

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuns	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs001t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside of this range, the application must start up in the FRC mode first. The default PLL settings after a POR, with an oscillator frequency outside of this range, will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG register.

The bits in the registers that correspond to the Analog-to-Digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain Analog-to-Digital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all Analog-to-Digital pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

3.4 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ^(1,4)	DA	DC
bit 15					•		bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit (
Legend:							
C = Clearab	le bit	R = Readable	e bit	U = Unimple	mented bit, read	as '0'	
S = Settable	bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15	OA: Accumul	lator A Overflow	v Status bit				
		ator A overflowe					
1.1.4.4		ator A has not c					
bit 14		lator B Overflow ator B overflowe					
		ator B has not c					
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾			
	1 = Accumula	ator A is saturat ator A is not sat	ed or has bee		some time		
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾			
		ator B is saturat ator B is not sat		en saturated at	some time		
bit 11	0AB: 0A 0	DB Combined A	ccumulator O	verflow Status	bit		
	1 = Accumula	ators A or B hav	ve overflowed				
bit 10	SAB: SA S	B Combined A	ccumulator 'St	icky' Status bit	(1,4)		
	1 = Accumula		saturated or	have been sat	urated at some	time in the past	t
bit 9	DA: DO Loop	Active bit					
	1 = DO loop ir						
	-	ot in progress					
bit 8		U Half Carry/B					
	of the res	sult occurred		-	data) or 8th low-o		
	•	-out from the 4 the result occur		bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-size
Note 1: ⊤	his bit can be rea	ad or cleared (n	ot set).				
L	he IPL<2:0> bits evel (IPL). The v PL3 = 1.						

REGISTER 3-1: SR: CPU STATUS REGISTER

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

4: Clearing this bit will clear SA and SB.

TABLE 4-21: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dSPIC33FJ06GS102A AND dSPIC33FJ06GS202A																		
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	_	GSWTRG	—	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	ASYNCSAMP — ADCS<2:0>			0003	
ADPCFG	0302	_	—	_	—	_	—	_	_	—		PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	—	_	—	_	—		_	—	P6RDY	—	—	_	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308		ADBASE<15:1> —												0000			
ADCPC0	030A	IRQEN1	RQEN1 PEND1 SWTRG1 TRGSRC1<4:0> IRQEN0 PEND0 SWTRG0 TRGSRC0<4:0>											0000				
ADCPC1	030C	_	—	_	_	_	—		_	IRQEN2	PEND2	SWTRG2	52 TRGSRC2<4:0>					0000
ADCPC3	0310	_								0000								
ADCBUF0	0320								ADC D	ata Buffer 0)							XXXX
ADCBUF1	0322								ADC D	ata Buffer 1								XXXX
ADCBUF2	0324								ADC D	ata Buffer 2	2							XXXX
ADCBUF3	0326								ADC D	ata Buffer 3	3							XXXX
ADCBUF4	0328								ADC D	ata Buffer 4	ļ							XXXX
ADCBUF5	032A								ADC D	ata Buffer 5	5							XXXX
ADCBUF12	0338								ADC Da	ata Buffer 12	2							XXXX
ADCBUF13	033A								ADC Da	ata Buffer 1	3							XXXX

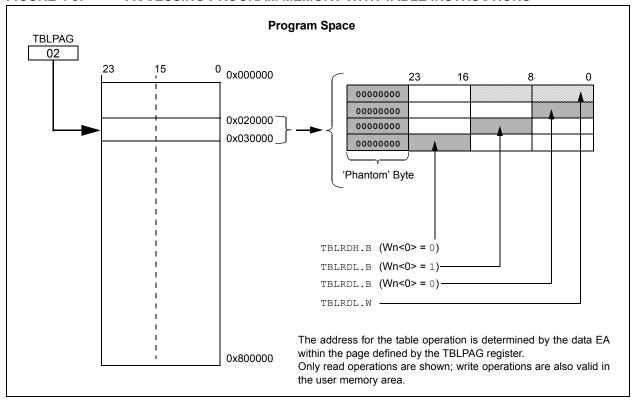
TABLE 4-21: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS102A AND dsPIC33FJ06GS202A

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.7.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred

bit 0 POR: Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

© 2011-2012 Microchip Technology Inc.

REGISTER 7-13: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1												
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
_		INT2IE	—	_	_	_						
bit 15					•		bit 8					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	_	—	INT1IE	CNIE	AC1IE ⁽¹⁾	MI2C1IE	SI2C1IE					
bit 7							bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	unknown					
bit 15-14	-	ted: Read as '										
bit 13		rnal Interrupt 2										
		request is enab request is not e										
bit 12-5		ited: Read as '										
bit 4	-	rnal Interrupt 1										
Dil 4		request is enab										
		request is not e										
bit 3	CNIE: Input C	Change Notifica	tion Interrupt	Enable bit								
		request is enab										
	•	request is not e										
bit 2		og Comparator		able bit ⁽¹⁾								
		request is enab										
bit 1	•	request is not e 21 Master Even		aabla bit								
		request is enab	-									
		request is enab										
bit 0	•	1 Slave Events		able bit								
		request is enab	•									
	0 = Interrupt r	request is not e	nabled									

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER	9-5: PMD6	: PERIPHER	AL MODULE	E DISABLE C	ONTROL RE	GISTER 6	
U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
_	_	—		PWM4MD ⁽¹⁾	—	PWM2MD ⁽²⁾	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
				<u> </u>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-12	Unimplomon	ted: Read as '	۰,				
bit 11	•	NM Generator		able bit(1)			
	1 = PWM Ger	nerator 4 modu nerator 4 modu	le is disabled				
bit 10	Unimplement	ted: Read as ')'				
bit 9	PWM2MD: PV	WM Generator	2 Module Disa	able bit ⁽²⁾			
	±	nerator 2 modu nerator 2 modu					
bit 8	PWM1MD: PV	WM Generator	1 Module Disa	able bit			
		nerator 1 modu nerator 1 modu					
bit 7-0	Unimplement	ted: Read as ')'				

Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 9-	·7: PMD	8: PERIPHER	AL MODULE	DISABLE C	ON I ROL RE	GISTER 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	_	—	—	—	—	—	—			
bit 15			•			· · ·	bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
—		—	—	—	_	CCSMD ⁽¹⁾				
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	x = Bit is unkno	wn				

REGISTER 9-7: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8

bit 15-2 Unimplemented: Read as '0'

bit 1 CCSMD: Constant Current Source Module Disable bit⁽¹⁾

1 = Constant current source module is disabled

0 = Constant current source module is enabled

bit 0 Unimplemented: Read as '0'

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A/202A devices.

10.9 Peripheral Pin Select Registers

The following registers are implemented for remappable peripheral configuration:

- 15 Input Remappable Peripheral Registers
- 19 Output Remappable Peripheral Registers
- Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.6.3.1 "Control Register Lock" for a specific command sequence.

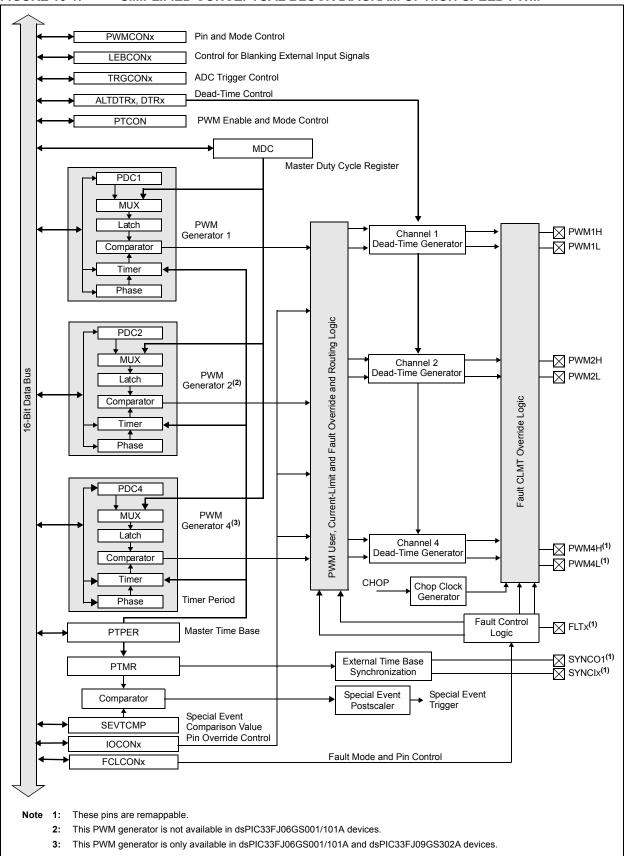
Not all Output Remappable Peripheral registers are implemented on all devices. See the register description of the specific register for further details.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			INT1	R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

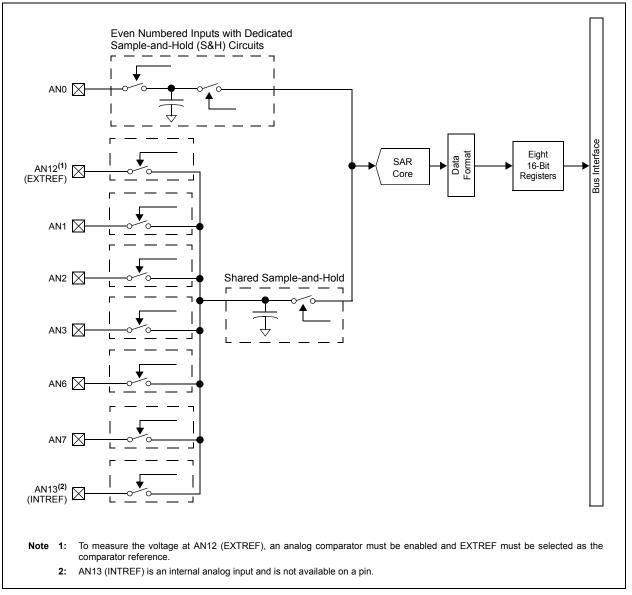
bit 15-14 Unimplemented: Read as '0'


bit 7

bit 7-0

bit 13-8 INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits

INT IN CONF. / Congri External III
111111 = Input tied to Vss
100011 = Input tied to RP35
100010 = Input tied to RP34
100001 = Input tied to RP33
100000 = Input tied to RP32
•
•
•
00000 = Input tied to RP0
Unimplemented: Read as '0'


bit 0

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - 00 = Primary prescale 64:1
- Note 1: This bit is not used in Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

FIGURE 19-1: ADC BLOCK DIAGRAM FOR THE dsPIC33FJ06GS001 DEVICE

TABLE 22-1: CONFIGURATION FLASH BYTES FOR dsPIC33FJ06GS001/101A/X02A DEVICES

Address	Name	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
000FF0	FICD	_	Reserved ⁽¹⁾	_	JTAGEN	Reserved ⁽²⁾		_	— ICS<1:0>		
000FF4	FWDT	—	FWDTEN	—	PLLKEN	WDTPRE		WDTPOST<3:0>			
000FF6	FOSC	—	FCKS	M<1:0>	IOL1WAY	—	—	OSCIOFNC	POSCM	ID<1:0>	
000FF8	FOSCSEL	—	IESO	—	—	—	—	FNOSC<2:0>			
000FFA	FGS				_	—	_		GCP	GWRP	

Legend: — = unimplemented, read as '1'.

Note 1: This bit is reserved for use by development tools.

2: This bit is reserved; program as '0'.

TABLE 22-2: CONFIGURATION FLASH BYTES FOR dsPIC33FJ09GS302 DEVICES

Address	Name	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0017F0	FICD		Reserved ⁽¹⁾		JTAGEN	Reserved ⁽²⁾	_	— ICS<1:0>		:1:0>	
0017F4	FWDT	_	FWDTEN	—	PLLKEN	WDTPRE		WDTPOST<3:0>			
0017F6	FOSC	_	FCKS	//<1:0>	IOL1WAY	—	— OSCIOFNC		POSCMD<1:0>		
0017F8	FOSCSEL	—	IESO	—	—	—	—	FNOSC<2:0>			
0017FA	FGS	—	—	—		—	—	—	GCP	GWRP	

Legend: — = unimplemented, read as '1'.

Note 1: This bit is reserved for use by development tools.

2: This bit is reserved; program as '0'.

TABLE 22-3: 0	ISPIC33F CONFIGURATION BITS DESCRIPTION
Bit Field	Description
GCP	General Segment Code-Protect bit
	1 = User program memory is not code-protected
	0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit
	1 = User program memory is not write-protected
	0 = User program memory is write-protected
IESO	Two-Speed Oscillator Start-up Enable bit
	1 = Start up device with FRC, then automatically switch to the user-selected oscillator source
	when ready
	0 = Start up device with user-selected oscillator source
FNOSC<2:0>	Oscillator Selection bits
	111 = Fast RC Oscillator with divide-by-N (FRCDIVN)
	110 = Reserved; do not use
	101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use
	011 = Primary Oscillator with PLL module (MS + PLL, EC + PLL)
	010 = Primary Oscillator (MS, HS, EC)
	001 = Fast RC Oscillator with divide-by-N with PLL module
	(FRCDIVN + PLL)
	000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits
	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit
	1 = Allow only one reconfiguration
	0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in MS and HS modes)
	1 = OSC2 is the clock output
	0 = OSC2 is the general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits
	11 = Primary Oscillator is disabled10 = HS Crystal Oscillator mode (10 MHz-32 MHz)
	01 = MS Crystal Oscillator mode (3 MHz-10 MHz)
	00 = EC (External Clock) mode (DC-32 MHz)
FWDTEN	Watchdog Timer Enable bit
	1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN
	bit in the RCON register will have no effect)
	0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing
	the SWDTEN bit in the RCON register)
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768
	1110 = 1:16,384
	•
	•
	•
	0001 = 1:2
	0000 = 1:1

TABLE 22-3: dsPIC33F CONFIGURATION BITS DESCRIPTION

25.1 DC Characteristics

	Voo Bango	Tomp Bongo	Maximum MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302
	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	40
—	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	40

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

TABLE 25-2: THERMAL OPERATING CONDITIONS

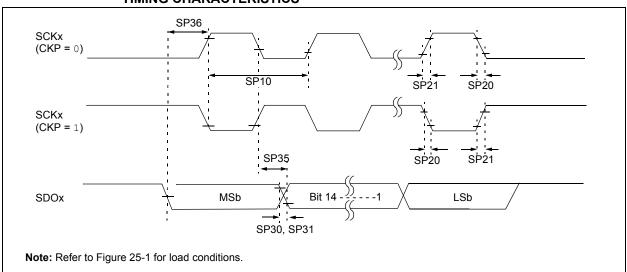
Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	I	PINT + PI/c	D	W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 18-Pin SOIC	θJA	57		°C/W	1
Package Thermal Resistance, 18-pin PDIP	θJA	66	-	°C/W	1
Package Thermal Resistance, 20-pin SSOP	θJA	64	—	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θJA	34		°C/W	1
Package Thermal Resistance, 28-pin SSOP	θJA	71	-	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	47	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	45		°C/W	1
Package Thermal Resistance, 36-Pin VTLA	θJA	29	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

AC CHARACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
	Internal FRC Accuracy @ FRC Frequency = 7.37 MHz ⁽¹⁾								
F20a	FRC	-2	_	+2	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
F20b	FRC	-5	_	+5	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C \qquad VDD = 3.0-3.6V$			


TABLE 25-19: AC CHARACTERISTICS: INTERNAL FRC ACCURACY

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 25-20: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
	LPRC @ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-20	_	+20	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V	
F21b	LPRC	-70	_	+70	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V	

Note 1: The change of LPRC frequency as VDD changes.

FIGURE 25-12: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 25-30: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency	—		15	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—		_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

NOTES:

	157
RPOR0 (Peripheral Pin Select Output 0)	168
RPOR1 (Peripheral Pin Select Output 1)	168
RPOR16 (Peripheral Pin Select Output 16)	
RPOR17 (Peripheral Pin Select Output 17)	
RPOR2 (Peripheral Pin Select Output 2)	169
RPOR3 (Peripheral Pin Select Output 3)	
RPOR4 (Peripheral Pin Select Output 4)	
RPOR5 (Peripheral Pin Select Output 5)	
RPOR6 (Peripheral Pin Select Output 6)	
RPOR7 (Peripheral Pin Select Output 7)	171
SDCx (PWMx Secondary Duty Cycle)	
SEVTCMP (PWM Special Event Compare)	
SPHASEx (PWMx Secondary Phase Shift)	194
SPIxCON1 (SPIx Control 1)	208
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (CPU STATUS)	
SR (CPU Status)	
STRIGx (PWMx Secondary Trigger	
Compare Value)	
T1CON (Timer1 Control)	
T2CON (Timer2 Control)	
TRGCONx (PWMx Trigger Control)	196
TRIGx (PWMx Primary Trigger Compare Value)	
U1MODE (UART1 Mode)	
U1STA (UART1 Status and Control)	
U1STA (UART1 Status and Control) Reset	223
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR)	223 79, 84
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM)	223 79, 84 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR)	223 79, 84 79 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode	223 79, 84 79 79 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security	223 79, 84 79 79 79 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR)	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR)	223 79, 84 79 79 79 79 79 79 85 85 79 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT)	223 79, 84 79 79 79 79 79 79 79 85 79 79 79 84
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction	223 79, 84 79 79 79 79 79 79 79 85 79 79 79 84
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset	223 79, 84 79 79 79 79 79 79 79 79 79 79 79 79 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR)	223 79, 84 79 79 79 79 79 79 79 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register Watchdog Timer Out Reset (WDTO)	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register	223 79, 84 79 79 79 79 79 79 79

S

Serial Peripheral Interface (SPI) SFR Maps	205
Change Notification for	
dsPIC33FJ06GS001, dsPIC33FJ06GS101A	45
Change Notification for dsPIC33FJ06GS102A,	
dsPIC33FJ06GS202A, dsPIC33FJ09GS302	45
Constant Current Source	56
CPU Core	43
High-Speed 10-Bit ADC for dsPIC33FJ06GS001,	
dsPIC33FJ06GS101A	56
High-Speed 10-Bit ADC for dsPIC33FJ06GS102A,	
dsPIC33FJ06GS202A	57
High-Speed 10-Bit ADC for dsPIC33FJ09GS302	58
High-Speed PWM	52
High-Speed PWM Generator 1	52

High-Speed PWM Generator 2 for
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS30253
High-Speed PWM Generator 4 for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A, dsPIC33FJ09GS30254 I2C1
Input Capture for dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Interrupt Controller for dsPIC33FJ06GS00146
Interrupt Controller for dsPIC33FJ06GS002A48
Interrupt Controller for dsPIC33FJ06GS101A47
Interrupt Controller for dsPIC33FJ06GS202A
NVM
Output Compare for dsPIC33FJ06GS101A,
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS30251
Peripheral Pin Select Input for dsPIC33FJ06GS001 59
Peripheral Pin Select Input for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A
Peripheral Pin Select Input for dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Peripheral Pin Select Output for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A60
Peripheral Pin Select Output for dsPIC33FJ06GS102A,
dsPIC33FJ06GS202A, dsPIC33FJ09GS30261 PMD for dsPIC33FJ06GS00164
PMD for dsPIC33FJ06GS101A
PMD for dsPIC33FJ06GS102A
PMD for dsPIC33FJ06GS202A
PMD for dsPIC33FJ09GS30265
PORTA
PORTB for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A62 PORTB for dsPIC33FJ06GS102A,
dsPIC33FJ06GS202A, dsPIC33FJ09GS30262
SPI1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A,
dsPIC33FJ09GS202A, dsPIC33FJ09GS30255
System Control63
Timers51
UART1 for dsPIC33FJ06GS101A,
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Software Simulator (MPLAB SIM)
Software Stack Pointer, Frame Pointer
CALL Stack Frame 66
Symbols Used in Opcode Descriptions
т
Thermal Packaging Characteristics
Timer1
Timer2
Timing Diagrams
Analog-to-Digital Conversion per Input
Brown-out Situations
External Clock
High-Speed PWM
I/O
I2C1 Bus Data (Master Mode)
I2C1 Bus Data (Slave Mode)
I2C1 Bus Start/Stop Bits (Master Mode) 305
I2C1 Bus Start/Stop Bits (Slave Mode)
Input Capture (CAP1)