primary trigger is selected
	00011 = PWM Special Event Trigger is selected
	00010 = Global software trigger is selected 00001 = Individual software trigger is selected
	00000 = No conversion is enabled

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then conversion will be performed when the conversion resources are available.

TABLE 22-3: 0	ISPIC33F CONFIGURATION BITS DESCRIPTION
Bit Field	Description
GCP	General Segment Code-Protect bit
	1 = User program memory is not code-protected
	0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit
	1 = User program memory is not write-protected
	0 = User program memory is write-protected
IESO	Two-Speed Oscillator Start-up Enable bit
	1 = Start up device with FRC, then automatically switch to the user-selected oscillator source
	when ready
	0 = Start up device with user-selected oscillator source
FNOSC<2:0>	Oscillator Selection bits
	111 = Fast RC Oscillator with divide-by-N (FRCDIVN)
	110 = Reserved; do not use
	101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use
	011 = Primary Oscillator with PLL module (MS + PLL, EC + PLL)
	010 = Primary Oscillator (MS, HS, EC)
	001 = Fast RC Oscillator with divide-by-N with PLL module
	(FRCDIVN + PLL)
	000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits
	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit
	1 = Allow only one reconfiguration
	0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in MS and HS modes)
	1 = OSC2 is the clock output
	0 = OSC2 is the general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits
	11 = Primary Oscillator is disabled10 = HS Crystal Oscillator mode (10 MHz-32 MHz)
	01 = MS Crystal Oscillator mode (3 MHz-10 MHz)
	00 = EC (External Clock) mode (DC-32 MHz)
FWDTEN	Watchdog Timer Enable bit
	1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN
	bit in the RCON register will have no effect)
	0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing
	the SWDTEN bit in the RCON register)
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1 :32,768
	1110 = 1:16,384
	•
	•
	•
	0001 = 1:2
	0000 = 1:1

TABLE 22-3: dsPIC33F CONFIGURATION BITS DESCRIPTION

24.0 DEVELOPMENT SUPPORT

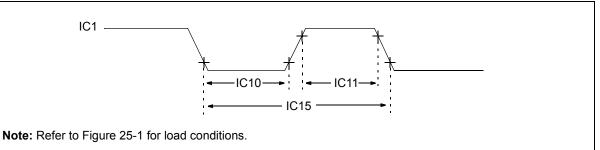
The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

24.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers


The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

FIGURE 25-6: INPUT CAPTURE (CAP1) TIMING CHARACTERISTICS

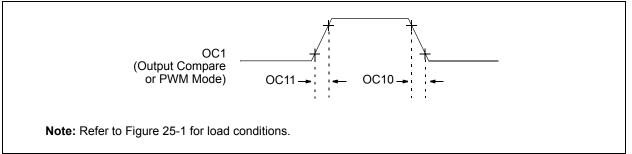
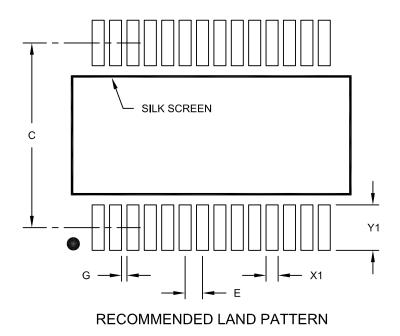


TABLE 25-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. Symbol Characteristic ⁽¹⁾		Min.	Max.	Units	Conditions		
IC10	TccL	IC1 Input Low Time	No prescaler	0.5 Tcy + 20	_	ns	
			With prescaler	10	_	ns	
IC11	TccH	IC1 Input High Time	No prescaler	0.5 TCY + 20	_	ns	
			With prescaler	10	_	ns	
IC15	TccP	IC1 Input Period	•	(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 25-7: OUTPUT COMPARE MODULE (OC1) TIMING CHARACTERISTICS


TABLE 25-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC10	TccF	OC1 Output Fall Time	—		1	ns	See Parameter DO32
OC11	TccR	OC1 Output Rise Time	—	—	—	ns	See Parameter DO31

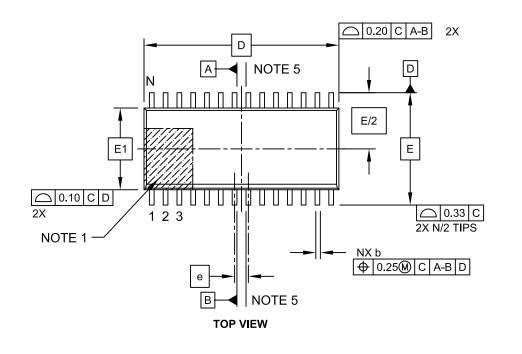
Note 1: These parameters are characterized but not tested in manufacturing.

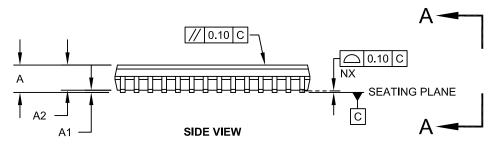
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

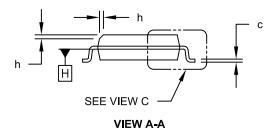
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			-
	MILLIMETERS			
Dimensi	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2