

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XH

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs101a-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 4-34: PMD REGISTER MAP FOR dsPIC33FJ06GS001

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	_	_	T2MD	T1MD	_	PWMMD	-	I2C1MD	_	—	—		_		ADCMD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	_	_	0000
PMD4	0776	_	_	_		—	_			_		—	—	REFOMD	_	_	_	0000
PMD6	077A	_	_	_		PWM4MD	_		PWM1MD	_		—	—		_	_	_	0000
PMD7	077C	_	_	_		—	_	CMPMD2	CMPMD1	_	_	_	—		_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PMD REGISTER MAP FOR dsPIC33FJ06GS101A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770		—		T2MD	T1MD	_	PWMMD	-	I2C1MD		U1MD	_	SPI1MD	_	_	ADCMD	0000
PMD2	0772	_	_	_		_	_		_			—	_		_		OC1MD	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_		_	REFOMD		_	_	0000
PMD6	077A	—	_	-		PWM4MD	_	-	PWM1MD			_	—		_			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PMD REGISTER MAP FOR dsPIC33FJ06GS102A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770			_	T2MD	T1MD	_	PWMMD	_	I2C1MD	_	U1MD	_	SPI1MD	_	_	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	_	_	_		_	_	_	_	_	OC1MD	0000
PMD4	0776	_	_	_	_	_	_	_	_	_		_	_	REFOMD	_	_	_	0000
PMD6	077A	_	_	_	_	_	_	PWM2MD	PWM1MD	_	_	—	_	-	_	—	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 41. "Interrupts (Part IV)" (DS70300) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. The controller has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of eight non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

The devices implement up to 28 unique interrupts and four non-maskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. A device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 7	-1: SR: C	PU STATUS I	REGISTER)			
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	bit	U = Unimpler	nented bit, read	as '0'	
R = Readable bit W = Writable bit		bit	-n = Value at POR				
'1' = Bit is set '0' = Bit is cleared			ared	x = Bit is unk	nown		

(4)

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.

3: The IPL<2:0> status bits are read-only when NSTDIS (INTCON1<15>) = 1.

CORCON: CORE CONTROL REGISTER⁽¹⁾ **REGISTER 7-2:**

		•••••					
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	—	_	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				

R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit, read	1 as '0'

IPL3: CPU Interrupt Priority Level Status bit 3(2) bit 3

- 1 = CPU Interrupt Priority Level is greater than 7
 - 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
—		INT2IF					_			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	INT1IF	CNIF	AC1IF ⁽¹	MI2C1IF	SI2C1IF			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	าดพท			
							-			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	INT2IF: External Interrupt 2 Flag Status bit									
		request has oc								
	•	request has no								
bit 12-5	-	ited: Read as '								
bit 4		rnal Interrupt 1	•	t						
		request has oc request has no								
bit 3	-	Change Notifica		Flag Status hit						
bit 0		request has oc		r lag Olalas bit						
		request has no								
bit 2	AC1IF: Analo	og Comparator	1 Interrupt Fla	ig Status bit ⁽¹⁾						
		request has oc								
	0 = Interrupt request has not occurred									
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit									
		request has oc								
	-	= Interrupt request has not occurred								
oit O	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit 1 = Interrupt request has occurred									
bit 0										

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	_		_		—	—				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		ADCP3IP<2:0>	1)			DCP2IP<2:0>(2)				
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown							
bit 15-7	Unimplemer	nted: Read as '	0'								
bit 6-4	ADCP3IP<2:	: 0>: ADC Pair 3	B Conversion	Done Interrupt I	Priority bits ⁽¹⁾						
	111 = Interru	pt is Priority 7	(highest priori	ty interrupt)							
	•										
	•										
		ipt is Priority 1 ipt source is dis	abled								
bit 3	Unimplemer	nted: Read as '	0'								
bit 2-0	ADCP2IP<2:	: 0>: ADC Pair 2	2 Conversion	Done Interrupt I	Priority bits ⁽²⁾						
	111 = Interru	pt is Priority 7	(highest priori	ty interrupt)							
	•										
	•										
		001 = Interrupt is Priority 1									
	001 = Interru	pt is Priority 1									

- **Note 1:** These bits are not implemented in dsPIC33FJ06GS102A/202A devices.
 - **2**: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 9	-3: PMD3	3: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 3		
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	
—	—	—	—	—	CMPMD ⁽¹⁾	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_		—				_	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

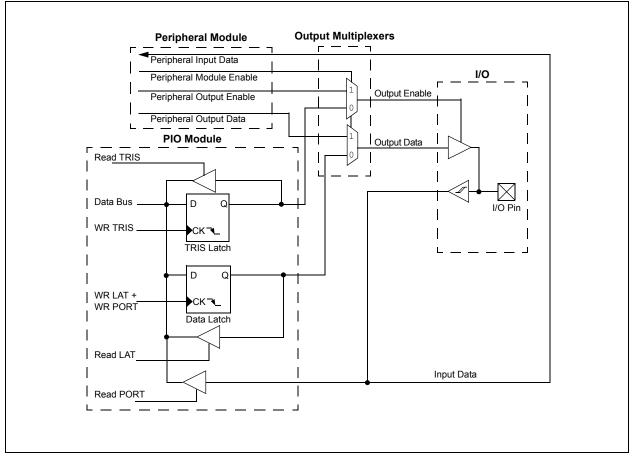
DECISTED 0 2. AL MODULE DISABLE CONTROL DECISTED 2 DMD2. DE

bit 15-11	Unimplemented:	Read as '0'	,

bit 10	CMPMD: Analog Comparator Module Disable bit ⁽¹⁾
	1 = Analog comparator module is disabled
	0 = Analog comparator module is enabled
bit 9-0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4


U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Generator Module Disable bit
	1 = Reference clock generator module is disabled
	0 = Reference clock generator module is enabled
bit 2-0	Unimplemented: Read as '0'

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

12.2 Timer2 Control Register

REGISTER 12-1: T2CON: TIMER2 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—	_	_	_	
bit 15	·						bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE	TCKPS	S<1:0>	—		TCS	—
bit 7							bit (
Levende							
Legend: R = Readat	alo hit	W = Writable	hit		nented bit, rea	d as '0'	
			DIL	-			
-n = Value a	al POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	TON: Timerx	On hit					
	1 = Starts 16-						
	0 = Stops 16-						
bit 14	Unimplemen	ted: Read as ') '				
bit 13	TSIDL: Stop	in Idle Mode bit					
	1 = Discontin	ues timer opera	ation when de	evice enters Idle	e mode		
	0 = Continue	s timer operatio	n in Idle moo	le			
bit 12-7	Unimplemen	ted: Read as '	כי				
bit 6	TGATE: Time	erx Gated Time	Accumulatio	n Enable bit			
	When TCS =						
	This bit is ign						
	<u>When TCS =</u> $1 = Cotod times$	<u>0:</u> ne accumulatior	ia anablad				
		ne accumulation					
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Presca	le Select bits			
	11 = 1:256 pi						
	10 = 1:64 pre						
	01 = 1:8 pres						
	00 = 1:1 pres						
bit 3-2	•	ted: Read as '					
bit 1		Clock Source S					
		clock from T2C	K pin				
bit 0		lock (Fosc/2)					

REGISTER 15-7:	PDCx: PWMx GENERATOR DUTY CYCLE REGISTER ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDCx	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 PDCx<15:0>: PWMx Generator # Duty Cycle Value bits⁽²⁾

- **Note 1:** In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDCx	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC>	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER⁽¹⁾

bit 15-0 SDCx<15:0>: Secondary Duty Cycle for PWMxL Output Pin bits⁽²⁾

- **Note 1:** The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

NOTES:

20.0 HIGH-SPEED ANALOG COMPARATOR

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 45. "High-Speed Analog Comparator" (DS70296) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed analog comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

20.1 Features Overview

The SMPS comparator module offers the following major features:

- · Eight selectable comparator inputs
- · Up to two analog comparators
- · 10-bit DAC for each analog comparator
- · Programmable output polarity
- Interrupt generation capability

- DACOUT pin to provide DAC output
- DACOUT amplifier (1x, 1.8x)
- Selectable hysteresis
- · DAC has three ranges of operation:
 - AVDD/2
 - Internal Reference (INTREF)
 - External Reference (EXTREF)
- · ADC sample and convert trigger capability
- · Disable capability reduces power consumption
- · Functional support for PWM module:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

20.2 Module Description

Figure 20-1 shows a functional block diagram of one analog comparator from the high-speed analog comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns. The comparator has a typical offset voltage of ± 5 mV. The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.

The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

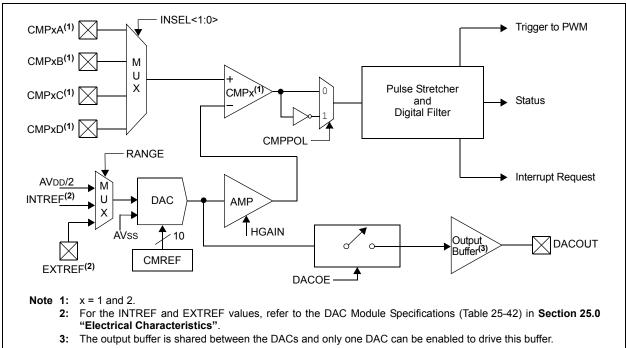
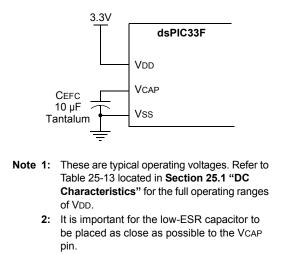


FIGURE 20-1: HIGH-SPEED ANALOG COMPARATOR MODULE BLOCK DIAGRAM

22.2 On-Chip Voltage Regulator


The devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 22-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 25-13, located in **Section 25.1 "DC Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

On a POR, it takes approximately 20 µs for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 22-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 2.5V when $VDD \ge VDDMIN$.

22.3 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until the OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of, TFSCM = 100, is applied. The total delay in this case is TFSCM.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

22.5 JTAG Interface

A JTAG interface is implemented, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface will be provided in future revisions of this document.

22.6 In-Circuit Serial Programming

dsPIC33FJ06GS001/101A/102A/202A The and dsPIC33FJ09GS302 family of digital signal controllers can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for details about In-Circuit Serial Programming (ICSP[™]).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- · PGEC3 and PGED3

22.7 In-Circuit Debugger

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 devices provide simple debugging functionality through the PGECx (Emulation/ Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- · PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

24.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

24.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

24.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

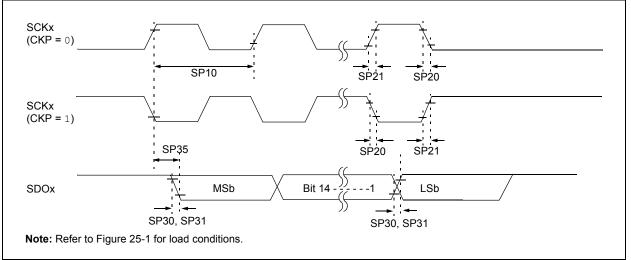
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

DC CHARA	ACTERISTICS		Standard	Operating Co temperature	V to 3.6V (unless otherwise stated) +85°C for Industrial +125°C for Extended	
Param.	Typical ⁽¹⁾	Max.	Units			Conditions
Operating	Current (IDD)	(2)				
DC20d	15	23	mA	-40°C		
DC20a	15	23	mA	+25°C	3.3V	10 MIPS
DC20b	15	23	mA	+85°C	3.3V	TO MIPS
DC20c	15	23	mA	+125°C		
DC21d	23	34	mA	-40°C		
DC21a	23	34	mA	+25°C	0.01/	16 MIPS ⁽³⁾
DC21b	23	34	mA	+85°C	- 3.3V	16 MIPS(*)
DC21c	23	34	mA	+125°C		
DC22d	25	38	mA	-40°C		
DC22a	25	38	mA	+25°C	2.21/	20 MIPS ⁽³⁾
DC22b	25	38	mA	+85°C	- 3.3V	20 MIPS(*)
DC22c	25	38	mA	+125°C		
DC23d	34	51	mA	-40°C		
DC23a	34	51	mA	+25°C	3.3V	30 MIPS ⁽³⁾
DC23b	34	51	mA	+85°C	- 3.3V	30 MIPS(*)
DC23c	34	51	mA	+125°C		
DC24d	43	64	mA	-40°C		
DC24a	43	64	mA	+25°C	2 2)/	40 MIPS ⁽³⁾
DC24b	43	64	mA	+85°C	- 3.3V	40 MIP 5 9
DC24c	43	64	mA	+125°C		
DC25d	83	125	mA	-40°C		40 MIPS
DC25a	83	125	mA	+25°C	3.3V	See Note 2, except PWM and ADC
DC25b	83	125	mA	+85°C	J.JV	are operating at maximum speed
DC25c	83	125	mA	+125°C		(PTCON2 = 0x0000)

TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

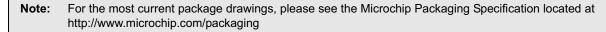
Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.


2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD; WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU is executing while (1) statement
- **3:** These parameters are characterized but not tested in manufacturing.

AC CHARAG	CTERISTICS		Standard Operating (unless otherwise Operating temperate	stated) ure -40°C ≤ [™]		
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	СКЕ	СКР	SMP
15 MHz	Table 25-30	_	_	0,1	0,1	0,1
9 MHz	_	Table 25-31	—	1	0,1	1
9 MHz	—	Table 25-32	—	0	0,1	1
15 MHz	_	—	Table 25-33	1	0	0
11 MHz	—	—	Table 25-34	1	1	0
15 MHz	_	—	Table 25-35	0	1	0
11 MHz	_	—	Table 25-36	0	0	0

TABLE 25-29: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY



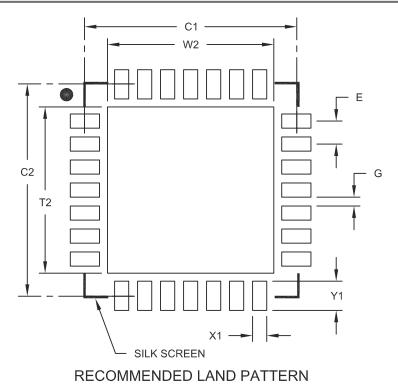

AC CHA	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indus $-40^{\circ}C \le TA \le +125^{\circ}C$ for External				
Param.	Symbol	Charac	teristic	Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μS		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽²⁾	0.5		μS		
IS20	TF:SCL	SDA1 and SCL1	100 kHz mode	_	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 pF to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IS21	TR:SCL	SDA1 and SCL1	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 pF to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns		
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode ⁽²⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μs		
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0	0.3	μS		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6		μS	Start condition	
			1 MHz mode ⁽²⁾	0.25		μS		
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first	
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated	
			1 MHz mode ⁽²⁾	0.25		μS		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μS		
		Setup Time	400 kHz mode	0.6		μS		
			1 MHz mode ⁽²⁾	0.6		μS		
IS34	THD:STO	Stop Condition	100 kHz mode	4000		ns		
		Hold Time	400 kHz mode	600		ns		
			1 MHz mode ⁽²⁾	250		ns		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns		
		From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽²⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free	
			400 kHz mode	1.3		μS	before a new transmission	
			1 MHz mode ⁽²⁾	0.5		μS	can start	
IS50	Св	Bus Capacitive Lo	ading		400	pF		

TABLE 25-38: I2C1 BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only).

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

	MILLIMETERS				
Dimensio	n Limits	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

Ρ

Packaging	210
Details	
Marking	
Peripheral Module Disable (PMD)	
Peripheral Pin Select (PPS)	
Registers	
Pinout I/O Descriptions	
Power-on Reset (POR)	
Power-Saving Features	137
Clock Frequency and Switching	137
Program Address Space	37
Construction	
Data Access from Program Memory Using	
Program Space Visibility	74
Data Access from Program Memory Using	
Table Instructions	73
Data Access from, Address Generation	
Memory Maps	
Table Read Instructions	
TBLRDH	73
TBLRDL	
Visibility Operation	
Program Memory	
	39
Interrupt Vector	
Organization	
Reset Vector	
Pseudo-Random Generator	135

R

Reader Response	347
Reference Clock Generation	
Register Maps	
Configuration Flash Bytes	
(dsPIC33FJ06GS001/101A/X02A)	252
Configuration Flash Bytes	
(dsPIC33FJ09GS302)	252
Registers	
ACLKCON (Auxiliary Clock Divisor Control)	
ADCON (ADC Control)	231
ADCPC0 (ADC Convert Pair Control 0)	236
ADCPC1 (ADC Convert Pair Control 1)	
ADCPC3 (ADC Convert Pair Control 3)	
ADPCFG (ADC Port Configuration)	
ADSTAT (ADC Status)	
ALTDTRx (PWMx Alternate Dead-Time)	
AUXCONx (PWM Auxiliary Control)	
CHOP (PWM Chop Clock Generator)	
CLKDIV (Clock Divisor)	
CMPCONx (Comparator Control x)	
CMPDACx (Comparator DAC Control x)	
Constant Current Source Calibration	
CORCON (Core Control)	
DTRx (PWMx Dead-Time)	195
FCLCONx (PWMx Fault Current-Limit Control)	
I2C1CON (I2C1 Control)	
I2C1MSK (I2C1 Slave Mode Address Mask)	
I2C1STAT (I2C1 Status)	
IC1CON (Input Capture 1 Control)	
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IEC5 (Interrupt Enable Control 5)	
IEC6 (Interrupt Enable Control 6)	
IEC7 (Interrupt Enable Control 7)	106

IEOO (late must Ele » Otetus O)	05
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	. 96
IFS3 (Interrupt Flag Status 3)	. 97
IFS4 (Interrupt Flag Status 4)	
IFS5 (Interrupt Flag Status 5)	
IFS6 (Interrupt Flag Status 6)	
IFS7 (Interrupt Flag Status 7)	100
INTCON1 (Interrupt Control 1)	92
INTCON2 (Interrupt Control 2)	
INTTREG (Interrupt Control and Status)	121
IOCONx (PWMx I/O Control)	197
IPC0 (Interrupt Priority Control 0)	107
IPC1 (Interrupt Priority Control 1)	100
IPC14 (Interrupt Priority Control 14)	
IPC16 (Interrupt Priority Control 16)	113
IPC2 (Interrupt Priority Control 2)	109
IPC20 (Interrupt Priority Control 20)	
IPC23 (Interrupt Priority Control 23)	
IPC24 (Interrupt Priority Control 24)	116
IPC25 (Interrupt Priority Control 25)	117
IPC27 (Interrupt Priority Control 27)	
IPC28 (Interrupt Priority Control 28)	
IPC29 (Interrupt Priority Control 29)	120
IPC3 (Interrupt Priority Control 3)	110
IPC4 (Interrupt Priority Control 4)	
· · · ·	
IPC5 (Interrupt Priority Control 5)	
IPC7 (Interrupt Priority Control 7)	
ISRCCON (Constant Current Source Control)	250
LFSR (Linear Feedback Shift)	
MDC (PWM Master Duty Cycle)	
NVMCON (Flash Memory Control)	
NVMKEY (Nonvolatile Memory Key)	. 78
OC1CON (Output Compare 1 Control)	181
OSCCON (Oscillator Control)	126
OSCTUN (Oscillator Tuning)	
PDCx (PWMx Generator Duty Cycle)	
PHASEx (PWMx Primary Phase Shift)	193
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control 1)	
PMD2 (Peripheral Module Disable Control 2)	
PMD3 (Peripheral Module Disable Control 3)	141
PMD4 (Peripheral Module Disable Control 4)	
PMD6 (Peripheral Module Disable Control 6)	
PMD7 (Peripheral Module Disable Control 7)	143
PMD8 (Peripheral Module Disable Control 8)	144
PTCON (PWM Time Base Control)	187
PTCON2 (PWM Clock Divider Select 2)	
PTPER (PWM Master Time Base)	
PWMCAPx (Primary PWMx Time Base Capture)	
PWMCONx (PWMx Control)	190
RCON (Reset Control)	
REFOCON (Reference Oscillator Control)	
RPINR0 (Peripheral Pin Select Input 0)	
RPINR1 (Peripheral Pin Select Input 1)	154
RPINR11 (Peripheral Pin Select Input 11)	158
RPINR18 (Peripheral Pin Select Input 18)	
RPINR2 (Peripheral Pin Select Input 2)	165
RPINR20 (Peripheral Pin Select Input 20)	160
RPINR21 (Peripheral Pin Select Input 21)	160 161
RPINR21 (Peripheral Pin Select Input 21)	160 161
RPINR21 (Peripheral Pin Select Input 21) RPINR29 (Peripheral Pin Select Input 29)	160 161 162
RPINR21 (Peripheral Pin Select Input 21) RPINR29 (Peripheral Pin Select Input 29) RPINR3 (Peripheral Pin Select Input 3)	160 161 162 156
RPINR21 (Peripheral Pin Select Input 21) RPINR29 (Peripheral Pin Select Input 29) RPINR3 (Peripheral Pin Select Input 3) RPINR30 (Peripheral Pin Select Input 30)	160 161 162 156 163
RPINR21 (Peripheral Pin Select Input 21) RPINR29 (Peripheral Pin Select Input 29) RPINR3 (Peripheral Pin Select Input 3) RPINR30 (Peripheral Pin Select Input 30) RPINR31 (Peripheral Pin Select Input 31)	160 161 162 156 163 164
RPINR21 (Peripheral Pin Select Input 21) RPINR29 (Peripheral Pin Select Input 29) RPINR3 (Peripheral Pin Select Input 3) RPINR30 (Peripheral Pin Select Input 30) RPINR31 (Peripheral Pin Select Input 31)	160 161 162 156 163 164
RPINR21 (Peripheral Pin Select Input 21) RPINR29 (Peripheral Pin Select Input 29) RPINR3 (Peripheral Pin Select Input 3) RPINR30 (Peripheral Pin Select Input 30) RPINR31 (Peripheral Pin Select Input 31) RPINR32 (Peripheral Pin Select Input 32)	160 161 162 156 163 164 165
RPINR21 (Peripheral Pin Select Input 21) RPINR29 (Peripheral Pin Select Input 29) RPINR3 (Peripheral Pin Select Input 3) RPINR30 (Peripheral Pin Select Input 30) RPINR31 (Peripheral Pin Select Input 31)	160 161 162 156 163 164 165 166