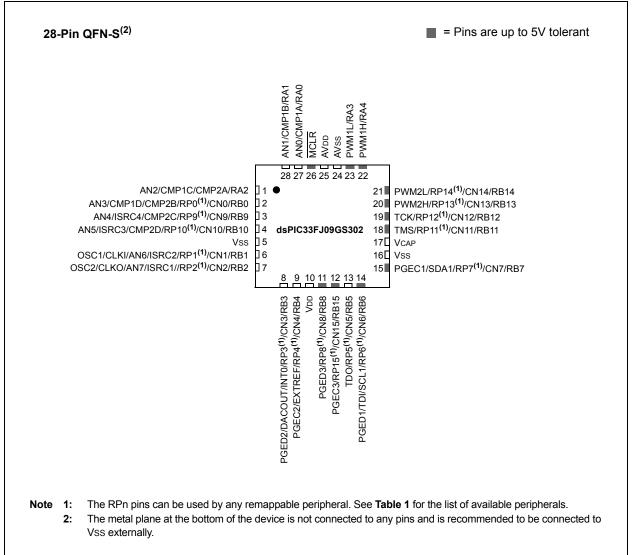


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs101at-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

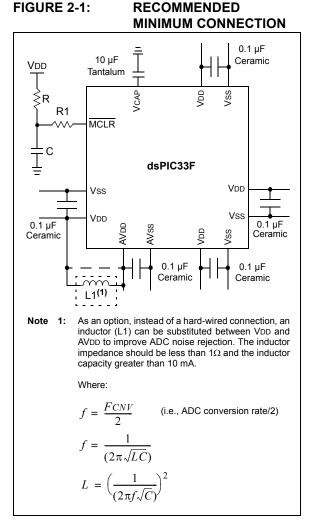
Pin Diagrams (Continued)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ06GS001/101A/ 102A/202A and dsPIC33FJ09GS302 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:


- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, regardless if ADC module is not used
- (see Section 2.2 "Decoupling Capacitors")
 VCAP
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 "ICSP™ Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible; for example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device; typical values range from 4.7 μ F to 47 μ F.

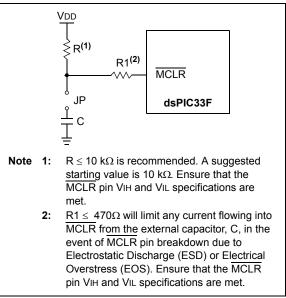
2.3 Capacitor on Internal Voltage Regulator (VCAP)

A low-ESR (<0.5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 25.0 "Electrical Characteristics"** for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 22.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:


- Device Reset
- Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

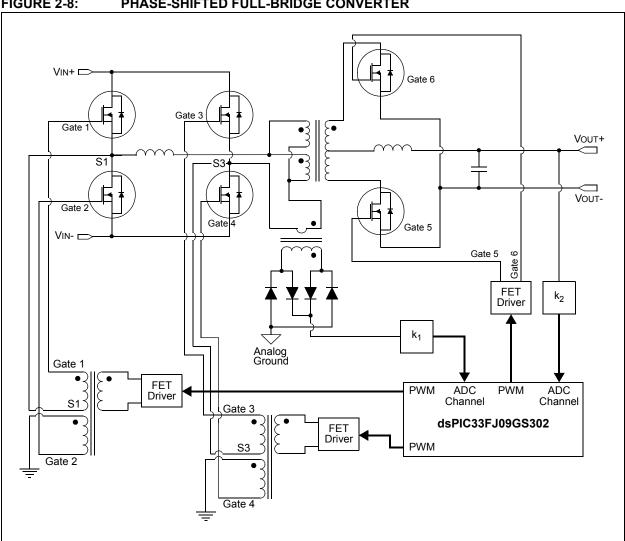


FIGURE 2-8: PHASE-SHIFTED FULL-BRIDGE CONVERTER

REGISTER 7	-3: INTCO	N1: INTERR		ROL REGISTE	ER 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7			I				bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 15	NSTDIS: Inte	rrupt Nesting E	isable bit				
		nesting is disat					
L:+ 4 4		nesting is enab		1			
bit 14		cumulator A O caused by ove		•			
		not caused by					
bit 13	•	cumulator B O					
		caused by ove		0			
	0 = Trap was	not caused by	overflow of A	ccumulator B			
bit 12				Overflow Trap F	•		
				flow of Accumu			
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit						
				flow of Accumu			
bit 10	-	umulator A Ove	-				
	1 = Trap over 0 = Trap is dis	flow of Accum sabled	ulator A				
bit 9	•	umulator B Ove	erflow Trap En	able bit			
		flow of Accum	-				
bit 8	•	astrophic Overf	low Trap Enat	ole bit			
		atastrophic ove	•	mulator A or B i	s enabled		
bit 7	•	Shift Accumula	ator Error Statu	us bit			
				alid accumulator invalid accumul			
bit 6	 0 = Math error trap was not caused by an invalid accumulator shift DIV0ERR: Divide-by-Zero Error Trap Status bit 						
		or trap was cau	-				
		or trap was not	•	ivide-by-zero			
bit 5	Unimplemen	ted: Read as '	0'				
bit 4		Math Error Trap					
		or trap has occu					
hit 2		or trap has not (
bit 3		Address Error T	-				
		error trap has c error trap has r					

INTCOMA, INTERDURT CONTROL DECISTER A

REGISTER	7-5: IFS0: I	INTERRUPT	FLAG STAT	US REGIST	ER 0		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
	—	ADIF	U1TXIF ⁽¹⁾	U1RXIF ⁽¹⁾	SPI1IF ⁽¹⁾	SPI1EIF ⁽¹⁾	
oit 15							bit
	11.0	11.0	11.0				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0 OC1IF ⁽¹⁾	R/W-0	R/W-0
T2IF bit 7	—	_		T1IF	UC IIF."	ICTIF ⁽⁻⁾	INT0IF bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15-14	Unimplemen	ted: Read as	0'				
bit 13	-			nterrupt Flag S	Status bit		
	1 = Interrupt i	request has oc request has no	curred				
bit 12		RT1 Transmitte		g Status bit ⁽¹⁾			
		request has oc		,			
		request has no					
oit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag S	Status bit ⁽¹⁾			
		request has oc request has no					
bit 10	SPI1IF: SPI1 Event Interrupt Flag Status bit ⁽¹⁾						
		request has oc request has no					
bit 9	SPI1EIF: SPI	1 Error Interru	pt Flag Status	bit ⁽¹⁾			
		request has oc request has no					
bit 8	Unimplemen	ted: Read as	0'				
bit 7	T2IF: Timer2	Interrupt Flag	Status bit				
		request has oc request has no					
bit 6-4	Unimplemen	ted: Read as	0'				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	•	request has oc request has no					
bit 2	-	-		upt Flag Status	s bit ⁽¹⁾		
	1 = Interrupt	request has oc request has no	curred	apt hag oldide			
bit 1	-	-		-lag Status bit ⁽	2)		
		request has oc request has no					
bit 0	-	rnal Interrupt 0		t			
	1 = Interrupt ı	request has oc request has no	curred				
Note 1: Th	nis bit is not impl	emented in the	ASPIC33F IOF	GS001 device	4		
	no bit io not impl				·•		

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 10.** "I/O Ports" (DS70193) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

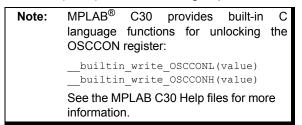
10.6.2.3 Virtual Pins

Four virtual RPn pins (RP32, RP33, RP34 and RP35) are supported, which are identical in functionality to all other RPn pins, with the exception of pinouts. These four pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP32 and the PWM Fault input can be configured for RP32 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

10.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:


- · Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared, after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

13.1 Input Capture Registers

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
	—	ICSIDL	—	—	_	—	_				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0				
ICTMR ⁽¹⁾		<1:0>	ICOV	ICBNE		ICM<2:0>	10/00-0				
bit 7		\$1.02	1007	IODINE		10101-2.02	bit				
Legend:		HC = Hardwar	e Clearable bit								
R = Readat	ole bit	W = Writable b	bit	U = Unimple	mented bit, re	ead as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown				
bit 15-14	Unimplemer	ited: Read as '0	,								
bit 13	-	t Capture Modu		Control bit							
	•	ture module hal	•								
	0 = Input cap	ture module cor	ntinues to opera	ate in CPU Idle	mode						
bit 12-8	Unimplemer	ted: Read as '0	3								
bit 7	ICTMR: Inpu	t Capture Timer	Select bit ⁽¹⁾								
	1 = TMR2 co 0 = Reserved	ntents are captu I	ired on capture	e event							
bit 6-5	ICI<1:0>: Se	lect Number of (Captures per In	terrupt bits							
		t on every fourth		t							
	•	t on every third	•								
		t on every secor t on every captu		nt							
bit 4	-	Capture Overflov		oit (read-only)							
	-	ture overflow oc	-								
		0 = No input capture overflow occurred									
bit 3	ICBNE: Input	t Capture Buffer	Empty Status	bit (read-only)							
		ture buffer is no		st one more ca	pture value ca	an be read					
		ture buffer is en									
bit 2-0		put Capture Mo									
		apture functions			evice is in Sle	ep or Idle mode	e. Rising edg				
		detect only; all other control bits are not applicable. 110 = Unused (module disabled)									
		re mode, every ?		е							
	100 = Captu	re mode, every 4	4th rising edge								
	•	re mode, every r	•••								
		re mode, every f re mode, every e		d falling) ICI<1	·0> hits do n	at control interru	int generatio				
		mode.	and the second sec		.0- 013 00 10		ipt generatio				

REGISTER 13-1: IC1CON: INPUT CAPTURE 1 CONTROL REGISTER

000 = Input capture module is turned off

REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER

bit 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		DTRx<13:8>				
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

hit	0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			ALTDT	Rx<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-U	R/W-U	R/W-U			R/W-U	R/W-U	K/W-U
			ALTD	FR <7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U =			U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown		

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMO	D	C	LSRC<4:0>(2,3)		CLPOL ⁽¹⁾	CLMOD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FL	_TSRC<4:0> ^{(2,3})		FLTPOL ⁽¹⁾	FLTMO	D<1:0>
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	IFLTMOD: In	dependent Fau	lt Mode Enat	ole bit			
					LTDAT<1> to P 1:0> bits are not		
	0 = Normal	Fault mode: Cu	irrent-limit fe	ature maps Cl	_DAT<1:0> bits > to the PWMxH	to the PWMxH	l and PWMxI
bit 14-10			•		ect for PWMx # (•
	11111 = Res		0				
	•						
	•						
	•						
	01000 = Res	served					
	00111 = Fau 00110 = Fau						
	00110 – Fau						
	00100 = Fau						
	00011 = Fau						
	00010 = Fau	ılt 3					
	00001 = Fau						
	00000 = Fau	ılt 1					
bit 9	CLPOL: Curr	rent-Limit Polari	ty for PWMx	Generator # b	it ⁽¹⁾		
	1 = The select	cted current-lim	it source is a	ctive-low			
	0 = The selec	cted current-lim	it source is a	ctive-high			
bit 8	CLMOD: Cur	rrent-Limit Mode	e Enable bit f	or PWMx Gene	erator # bit		
	1 = Current-li	imit function is e	enabled				
	0 = Current-li	imit function is c	lisabled				
	These bits should yield unpredictable	-	ly when PTE	N = 0. Changir	ng the clock sele	ection during op	eration will
	When Independer mode (CLSRC<4: unused Fault sour	0> = b0000), th	e Fault Cont	rol Source Sel	ect bits (FLTSR	C<4:0>) should	be set to an
3:	When Independer (FLTSRC<4:0> = 1 unused current-lin PWMxL outputs.	b0000), the Cu i	rrent-Limit Co	ontrol Source S	elect bits (CLSF	RC<4:0>) shoul	d be set to an

REGISTER 15-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This	insures	that	the	first	fr	ame
	transmission		after	initializ	ation	is	not
	shifted or corrupted.						

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI Shift register and is empty once the data transmission begins.

16.2 SPI Resources

Many useful resources related to SPI are provided on the Microchip web site (www.microchip.com).

16.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33F/PIC24H Family Reference Manual"* Sections
- · Development Tools

REGISTER 19-6: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1 (CONTINUED) bit 7 IRQEN2: Interrupt Request Enable 2 bit⁽²⁾ 1 = Enables IRQ generation when requested conversion of channels AN5 and AN4 is completed 0 = IRQ is not generated

	0 - In Q is not generated
bit 6	PEND2: Pending Conversion Status 2 bit ⁽²⁾
	 1 = Conversion of channels AN5 and AN4 is pending; set when selected trigger is asserted. 0 = Conversion is complete
bit 5	SWTRG2: Software Trigger 2 bit ⁽²⁾
	1 = Starts conversion of AN5 and AN4 (if selected by the TRGSRCx bits) ⁽³⁾ This bit is automatically cleared by hardware when the PEND2 bit is set. 0 = Conversion has not started
bit 4-0	TRGSRC2<4:0>: Trigger 2 Source Selection bits ⁽²⁾
	Selects trigger source for conversion of analog channels AN5 and AN4. 11111 = Timer2 period match
	•
	11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = Reserved 11000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved
	•
	10010 = Reserved 10001 = PWM Generator 4 secondary trigger is selected 10000 = Reserved 01111 = PWM Generator 2 secondary trigger is selected 01110 = PWM Generator 1 secondary trigger is selected 01101 = Reserved 01100 = Timer1 period match
	•
	01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00110 = Reserved 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected 00000 = No conversion is enabled

Note 1: This bit is available in dsPIC33FJ06GS001/101A and dsPIC33FJ09GS302 devices only.

- 2: This bit is available in dsPIC33FJ06GS102A/201A and dsPIC33FJ09GS302 devices only.
- **3:** The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

22.4 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

22.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit (FWDT<4>). With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

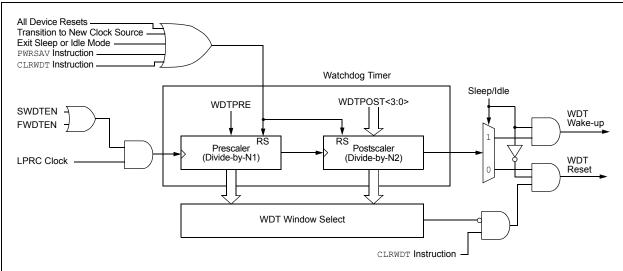
A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC<2:0> bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

22.4.2 SLEEP AND IDLE MODES


If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP bit (RCON<3>) or IDLE bit (RCON<2>) will need to be cleared in software after the device wakes up.

22.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register (FWDT<7>). When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

FIGURE 22-2: WDT BLOCK DIAGRAM

22.5 JTAG Interface

A JTAG interface is implemented, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface will be provided in future revisions of this document.

22.6 In-Circuit Serial Programming

dsPIC33FJ06GS001/101A/102A/202A The and dsPIC33FJ09GS302 family of digital signal controllers can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for details about In-Circuit Serial Programming (ICSP[™]).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- · PGEC3 and PGED3

22.7 In-Circuit Debugger

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 devices provide simple debugging functionality through the PGECx (Emulation/ Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- · PGEC3 and PGED3

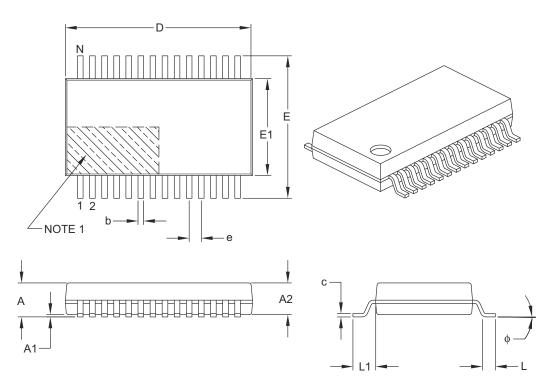
To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

DC CHA	OC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units Conditions		
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage	
D132B	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	Vміn = Minimum operating voltage	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current during Programming	—	10	—	mA		
D137a	Тре	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C ⁽²⁾	
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C ⁽²⁾	
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, TA = +85°C ⁽²⁾	
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, Ta = +125°C ⁽²⁾	

TABLE 25-12: DC CHARACTERISTICS: PROGRAM MEMORY


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = `b011111 (for Minimum), TUN<5:0> = `b100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 25-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".


TABLE 25-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

eq:conditions: -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended							
Param.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments
	CEFC	External Filter Capacitor Value ⁽¹⁾	4.7	10		μF	Capacitor must be low series resistance (< 0.5 Ohms)

Note 1: Typical VCAP voltage = 2.5 volts when $VDD \ge VDDMIN$.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	ф	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

INDEX

Α	
AC Characteristics	. 282
Internal LPRC Accuracy	. 285
Internal RC Accuracy	. 285
Load Conditions	. 282
Temperature and Voltage Specifications	. 282
Alternate Interrupt Vector Table (AIVT)	
Arithmetic Logic Unit (ALU)	31
Assembler	
MPASM Assembler	. 268
Auxiliary Clock Generation	. 125
В	
Bit-Reversed Addressing	69
Example	70
Implementation	69
Sequence Table (16-Entry)	70
Block Diagrams	
16-Bit Timer1 Module	. 173
Boost Converter Implementation	21
Connections for On-Chip Voltage Regulator	. 256
Constant Current Source	. 249
CPU Core	26
Digital PFC	21
DSP Engine	
dsPIC33FJ06GS001 Device ADC	. 226
dsPIC33FJ06GS001/101A/102A/202A	and
dsPIC33FJ09GS302	
dsPIC33FJ06GS101A Device ADC	
dsPIC33FJ06GS102A Device ADC	
dsPIC33FJ06GS202A Device ADC	
dsPIC33FJ09GS302 Device ADC	
High-Speed Analog Comparator	
Hysteresis Control	
I ² C	
Input Capture	
Interleaved PFC	
MCLR Pin Connections	
Multiplexing of Remappable Output for RPn	
Oscillator System	
Output Compare	. 179
Partitioned Output Pair, Complementary	100
PWM Mode	
Phase-Shifted Full-Bridge Converter PLL	
Recommended Minimum Connection Remappable MUX Input for U1RX	
Reset System	
Shared Port Structure	
Simplified Conceptual High-Speed PWM	
Single-Phase Synchronous Buck Converter	
Single-Phase Synchronous Buck Converter	
Type B Timer2	
UART	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	
DIOWIT-OUL INEGEL (DOIN)	, 200

С

C Compilers	
MPLAB C18	268
Capacitor on Internal Voltage Regulator (VCAP)	18
Clock Switching	134
Enabling	134
Sequence	
Code Examples	
Port Write/Read	147
PWRSAV Instruction Syntax	137
Code Protection	
Configuration Bits	251
Description	254
Configuring Analog Port Pins	147
Constant Current Source	
Description	249
Features	249
CPU	
Barrel Shifter	35
Control Registers	28
Data Addressing Overview	25
DSP Engine Overview	25
MCU Special Features	
Special Features	251
CPU Clocking System	124
PLL Configuration	125
Selection	124
Sources	124
Customer Change Notification Service	346
Customer Notification Service	
Customer Support	346

D

DAC	244
Buffer Gain	244
Output Range	245
Data Accumulators and Adder/Subtracter	33
Data Space Write Saturation	35
Overflow and Saturation	33
Round Logic	34
Write Back	34
Data Address Space	39
Alignment	39
Memory Map for Devices with 1 Kbyte of RAM	41
Memory Map for Devices with 256 Bytes of RAM.	40
Near Data Space	39
Software Stack	66
Width	39
X and Y Data	42
DC and AC Characteristics	
Graphs and Tables	315
DC Characteristics	
Doze Current (IDOZE)	277
I/O Pin Input Specifications	278
I/O Pin Output Specifications	280
Idle Current (IIDLE)	275
Operating Current (IDD)	274
Operating MIPS vs. Voltage	272
Power-Down Current (IPD)	276
Program Memory	281
Temperature and Voltage Specifications	273

DC Specifications	
DAC Output (DACOUT Pin)	
Development Support	
Doze Mode	138
DSC Guidelines	17
Basic Connection Requirements	17
Decoupling Capacitors	17
DSP Engine	31
Multiplier	

Е

Electrical Characteristics	
Absolute Maximum Ratings	
Equations	
Device Operating Frequency	
Fosc Calculation	
Maximum Page Erase Time	76
Minimum Page Erase Time	
XT with PLL Mode Example	
Errata	

F

Fail-Safe Clock Monitor (FSCM)	135
Flash Program Memory	75
Control Registers	
Operations	76
Table Instructions	75
Flexible Configuration	

Н

High-Speed 10-Bit ADC	
Description	225
Features	
Functionality	
High-Speed Analog Comparator	
Applications	
Control Registers	
DAC	
Digital Logic	
Hysteresis	
Input Range	
Interaction with I/O Buffers	
High-Speed PWM	183
Control Registers	186

I

I/O Ports	
Helpful Tips	152
Parallel I/O (PIO)	
Resources	
Write/Read Timing	
I ² C	
Operating Modes	211
Registers	
In-Circuit Debugger	
In-Circuit Emulation	251
In-Circuit Serial Programming (ICSP)	
Analog, Digital Pins Configuration	
Pins	
Input Capture	
Input Change Notification	

Instruction Addressing Modes	66
File Register Instructions	66
Fundamental Modes Supported	67
MAC Instructions	
MCU Instructions	66
Move and Accumulator Instructions	67
Other Instructions	67
Instruction Set	
Overview	262
Summary	259
Instruction-Based Power-Saving Modes	137
ldle	138
Sleep	137
Interfacing Program and Data Memory Spaces	71
Internal RC Oscillator	
Use with WDT	257
Internet Address	346
Interrupt Control and Status Registers	90
IECx	90
IFSx	90
INTCON1	90
INTCON2	90
INTTREG	90
IPCx	90
Interrupt Setup Procedures	122
Initialization	122
Interrupt Disable	122
Interrupt Service Routine	122
Trap Service Routine	122
Interrupt Vector Table (IVT)	87
Interrupts Coincident with Power Save Instructions	138

J

JTAG Boundary Scan Interface	251
JTAG Interface	258

L

```
LEBCONx (PWMx Leading-Edge Blanking Control) ...... 202
```

Μ

Master Clear (MCLR)	18
Memory Organization	37
Microchip Internet Web Site	346
Modulo Addressing	68
Applicability	
Operation Example	68
Start and End Address	
W Address Register Selection	68
MPLAB ASM30 Assembler, Linker, Librarian	268
MPLAB Integrated Development	
Environment Software	267
MPLAB PM3 Device Programmer	270
MPLAB REAL ICE In-Circuit Emulator System	269
MPLINK Object Linker/MPLIB Object Librarian	268

0

Open-Drain Configuration	147
Oscillator	
External Pins	19
Value Conditions on Start-up	20
Oscillator Configuration	123
Output Compare	179

NOTES: