

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 40 MIPs                                                                          |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                            |
| Number of I/O              | 13                                                                               |
| Program Memory Size        | 6КВ (2К х 24)                                                                    |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 256 x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 6x10b                                                                        |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 18-SOIC (0.295", 7.50mm Width)                                                   |
| Supplier Device Package    | 18-SOIC                                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs101a-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### **Table of Contents**

| 1.0   | Device Overview                                                       | 13    |
|-------|-----------------------------------------------------------------------|-------|
| 2.0   | Guidelines for Getting Started with 16-Bit Digital Signal Controllers | 17    |
| 3.0   | CPU                                                                   | 25    |
| 4.0   | Memory Organization                                                   | 37    |
| 5.0   | Flash Program Memory                                                  | 75    |
| 6.0   | Resets                                                                | 79    |
| 7.0   | Interrupt Controller                                                  | 87    |
| 8.0   | Oscillator Configuration                                              | 123   |
| 9.0   | Power-Saving Features                                                 | 137   |
| 10.0  | I/O Ports                                                             | 145   |
| 11.0  | Timer1                                                                | 173   |
| 12.0  | Timer2 Features                                                       | 175   |
| 13.0  | Input Capture                                                         | 177   |
| 14.0  | Output Compare                                                        | 179   |
| 15.0  | High-Speed PWM                                                        | 183   |
| 16.0  | Serial Peripheral Interface (SPI)                                     | 205   |
| 17.0  | Inter-Integrated Circuit™ (I <sup>2</sup> C™)                         | 211   |
| 18.0  | Universal Asynchronous Receiver Transmitter (UART)                    | 219   |
| 19.0  | High-Speed 10-Bit Analog-to-Digital Converter (ADC)                   | 225   |
| 20.0  | High-Speed Analog Comparator                                          | 243   |
| 21.0  | Constant Current Source                                               | . 249 |
| 22.0  | Special Features                                                      | . 251 |
| 23.0  | Instruction Set Summary                                               | 259   |
| 24.0  | Development Support                                                   | . 267 |
| 25.0  | Electrical Characteristics                                            | . 271 |
| 26.0  | DC and AC Device Characteristics Graphs                               | 315   |
| 27.0  | Packaging Information                                                 | 319   |
| Appe  | ndix A: Revision History                                              | 339   |
| Index | · · · · · · · · · · · · · · · · · · ·                                 | . 341 |

### **Referenced Sources**

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered the primary reference for the operation of a particular module or device feature.

| Note: | To access the documents listed below, |     |           |     |      |  |  |  |  |
|-------|---------------------------------------|-----|-----------|-----|------|--|--|--|--|
|       | visit                                 | the | Microchip | web | site |  |  |  |  |
|       | (www.microchip.com).                  |     |           |     |      |  |  |  |  |

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I<sup>2</sup>C™)" (DS70195)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)
- Section 41. "Interrupts (Part IV)" (DS70300)
- Section 42. "Oscillator (Part IV)" (DS70307)
- Section 43. "High-Speed PWM" (DS70323)
- Section 44. "High-Speed 10-Bit ADC" (DS70321)
- Section 45. "High-Speed Analog Comparator" (DS70296)

### 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

### 2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ06GS001/101A/ 102A/202A and dsPIC33FJ09GS302 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, regardless if ADC module is not used
- (see Section 2.2 "Decoupling Capacitors")
   VCAP
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) and debugging purposes (see Section 2.5 "ICSP<sup>™</sup> Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

### 2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1  $\mu$ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01  $\mu$ F to 0.001  $\mu$ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible; for example, 0.1  $\mu$ F in parallel with 0.001  $\mu$ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

### 4.3 Special Function Register Maps

### TABLE 4-1: CPU CORE REGISTER MAP

| SFR Name | SFR<br>Addr | Bit 15   | Bit 14                   | Bit 13                   | Bit 12   | Bit 11   | Bit 10    | Bit 9          | Bit 8         | Bit 7 | Bit 6   | Bit 5     | Bit 4         | Bit 3   | Bit 2     | Bit 1    | Bit 0 | All<br>Resets |
|----------|-------------|----------|--------------------------|--------------------------|----------|----------|-----------|----------------|---------------|-------|---------|-----------|---------------|---------|-----------|----------|-------|---------------|
| WREG0    | 0000        |          | Working Register 0 001   |                          |          |          |           |                |               |       |         |           |               |         | 0000      |          |       |               |
| WREG1    | 0002        |          |                          |                          |          |          | V         | Vorking Regist | er 1          |       |         |           |               |         |           |          |       | 0000          |
| WREG2    | 0004        |          |                          |                          |          |          | V         | Vorking Regist | er 2          |       |         |           |               |         |           |          |       | 0000          |
| WREG3    | 0006        |          |                          |                          |          |          | V         | Vorking Regist | er 3          |       |         |           |               |         |           |          |       | 0000          |
| WREG4    | 0008        |          |                          |                          |          |          | ٧         | Vorking Regist | er 4          |       |         |           |               |         |           |          |       | 0000          |
| WREG5    | 000A        |          |                          |                          |          |          | ٧         | Vorking Regist | er 5          |       |         |           |               |         |           |          |       | 0000          |
| WREG6    | 000C        |          |                          |                          |          |          | ٧         | Vorking Regist | er 6          |       |         |           |               |         |           |          |       | 0000          |
| WREG7    | 000E        |          |                          |                          |          |          | ٧         | Vorking Regist | er 7          |       |         |           |               |         |           |          |       | 0000          |
| WREG8    | 0010        |          |                          |                          |          |          | V         | Vorking Regist | er 8          |       |         |           |               |         |           |          |       | 0000          |
| WREG9    | 0012        |          |                          | Working Register 9 0000  |          |          |           |                |               |       |         |           |               |         |           |          |       |               |
| WREG10   | 0014        |          |                          | Working Register 10 0000 |          |          |           |                |               |       |         |           |               |         |           |          |       |               |
| WREG11   | 0016        |          | Working Register 11 0000 |                          |          |          |           |                |               |       |         |           |               |         |           |          |       |               |
| WREG12   | 0018        |          | Working Register 12 0000 |                          |          |          |           |                |               |       |         |           |               |         |           |          |       |               |
| WREG13   | 001A        |          | Working Register 13 0000 |                          |          |          |           |                |               |       |         |           |               |         |           |          |       |               |
| WREG14   | 001C        |          | Working Register 14 0000 |                          |          |          |           |                |               |       |         |           |               |         | 0000      |          |       |               |
| WREG15   | 001E        |          | Working Register 15 0800 |                          |          |          |           |                |               |       |         |           |               |         | 0800      |          |       |               |
| SPLIM    | 0020        |          |                          |                          |          |          | Stack     | Pointer Limit  | Register      |       |         |           |               |         |           |          |       | XXXX          |
| ACCAL    | 0022        |          |                          |                          |          |          |           | ACCAL          |               |       |         |           |               |         |           |          |       | xxxx          |
| ACCAH    | 0024        |          |                          |                          |          |          |           | ACCAH          |               |       |         |           |               |         |           |          |       | XXXX          |
| ACCAU    | 0026        | ACCA<39> | ACCA<39>                 | ACCA<39>                 | ACCA<39> | ACCA<39> | ACCA<39>  | ACCA<39>       | ACCA<39>      |       |         |           | ACCA          | U       |           |          |       | xxxx          |
| ACCBL    | 0028        |          |                          |                          |          |          |           | ACCBL          |               |       |         |           |               |         |           |          |       | XXXX          |
| ACCBH    | 002A        |          |                          |                          |          |          |           | ACCBH          | -             |       |         |           |               |         |           |          |       | xxxx          |
| ACCBU    | 002C        | ACCB<39> | ACCB<39>                 | ACCB<39>                 | ACCB<39> | ACCB<39> | ACCB<39>  | ACCB<39>       | ACCB<39>      |       |         |           | ACCE          | U       |           |          |       | XXXX          |
| PCL      | 002E        |          |                          |                          |          |          | Program C | Counter Low W  | /ord Register |       |         |           |               |         |           |          |       | 0000          |
| PCH      | 0030        | _        | —                        | —                        |          | _        | —         | _              | _             |       |         | Program   | Counter Hig   | gh Byte | Register  |          |       | 0000          |
| TBLPAG   | 0032        | _        | _                        | —                        |          |          | _         | -              | _             |       |         | Table Pag | ge Address    | Pointer | Register  |          |       | 0000          |
| PSVPAG   | 0034        | _        | _                        | —                        | —        | —        | —         | _              | _             |       | Program | Memory V  | isibility Pag | e Addre | ss Pointe | er Regis | ter   | 0000          |
| RCOUNT   | 0036        |          |                          |                          |          |          | Repeat    | t Loop Counte  | r Register    |       |         |           |               |         |           |          |       | XXXX          |
| DCOUNT   | 0038        |          |                          |                          |          |          |           | DCOUNT<15:     | 0>            |       |         |           |               |         |           |          |       | xxxx          |
| DOSTARTL | 003A        |          |                          |                          |          | -        | DOST      | TARTL<15:1>    |               |       |         |           |               |         |           |          | 0     | xxxx          |
| DOSTARTH | 003C        | _        | _                        | _                        | —        | _        | —         | —              | _             | _     | _       |           | DC            | START   | H<5:0>    |          |       | 00xx          |
| DOENDL   | 003E        |          |                          |                          |          |          | DOE       | NDL<15:1>      |               |       |         |           |               |         |           |          | 0     | xxxx          |
| DOENDH   | 0040        | _        | _                        | _                        | _        | _        | —         | _              | _             |       | _       |           |               | DOEN    | DH        |          |       | 00xx          |
| SR       | 0042        | OA       | OB                       | SA                       | SB       | OAB      | SAB       | DA             | DC            |       | IPL<2:( | )>        | RA            | Ν       | OV        | Z        | С     | 0000          |

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### 4.7.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
  - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
  - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
  - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.



### FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

### 6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8.** "**Reset**" (DS70192) in the "*dsPIC33F/PIC24H Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- · CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
  - Illegal Opcode Reset
  - Uninitialized W Register Reset
  - Security Reset

### FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits (except for the POR (RCON<0> bit) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

**Note:** The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.



| Vector<br>Number | Interrupt<br>Request (IQR) | IVT Address       | AIVT Address           | Interrupt Source                            |
|------------------|----------------------------|-------------------|------------------------|---------------------------------------------|
|                  |                            | Highest           | Natural Order Priority |                                             |
| 8                | 0                          | 0x000014          | 0x000114               | INT0 – External Interrupt 0                 |
| 9                | 1                          | 0x000016          | 0x000116               | IC1 – Input Capture 1                       |
| 10               | 2                          | 0x000018          | 0x000118               | OC1 – Output Compare 1                      |
| 11               | 3                          | 0x00001A          | 0x00011A               | T1 – Timer1                                 |
| 12-14            | 4-6                        | 0x00001C-0x000020 | 0x00011C-0x000120      | Reserved                                    |
| 15               | 7                          | 0x000022          | 0x000122               | T2 – Timer2                                 |
| 16               | 8                          | 0x000024          | 0x000124               | Reserved                                    |
| 17               | 9                          | 0x000026          | 0x000126               | SPI1E – SPI1 Error                          |
| 18               | 10                         | 0x000028          | 0x000128               | SPI1 – SPI1 Transfer Done                   |
| 19               | 11                         | 0x00002A          | 0x00012A               | U1RX – UART1 Receiver                       |
| 20               | 12                         | 0x00002C          | 0x00012C               | U1TX – UART1 Transmitter                    |
| 21               | 13                         | 0x00002E          | 0x00012E               | ADC – ADC Group Convert Done                |
| 22               | 14                         | 0x000030          | 0x000130               | Reserved                                    |
| 23               | 15                         | 0x000032          | 0x000132               | Reserved                                    |
| 24               | 16                         | 0x000034          | 0x000134               | SI2C1 – I2C1 Slave Event                    |
| 25               | 17                         | 0x000036          | 0x000136               | MI2C1 – I2C1 Master Event                   |
| 26               | 18                         | 0x000038          | 0x000138               | CMP1 – Analog Comparator 1 Interrupt        |
| 27               | 19                         | 0x00003A          | 0x00013A               | CN – Input Change Notification Interrupt    |
| 28               | 20                         | 0x00003C          | 0x00013C               | INT1 – External Interrupt 1                 |
| 29-36            | 21-28                      | 0x00003E-0x0004C  | 0x00013E-0x00014C      | Reserved                                    |
| 37               | 29                         | 0x00004E          | 0x00014E               | INT2 – External Interrupt 2                 |
| 38-64            | 30-56                      | 0x000050-0x000084 | 0x000150-0x000184      | Reserved                                    |
| 65               | 57                         | 0x000086          | 0x000186               | PSEM – PWM Special Event Match<br>Interrupt |
| 66-72            | 58-64                      | 0x000088-0x000094 | 0x000188-0x000194      | Reserved                                    |
| 73               | 65                         | 0x000096          | 0x000196               | U1E – UART1 Error Interrupt                 |
| 74-87            | 66-79                      | 0x000098-0x0000B2 | 0x000198-0x0001B2      | Reserved                                    |
| 88               | 80                         | 0x0000B4          | 0x0001B4               | JTAG – Data Ready                           |
| 89-101           | 81-93                      | 0x0000B6-0x0000CE | 0x0001B6-0x0001CE      | Reserved                                    |
| 102              | 94                         | 0x0000D0          | 0x0001D0               | PWM1 – PWM1 Interrupt                       |
| 103              | 95                         | 0x0000D2          | 0x0001D2               | PWM2 – PWM2 Interrupt                       |
| 104              | 96                         | 0x0000D4          | 0x0001D4               | Reserved                                    |
| 105              | 97                         | 0x0000D6          | 0x0001D6               | PWM4 – PWM4 Interrupt                       |
| 106-110          | 98-102                     | 0x0000D8-0x0000E0 | 0x0001D8-0x0001E0      | Reserved                                    |
| 111              | 103                        | 0x0000E2          | 0x00001E2              | CMP2 – Analog Comparator 2 Interrupt        |
| 112-117          | 104-109                    | 0x0000E4-0x0000EE | 0x0001E4-0x0001EE      | Reserved                                    |
| 118              | 110                        | 0x0000F0          | 0x0001F0               | ADC Pair 0 Convert Done                     |
| 119              | 111                        | 0x0000F2          | 0x0001F2               | ADC Pair 1 Convert Done                     |
| 120              | 112                        | 0x0000F4          | 0x0001F4               | ADC Pair 2 Convert Done                     |
| 121              | 113                        | 0x0000F6          | 0x0001F6               | ADC Pair 3 Convert Done                     |
| 122              | 114                        | 0x0000F8          | 0x0001F8               | Reserved                                    |
| 123              | 115                        | 0x0000FA          | 0x0001FA               | Reserved                                    |
| 124              | 116                        | 0x0000FC          | 0x0001FC               | ADC Pair 6 Convert Done                     |
| 125              | 117                        | 0x0000FE          | 0x0001FE               | Reserved                                    |
|                  |                            | Lowest            | Natural Order Priority |                                             |

### TABLE 7-1:INTERRUPT VECTORS

| REGISTER 7           | -10: IFS6: I                                                                                                                                                                                                                                                                                                                                           | NTERRUPT                         | FLAG STAT                    | US REGISTE       | ER 6            |                       |       |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|------------------|-----------------|-----------------------|-------|--|--|--|--|
| R/W-0                | R/W-0                                                                                                                                                                                                                                                                                                                                                  | U-0                              | U-0                          | U-0              | U-0             | U-0                   | U-0   |  |  |  |  |
| ADCP1IF              | ADCP0IF                                                                                                                                                                                                                                                                                                                                                | —                                | _                            | —                | —               | —                     | —     |  |  |  |  |
| bit 15               |                                                                                                                                                                                                                                                                                                                                                        |                                  |                              |                  |                 |                       | bit 8 |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                        |                                  |                              |                  |                 |                       |       |  |  |  |  |
| R/W-0                | U-0                                                                                                                                                                                                                                                                                                                                                    | U-0                              | U-0                          | U-0              | U-0             | R/W-0                 | U-0   |  |  |  |  |
| AC2IF <sup>(1)</sup> |                                                                                                                                                                                                                                                                                                                                                        | —                                |                              | _                | _               | PWM4IF <sup>(2)</sup> |       |  |  |  |  |
| bit 7                |                                                                                                                                                                                                                                                                                                                                                        |                                  |                              |                  |                 |                       | bit 0 |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                        |                                  |                              |                  |                 |                       |       |  |  |  |  |
| Legend:              |                                                                                                                                                                                                                                                                                                                                                        |                                  |                              |                  |                 |                       |       |  |  |  |  |
| R = Readable         | bit                                                                                                                                                                                                                                                                                                                                                    | W = Writable                     | bit                          | U = Unimpler     | nented bit, rea | d as '0'              |       |  |  |  |  |
| -n = Value at F      | POR                                                                                                                                                                                                                                                                                                                                                    | '1' = Bit is set                 |                              | '0' = Bit is cle | ared            | x = Bit is unkno      | own   |  |  |  |  |
| bit 15<br>bit 14     | bit 15 ADCP1IF: ADC Pair 1 Conversion Done Interrupt Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurred<br>bit 14 ADCP0IF: ADC Pair 0 Conversion Done Interrupt Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurred<br>0 = Interrupt request has not occurred |                                  |                              |                  |                 |                       |       |  |  |  |  |
| bit 13-8             | Unimplemen                                                                                                                                                                                                                                                                                                                                             | ted: Read as '                   | 0'                           |                  |                 |                       |       |  |  |  |  |
| bit 7                | bit 7 AC2IF: Analog Comparator 2 Interrupt Flag Status bit <sup>(1)</sup><br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurred                                                                                                                                                                                              |                                  |                              |                  |                 |                       |       |  |  |  |  |
| bit 6-2              | Unimplemen                                                                                                                                                                                                                                                                                                                                             | ted: Read as '                   | 0'                           |                  |                 |                       |       |  |  |  |  |
| bit 1                | PWM4IF: PW                                                                                                                                                                                                                                                                                                                                             | /M4 Interrupt F                  | lag Status bit <sup>(2</sup> | 2)               |                 |                       |       |  |  |  |  |
|                      | 1 = Interrupt r<br>0 = Interrupt r                                                                                                                                                                                                                                                                                                                     | request has oc<br>request has no | curred<br>t occurred         |                  |                 |                       |       |  |  |  |  |
| bit 0                | Unimplemen                                                                                                                                                                                                                                                                                                                                             | ted: Read as '                   | 0'                           |                  |                 |                       |       |  |  |  |  |

## \_\_\_\_\_

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

2: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

| REGISTER     | 7-32: IPC27                        | : INTERRUP                             |                | CONTROL I      | REGISTER 2               | 7            |            |  |  |  |  |  |
|--------------|------------------------------------|----------------------------------------|----------------|----------------|--------------------------|--------------|------------|--|--|--|--|--|
| U-0          | R/W-1                              | R/W-0                                  | R/W-0          | U-0            | R/W-1                    | R/W-0        | R/W-0      |  |  |  |  |  |
| _            |                                    | ADCP1IP<2:0>                           | •              | _              |                          | ADCP0IP<2:0> |            |  |  |  |  |  |
| bit 15       |                                    |                                        |                |                |                          |              | bit 8      |  |  |  |  |  |
|              |                                    |                                        |                |                |                          |              |            |  |  |  |  |  |
| U-0          | <u> </u>                           | <u>U-0</u>                             | U-0            | <u>U-0</u>     | U-0                      | <u>U-0</u>   | <u>U-0</u> |  |  |  |  |  |
| —            | —                                  | —                                      |                | —              | —                        | —            | _          |  |  |  |  |  |
| bit 7        |                                    |                                        |                |                |                          |              | bit 0      |  |  |  |  |  |
| Legend:      |                                    |                                        |                |                |                          |              |            |  |  |  |  |  |
| R = Readab   | le bit                             | W = Writable                           | bit            | U = Unimple    | mented bit. rea          | id as '0'    |            |  |  |  |  |  |
| -n = Value a | -n = Value at POR '1' = Bit is set |                                        |                |                | eared x = Bit is unknown |              |            |  |  |  |  |  |
|              |                                    |                                        |                |                |                          |              |            |  |  |  |  |  |
| bit 15       | bit 15 Unimplemented: Read as '0'  |                                        |                |                |                          |              |            |  |  |  |  |  |
| bit 14-12    | ADCP1IP<2                          | : <b>0&gt;:</b> ADC Pair 1             | Conversion     | Done Interrupt | Priority bits            |              |            |  |  |  |  |  |
|              | 111 = Interru                      | upt is Priority 7 (                    | highest priori | ty interrupt)  |                          |              |            |  |  |  |  |  |
|              | •                                  |                                        |                |                |                          |              |            |  |  |  |  |  |
|              | •                                  |                                        |                |                |                          |              |            |  |  |  |  |  |
|              | 001 = Interru<br>000 = Interru     | upt is Priority 1<br>upt source is dis | abled          |                |                          |              |            |  |  |  |  |  |
| bit 11       | Unimpleme                          | nted: Read as '                        | 0'             |                |                          |              |            |  |  |  |  |  |
| bit 10-8     | ADCP0IP<2                          | : <b>0&gt;:</b> ADC Pair 0             | Conversion     | Done Interrupt | Priority bits            |              |            |  |  |  |  |  |
|              | 111 = Interru                      | upt is Priority 7 (                    | highest priori | ty interrupt)  | -                        |              |            |  |  |  |  |  |
|              | •                                  |                                        |                |                |                          |              |            |  |  |  |  |  |
|              | •                                  |                                        |                |                |                          |              |            |  |  |  |  |  |
|              | 001 = Interru                      | upt is Priority 1                      |                |                |                          |              |            |  |  |  |  |  |
|              | 000 = Interru                      | ipt source is dis                      | abled          |                |                          |              |            |  |  |  |  |  |
| bit 7-0      | Unimpleme                          | nted: Read as '                        | 0'             |                |                          |              |            |  |  |  |  |  |
|              |                                    |                                        |                |                |                          |              |            |  |  |  |  |  |

### 8.4 Oscillator Control Registers

| U-0        | R-0                                    | R-0                                   | R-0                         | U-0                               | R/W-y                  | R/W-y               | R/W-y           |
|------------|----------------------------------------|---------------------------------------|-----------------------------|-----------------------------------|------------------------|---------------------|-----------------|
| _          |                                        | COSC<2:0>                             |                             | —                                 |                        | NOSC<2:0>(2)        |                 |
| bit 15     |                                        |                                       |                             |                                   |                        |                     | bit 8           |
| r          |                                        |                                       |                             |                                   |                        |                     |                 |
| R/W-0      | R/W-0                                  | R-0                                   | U-0                         | R/C-0                             | U-0                    | U-0                 | R/W-0           |
| CLKLOO     | CK IOLOCK                              | LOCK                                  | —                           | CF                                | —                      | —                   | OSWEN           |
| bit 7      |                                        |                                       |                             |                                   |                        |                     | bit 0           |
| ·          |                                        |                                       |                             |                                   |                        |                     |                 |
| Legend:    |                                        | y = Value set f                       | rom Configur                | ation bits on P                   | OR                     |                     |                 |
| R = Reada  | able bit                               | W = Writable b                        | oit                         | U = Unimplei                      | mented bit, rea        | ad as '0'           |                 |
| -n = Value | at POR                                 | '1' = Bit is set                      |                             | '0' = Bit is cle                  | eared                  | x = Bit is unkn     | own             |
|            |                                        |                                       |                             |                                   |                        |                     |                 |
| bit 15     | Unimplemen                             | ted: Read as '0                       | )'                          |                                   |                        |                     |                 |
| bit 14-12  | COSC<2:0>:                             | Current Oscilla                       | tor Selection               | bits (read-only                   | ()                     |                     |                 |
|            | 111 = Fast R                           | C Oscillator (FF                      | RC) with divid              | e-by-n                            |                        |                     |                 |
|            | 110 = rast R                           | C OSCIIIATOR (FF                      | tor (LPRC)                  | e-by-16                           |                        |                     |                 |
|            | 100 = Reserv                           | red                                   |                             |                                   |                        |                     |                 |
|            | 011 = Primar                           | y Oscillator (XT                      | , HS, EC) witl              | h PLL                             |                        |                     |                 |
|            | 010 <b>= Primar</b>                    | y Oscillator (XT                      | , HS, EC)                   |                                   |                        |                     |                 |
|            | 001 = Fast R                           | C Oscillator (FF                      | RC) with PLL                |                                   |                        |                     |                 |
| bit 11     |                                        |                                       | ,<br>,                      |                                   |                        |                     |                 |
| bit 10.8   |                                        | Now Oscillator                        | Soloction bit               | _(2)                              |                        |                     |                 |
| DIL TO-O   | 111 = Fast P                           | C Oscillator (EE                      | C) with divid               | e-by-n                            |                        |                     |                 |
|            | 110 = Fast R                           | C Oscillator (FF                      | RC) with divid              | e-by-16                           |                        |                     |                 |
|            | 101 <b>= Low-P</b>                     | ower RC Oscilla                       | ator (LPRC)                 | ,                                 |                        |                     |                 |
|            | 100 = Reserv                           | red                                   |                             |                                   |                        |                     |                 |
|            | 011 = Primar                           | y Oscillator (XT                      | , HS, EC) witl              | h PLL                             |                        |                     |                 |
|            | 010 = Primar                           | y Oscillator (XI)                     | , HS, EC)<br>2C) with PLL   |                                   |                        |                     |                 |
|            | 000 = Fast R                           | C Oscillator (FF                      | RC)                         |                                   |                        |                     |                 |
| bit 7      | CLKLOCK: (                             | lock Lock Enat                        | ole bit                     |                                   |                        |                     |                 |
|            | If clock switch                        | ning is enabled                       | and FSCM is                 | disabled, FCK                     | (SM<1:0> (FC           | SC<7:6>) bits = (   | )b01 <b>)</b> : |
|            | 1 = Clock sw                           | itching is disabl                     | ed, system c                | lock source is                    | locked                 |                     |                 |
|            | 0 = Clock sw                           | itching is enable                     | ed, system cl               | ock source ca                     | n be modified          | by clock switching  | 9               |
| bit 6      | IOLOCK: Per                            | ipheral Pin Sele                      | ect Lock bit                |                                   |                        |                     |                 |
|            | 1 = Peripheri                          | al PIN Select Is                      | locked, write               | to Peripheral I                   | PIN Select reg         | Isters is not allow | ed              |
| bit 5      |                                        | ock Status bit (                      | read-only)                  | inte to r enprie                  |                        |                     | cu              |
| DIL D      | 1 - Indicates                          | that PLL is in k                      | ock or DLL et               | art-un timer is                   | eatiefied              |                     |                 |
|            | 0 = Indicates                          | that PLL is out                       | of lock, start-             | -up timer is in j                 | progress or PL         | L is disabled       |                 |
|            |                                        |                                       |                             | na Dafarta 🇙                      |                        |                     | » (DOZOOZ)      |
| NOTE 1:    | in the "dsPIC33F/F                     | ter require an u<br>PIC24H Family     | пюск sequen<br>Reference Ma | anual" for deta                   | ection 42. "Of<br>ils. | scillator (Part IV) | ··· (DS70307)   |
| 2:         | Direct clock switch                    | es between any                        | y Primary Oso               | cillator mode w                   | /ith PLL and F         | RCPLL mode are      | not permit-     |
|            | ted. This applies to FRC mode as a tra | o clock switches<br>ansition clock so | in either dire              | ection. In these<br>n the two PLL | instances, the modes.  | e application mus   | t switch to     |

### **REGISTER 8-1:** OSCCON: OSCILLATOR CONTROL REGISTER<sup>(1,3)</sup>

3: This register is reset only on a Power-on Reset (POR).

| REGISTER 8      | -5: ACLKO                                                                                                                                                                    | CON: AUXILI                                                                       | ARY CLOCI     | k divisor (                       | CONTROL RE                                | GISTER          |       |  |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------|-----------------------------------|-------------------------------------------|-----------------|-------|--|--|--|--|
| R/W-0           | R-0                                                                                                                                                                          | R/W-1                                                                             | U-0           | U-0                               | R/W-1                                     | R/W-1           | R/W-1 |  |  |  |  |
| ENAPLL          | APLLCK                                                                                                                                                                       | SELACLK                                                                           | _             | _                                 | AP                                        | STSCLR<2:0>     | (2)   |  |  |  |  |
| bit 15          |                                                                                                                                                                              |                                                                                   |               | •                                 | •                                         |                 | bit 8 |  |  |  |  |
|                 |                                                                                                                                                                              |                                                                                   |               |                                   |                                           |                 |       |  |  |  |  |
| R/W-0           | R/W-0                                                                                                                                                                        | U-0                                                                               | U-0           | U-0                               | U-0                                       | U-0             | U-0   |  |  |  |  |
| ASRCSEL         | FRCSEL                                                                                                                                                                       | —                                                                                 | —             | —                                 | —                                         | —               | —     |  |  |  |  |
| bit 7           |                                                                                                                                                                              |                                                                                   |               |                                   |                                           |                 | bit 0 |  |  |  |  |
|                 |                                                                                                                                                                              |                                                                                   |               |                                   |                                           |                 |       |  |  |  |  |
| Legend:         |                                                                                                                                                                              |                                                                                   |               |                                   |                                           |                 |       |  |  |  |  |
| R = Readable    | bit                                                                                                                                                                          | W = Writable I                                                                    | oit           | U = Unimple                       | mented bit, read                          | as '0'          |       |  |  |  |  |
| -n = Value at F | POR                                                                                                                                                                          | '1' = Bit is set                                                                  |               | '0' = Bit is cle                  | ared                                      | x = Bit is unkn | own   |  |  |  |  |
| bit 15          | <b>ENAPLL:</b> Aux<br>1 = APLL is e<br>0 = APLL is d                                                                                                                         | xiliary PLL Enal<br>nabled<br>isabled                                             | ble bit       |                                   |                                           |                 |       |  |  |  |  |
| bit 14          | APLLCK: APLL Locked Status bit (read-only)<br>1 = Indicates that auxiliary PLL is in lock<br>0 = Indicates that auxiliary PLL is not in lock                                 |                                                                                   |               |                                   |                                           |                 |       |  |  |  |  |
| bit 13          | SELACLK: S                                                                                                                                                                   | elect Auxiliary (                                                                 | Clock Source  | for Auxiliary C                   | lock Divider bit                          |                 |       |  |  |  |  |
|                 | 1 = Auxiliary o<br>0 = Primary P                                                                                                                                             | oscillators provi<br>PLL (Fvco) prov                                              | des the sourc | e clock for au<br>ce clock for au | xiliary clock divio<br>xiliary clock divi | der<br>der      |       |  |  |  |  |
| bit 12-11       | Unimplemen                                                                                                                                                                   | ted: Read as 'd                                                                   | )'            |                                   |                                           |                 |       |  |  |  |  |
| bit 10-8        | APSTSCLR<                                                                                                                                                                    | 2:0>: Auxiliary                                                                   | Clock Output  | Divider bits <sup>(2)</sup>       |                                           |                 |       |  |  |  |  |
|                 | 111 = Divideo<br>110 = Divideo<br>101 = Divideo<br>100 = Divideo<br>011 = Divideo<br>010 = Divideo<br>001 = Divideo<br>001 = Divideo                                         | 1 by 1<br>1 by 2<br>1 by 4<br>1 by 8<br>1 by 16<br>1 by 32<br>1 by 64<br>1 by 256 |               |                                   |                                           |                 |       |  |  |  |  |
| bit 7           | ASRCSEL: S                                                                                                                                                                   | elect Reference                                                                   | e Clock Sourc | e for Auxiliary                   | Clock bit                                 |                 |       |  |  |  |  |
|                 | 1 = Primary o<br>0 = No clock i                                                                                                                                              | scillator is the c<br>input is selected                                           | clock source  |                                   |                                           |                 |       |  |  |  |  |
| bit 6           | <b>FRCSEL:</b> Select Reference Clock Source for Auxiliary PLL bit<br>1 = Selects FRC clock for auxiliary PLL<br>0 = Input clock source is determined by ASRCSEL bit setting |                                                                                   |               |                                   |                                           |                 |       |  |  |  |  |
| bit 5-0         | Unimplemen                                                                                                                                                                   | ted: Read as 'd                                                                   | )'            |                                   | -                                         |                 |       |  |  |  |  |
| Note 1: This    | s register is res                                                                                                                                                            | et only on a Po                                                                   | wer-on Reset  | (POR).                            |                                           |                 |       |  |  |  |  |

#### (1) \_

2: The auxiliary clock postscaler must be configured to divide-by-1 (APSTSCLR<2:0> = 111) for proper operation of the PWM module.

### REGISTER 10-16: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

| U-0                                              | U-0        | R/W-0            | R/W-0       | R/W-0                                   | R/W-0           | R/W-0     | R/W-0 |  |  |
|--------------------------------------------------|------------|------------------|-------------|-----------------------------------------|-----------------|-----------|-------|--|--|
| —                                                |            |                  |             | RP1F                                    | R<5:0>          |           |       |  |  |
| bit 15                                           |            |                  |             |                                         |                 |           | bit 8 |  |  |
|                                                  |            |                  |             |                                         |                 |           |       |  |  |
| U-0                                              | U-0        | R/W-0            | R/W-0       | R/W-0                                   | R/W-0           | R/W-0     | R/W-0 |  |  |
| —                                                | —          |                  |             | RPOF                                    | २<5:0>          |           |       |  |  |
| bit 7                                            |            |                  |             |                                         |                 |           | bit 0 |  |  |
|                                                  |            |                  |             |                                         |                 |           |       |  |  |
| Legend:                                          |            |                  |             |                                         |                 |           |       |  |  |
| R = Readable                                     | bit        | W = Writable bi  | t           | U = Unimplen                            | nented bit, rea | ad as '0' |       |  |  |
| -n = Value at F                                  | POR        | '1' = Bit is set |             | '0' = Bit is cleared x = Bit is unknown |                 |           |       |  |  |
|                                                  |            |                  |             |                                         |                 |           |       |  |  |
| bit 15-14                                        | Unimplemen | ted: Read as '0' |             |                                         |                 |           |       |  |  |
| bit 13-8                                         | RP1R<5:0>: | Peripheral Outpu | ut Function | is Assigned to F                        | RP1 Output Pi   | n bits    |       |  |  |
| (see Table 10-2 for peripheral function numbers) |            |                  |             |                                         |                 |           |       |  |  |

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP0R<5:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

### REGISTER 10-17: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

| U-0    | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 |
|--------|-----|-------|-------|-------|--------|-------|-------|
| —      | —   |       |       | RP3F  | R<5:0> |       |       |
| bit 15 |     |       |       |       |        |       | bit 8 |

| U-0   | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 |
|-------|-----|-------|-------|-------|--------|-------|-------|
| —     | —   |       |       | RP2   | R<5:0> |       |       |
| bit 7 |     |       |       |       |        |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP3R<5:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP2R<5:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

### REGISTER 15-15: FCLCONX: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

bit 7-3

**FLTSRC<4:0>:** Fault Control Signal Source Select for PWM Generator # bits<sup>(2,3)</sup>

- .
- .
- •
- 01000 = Reserved
- 00111 = Fault 8 00110 = Fault 7 00101 = Fault 6 00100 = Fault 5 00011 = Fault 4 00010 = Fault 3
- 00001 = Fault 2 00000 = Fault 1
- bit 2 **FLTPOL:** Fault Polarity for PWMx Generator # bit<sup>(1)</sup>
  - 1 = The selected Fault source is active-low
  - 0 = The selected Fault source is active-high

bit 1-0 **FLTMOD<1:0>:** Fault Mode for PWMx Generator # bits

- 11 = Fault input is disabled
- 10 = Reserved
- 01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
- 00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
  - 2: When Independent Fault mode is enabled (IFLTMOD<1:0> = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
  - 3: When Independent Fault mode is enabled (IFLTMOD<1:0> = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

### REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER (CONTINUED)

| bit 8 | SMEN: SMBus Input Levels bit                                                                                                                                                                                                 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <ul> <li>1 = Enables I/O pin thresholds compliant with SMBus specification</li> <li>0 = Disables SMBus input thresholds</li> </ul>                                                                                           |
| bit 7 | GCEN: General Call Enable bit (when operating as I <sup>2</sup> C slave)                                                                                                                                                     |
|       | <ul> <li>1 = Enables interrupt when a general call address is received in the I2C1RSR<br/>(module is enabled for reception)</li> <li>0 = General call address is disabled</li> </ul>                                         |
| bit 6 | STREN: SCL1 Clock Stretch Enable bit (when operating as I <sup>2</sup> C slave)                                                                                                                                              |
|       | Used in conjunction with SCLREL bit.<br>1 = Enables software or receives clock stretching<br>0 = Disables software or receives clock stretching                                                                              |
| bit 5 | ACKDT: Acknowledge Data bit (when operating as I <sup>2</sup> C master, applicable during master receive)                                                                                                                    |
|       | Value that is transmitted when the software initiates an Acknowledge sequence.<br>1 = Sends NACK during Acknowledge<br>0 = Sends ACK during Acknowledge                                                                      |
| bit 4 | <b>ACKEN:</b> Acknowledge Sequence Enable bit (when operating as I <sup>2</sup> C master, applicable during master receive)                                                                                                  |
|       | <ul> <li>1 = Initiates Acknowledge sequence on SDA1 and SCL1 pins and transmits ACKDT data bit.<br/>Hardware is clear at end of master Acknowledge sequence.</li> <li>0 = Acknowledge sequence is not in progress</li> </ul> |
| bit 3 | <b>RCEN:</b> Receive Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                                  |
|       | <ul> <li>1 = Enables Receive mode for I<sup>2</sup>C. Hardware is clear at end of eighth bit of master receive data byte.</li> <li>0 = Receive sequence is not in progress</li> </ul>                                        |
| bit 2 | <b>PEN:</b> Stop Condition Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                            |
|       | <ul> <li>1 = Initiates Stop condition on SDA1 and SCL1 pins. Hardware is clear at end of master Stop sequence.</li> <li>0 = Stop condition is not in progress</li> </ul>                                                     |
| bit 1 | <b>RSEN:</b> Repeated Start Condition Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                 |
|       | <ul> <li>1 = Initiates Repeated Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master<br/>Repeated Start sequence.</li> </ul>                                                                            |
|       | 0 = Repeated Start condition is not in progress                                                                                                                                                                              |
| bit 0 | <b>SEN:</b> Start Condition Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                           |
|       | 1 = Initiates Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master Start                                                                                                                                |
|       | 0 = Start condition is not in progress                                                                                                                                                                                       |

| Base<br>Instr<br># | Assembly<br>Mnemonic |         | Assembly Syntax       | Description                                 | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|--------------------|----------------------|---------|-----------------------|---------------------------------------------|---------------|----------------|--------------------------|
| 10                 | BTSC                 | BTSC    | f,#bit4               | Bit Test f, Skip if Clear                   | 1             | 1<br>(2 or 3)  | None                     |
|                    |                      | BTSC    | Ws,#bit4              | Bit Test Ws, Skip if Clear                  | 1             | 1<br>(2 or 3)  | None                     |
| 11                 | BTSS                 | BTSS    | f,#bit4               | Bit Test f, Skip if Set                     | 1             | 1<br>(2 or 3)  | None                     |
|                    |                      | BTSS    | Ws,#bit4              | Bit Test Ws, Skip if Set                    | 1             | 1<br>(2 or 3)  | None                     |
| 12                 | BTST                 | BTST    | f,#bit4               | Bit Test f                                  | 1             | 1              | Z                        |
|                    |                      | BTST.C  | Ws,#bit4              | Bit Test Ws to C                            | 1             | 1              | С                        |
|                    |                      | BTST.Z  | Ws,#bit4              | Bit Test Ws to Z                            | 1             | 1              | Z                        |
|                    |                      | BTST.C  | Ws,Wb                 | Bit Test Ws <wb> to C</wb>                  | 1             | 1              | С                        |
|                    |                      | BTST.Z  | Ws,Wb                 | Bit Test Ws <wb> to Z</wb>                  | 1             | 1              | Z                        |
| 13                 | BTSTS                | BTSTS   | f,#bit4               | Bit Test then Set f                         | 1             | 1              | Z                        |
|                    |                      | BTSTS.C | Ws,#bit4              | Bit Test Ws to C, then Set                  | 1             | 1              | С                        |
|                    |                      | BTSTS.Z | Ws,#bit4              | Bit Test Ws to Z, then Set                  | 1             | 1              | Z                        |
| 14                 | CALL                 | CALL    | lit23                 | Call Subroutine                             | 2             | 2              | None                     |
|                    |                      | CALL    | Wn                    | Call Indirect Subroutine                    | 1             | 2              | None                     |
| 15                 | CLR                  | CLR     | f                     | f = 0x0000                                  | 1             | 1              | None                     |
|                    |                      | CLR     | WREG                  | WREG = 0x0000                               | 1             | 1              | None                     |
|                    |                      | CLR     | Ws                    | Ws = 0x0000                                 | 1             | 1              | None                     |
|                    |                      | CLR     | Acc,Wx,Wxd,Wy,Wyd,AWB | Clear Accumulator                           | 1             | 1              | OA,OB,SA,SB              |
| 16                 | CLRWDT               | CLRWDT  |                       | Clear Watchdog Timer                        | 1             | 1              | WDTO,Sleep               |
| 17                 | COM                  | COM     | f                     | f = f                                       | 1             | 1              | N,Z                      |
|                    |                      | COM     | f,WREG                | WREG = f                                    | 1             | 1              | N,Z                      |
|                    |                      | COM     | Ws,Wd                 | $Wd = \overline{Ws}$                        | 1             | 1              | N,Z                      |
| 18                 | CP                   | CP      | f                     | Compare f with WREG                         | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CP      | Wb,#lit5              | Compare Wb with lit5                        | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CP      | Wb,Ws                 | Compare Wb with Ws (Wb – Ws)                | 1             | 1              | C,DC,N,OV,Z              |
| 19                 | CP0                  | CP0     | f                     | Compare f with 0x0000                       | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CP0     | Ws                    | Compare Ws with 0x0000                      | 1             | 1              | C,DC,N,OV,Z              |
| 20                 | CPB                  | CPB     | f                     | Compare f with WREG, with Borrow            | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CPB     | Wb,#lit5              | Compare Wb with lit5, with Borrow           | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CPB     | Wb,Ws                 | Compare Wb with Ws, with Borrow             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      |         |                       | $(Wb - Ws - \overline{C})$                  |               |                |                          |
| 21                 | CPSEQ                | CPSEQ   | Wb, Wn                | Compare Wb with Wn, Skip if =               | 1             | 1<br>(2 or 3)  | None                     |
| 22                 | CPSGT                | CPSGT   | Wb, Wn                | Compare Wb with Wn, Skip if >               | 1             | 1<br>(2 or 3)  | None                     |
| 23                 | CPSLT                | CPSLT   | Wb, Wn                | Compare Wb with Wn, Skip if <               | 1             | 1<br>(2 or 3)  | None                     |
| 24                 | CPSNE                | CPSNE   | Wb, Wn                | Compare Wb with Wn, Skip if ≠               | 1             | 1<br>(2 or 3)  | None                     |
| 25                 | DAW                  | DAW     | Wn                    | Wn = Decimal Adjust Wn                      | 1             | 1              | С                        |
| 26                 | DEC                  | DEC     | f                     | f = f - 1                                   | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC     | f,WREG                | WREG = f – 1                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC     | Ws,Wd                 | Wd = Ws - 1                                 | 1             | 1              | C,DC,N,OV,Z              |
| 27                 | DEC2                 | DEC2    | f                     | f = f - 2                                   | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC2    | f,WREG                | WREG = f – 2                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC2    | Ws,Wd                 | Wd = Ws - 2                                 | 1             | 1              | C,DC,N,OV,Z              |
| 28                 | DISI                 | DISI    | #lit14                | Disable Interrupts for k Instruction Cycles | 1             | 1              | None                     |

### TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

### FIGURE 25-8: OC/PWM MODULE TIMING CHARACTERISTICS



### TABLE 25-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                                  | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |      |          |       |            |
|--------------------|--------|----------------------------------|-------------------------------------------------------|------|----------|-------|------------|
| Param.             | Symbol | Characteristic <sup>(1)</sup>    | Min.                                                  | Тур. | Max.     | Units | Conditions |
| OC15               | Tfd    | Fault Input to PWM I/O<br>Change | —                                                     | _    | Tcy + 20 | ns    |            |
| OC20               | TFLT   | Fault Input Pulse Width          | Tcy + 20                                              | _    | _        | ns    |            |

**Note 1:** These parameters are characterized but not tested in manufacturing.





### FIGURE 25-10: HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS



### TABLE 25-28: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                                    | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |     |     |     |                    |  |
|--------------------|--------|------------------------------------|-------------------------------------------------------|-----|-----|-----|--------------------|--|
| Param.             | Symbol | Characteristic <sup>(1)</sup>      | Min. Typ. Max. Units Conditions                       |     |     |     |                    |  |
| MP10               | TFPWM  | PWM Output Fall Time               | _                                                     | 2.5 | _   | ns  |                    |  |
| MP11               | TRPWM  | PWM Output Rise Time               | —                                                     | 2.5 | —   | ns  |                    |  |
| MP20               | Tfd    | Fault Input ↓ to PWM<br>I/O Change | —                                                     | —   | 15  | ns  |                    |  |
| MP30               | Тғн    | Minimum PWM Fault Pulse<br>Width   | 8                                                     | —   | —   | ns  | DTC<10> = 10       |  |
| MP31               | TPDLY  | Tap Delay                          | 1.04                                                  | —   | —   | ns  | ACLK = 120 MHz     |  |
| MP32               | ACLK   | PWM Input Clock                    | _                                                     | _   | 120 | MHz | See Note 2, Note 3 |  |

**Note 1:** These parameters are characterized but not tested in manufacturing.

2: This parameter is a maximum allowed input clock for the PWM module.

3: The maximum value for this parameter applies to dsPIC33FJ06GS101A/102A/202A/302 devices only.



### FIGURE 25-14: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

# TABLE 25-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

| AC CHARACTERISTICS |                       |                                               | Standard Operating Conditions: 3.0V to 3.6V<br>(unless otherwise stated)<br>Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |   |    |     |                                       |  |
|--------------------|-----------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|-----|---------------------------------------|--|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                 | -40 C $\leq$ 1A $\leq$ + 125 C for ExtendedMinTyp <sup>(2)</sup> MaxUnitsConditions                                                                     |   |    |     |                                       |  |
| SP10               | TscP                  | Maximum SCKx Frequency                        | —                                                                                                                                                       | _ | 9  | MHz | -40°C to +125°C and see <b>Note 3</b> |  |
| SP20               | TscF                  | SCKx Output Fall Time                         | —                                                                                                                                                       | — | _  | ns  | See Parameter DO32 and <b>Note 4</b>  |  |
| SP21               | TscR                  | SCKx Output Rise Time                         | —                                                                                                                                                       | — | _  | ns  | See Parameter DO31 and <b>Note 4</b>  |  |
| SP30               | TdoF                  | SDOx Data Output Fall Time                    | —                                                                                                                                                       | — | _  | ns  | See Parameter DO32 and <b>Note 4</b>  |  |
| SP31               | TdoR                  | SDOx Data Output Rise Time                    | —                                                                                                                                                       | — |    | ns  | See Parameter DO31 and <b>Note 4</b>  |  |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after SCKx Edge        | —                                                                                                                                                       | 6 | 20 | ns  |                                       |  |
| SP36               | TdoV2scH,<br>TdoV2scL | SDOx Data Output Setup to<br>First SCKx Edge  | 30                                                                                                                                                      | — |    | ns  |                                       |  |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data<br>Input to SCKx Edge | 30                                                                                                                                                      |   | _  | ns  |                                       |  |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge     | 30                                                                                                                                                      |   |    | ns  |                                       |  |

**Note 1:** These parameters are characterized, but are not tested in manufacturing.

**2:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.



**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | MILLIMETERS      |             |       |       |  |  |
|--------------------------|------------------|-------------|-------|-------|--|--|
| Dimensio                 | Dimension Limits |             |       | MAX   |  |  |
| Number of Pins           | N 28             |             |       |       |  |  |
| Pitch                    | е                | 0.65 BSC    |       |       |  |  |
| Overall Height           | Α                | -           | -     | 2.00  |  |  |
| Molded Package Thickness | A2               | 1.65        | 1.75  | 1.85  |  |  |
| Standoff                 | A1               | 0.05        | -     | -     |  |  |
| Overall Width            | Е                | 7.40        | 7.80  | 8.20  |  |  |
| Molded Package Width     | E1               | 5.00        | 5.30  | 5.60  |  |  |
| Overall Length           | D                | 9.90        | 10.20 | 10.50 |  |  |
| Foot Length              | L                | 0.55        | 0.75  | 0.95  |  |  |
| Footprint                | L1               | 1.25 REF    |       |       |  |  |
| Lead Thickness           | с                | 0.09 – 0.25 |       |       |  |  |
| Foot Angle               | ¢                | 0°          | 4°    | 8°    |  |  |
| Lead Width               | b                | 0.22        | -     | 0.38  |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

#### NOTE 1 NOTE 1 1 2 3 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 2 A 1 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2A 2

| 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPD |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

|                            | Units            |          |       | INCHES |  |  |  |
|----------------------------|------------------|----------|-------|--------|--|--|--|
| Dimensior                  | Dimension Limits |          |       | MAX    |  |  |  |
| Number of Pins             | Ν                | 28       |       |        |  |  |  |
| Pitch                      | е                | .100 BSC |       |        |  |  |  |
| Top to Seating Plane       | Α                | -        | -     | .200   |  |  |  |
| Molded Package Thickness   | A2               | .120     | .135  | .150   |  |  |  |
| Base to Seating Plane      | A1               | .015     | -     | -      |  |  |  |
| Shoulder to Shoulder Width | E                | .290     | .310  | .335   |  |  |  |
| Molded Package Width       | E1               | .240     | .285  | .295   |  |  |  |
| Overall Length             | D                | 1.345    | 1.365 | 1.400  |  |  |  |
| Tip to Seating Plane       | L                | .110     | .130  | .150   |  |  |  |
| Lead Thickness             | С                | .008     | .010  | .015   |  |  |  |
| Upper Lead Width           | b1               | .040     | .050  | .070   |  |  |  |
| Lower Lead Width           | b                | .014     | .018  | .022   |  |  |  |
| Overall Row Spacing §      | eB               | _        | _     | .430   |  |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B