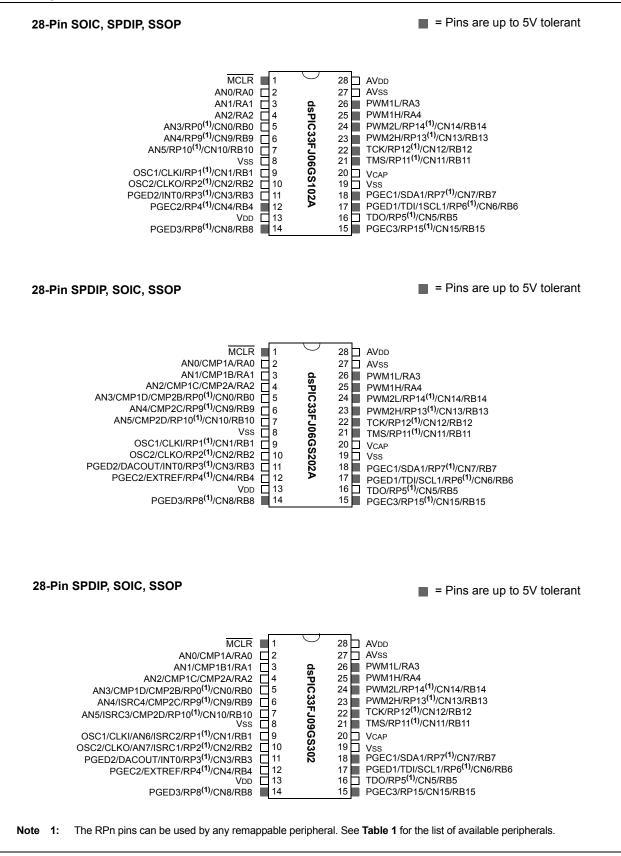


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs101at-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-16: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_		—	—	—	—	_				Receive	Register				0000
I2C1TRN	0202	_		_	_	-	_	— — Transmit Register								OOFF		
I2C1BRG	0204	_		_	_	-	_	Baud Rate Generator Register							0000			
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_		_	_	-	_		Address Register								0000	
I2C1MSK	020C	—	_		—	_	_					AMSK	<9:0>					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: UART1 REGISTER MAP FOR dsPiC33FJ06GS101A, dsPiC33FJ06GS102A, dsPiC33FJ06GS202A AND dsPiC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	-	_	_	_					UART	Transmit Re	egister				XXXX
U1RXREG	0226	_	_	-	_	_	_	-				UART	Receive Re	egister				0000
U1BRG	0228		-			•		B	aud Rate Ge	enerator Pre	escaler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18:SPI1 REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL					_		SPIROV	_	_	_	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL		_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Tran	smit and Re	ceive Buffe	er Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-37: PMD REGISTER MAP FOR dsPIC33FJ06GS202A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	_	T2MD	T1MD	—	PWMMD	—	I2C1MD		U1MD	—	SPI1MD	_	_	ADCMD	0000
PMD2	0772		_	_	_	_	_	_	IC1MD	_	_	_	_	_	_	_	OC1MD	0000
PMD3	0774	_					CMPMD	_	—			—	—	—			—	0000
PMD4	0776	_					_	_	—			—	—	REFOMD			—	0000
PMD6	077A	_					_	PWM2MD	PWM1MD			—	—	—			—	0000
PMD7	077C	_	_	_	_		_	CMP2MD	CMP1MD			_	_	_		_	—	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PMD REGISTER MAP FOR dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	-	_	_	T2MD	T1MD	_	PWMMD	—	I2C1MD	_	U1MD	-	SPI1MD	—	-	ADCMD	0000
PMD2	0772		_	_	_	_	_	_	IC1MD	_	_	—	_	_	_	_	OC1MD	0000
PMD3	0774		_	_	_	_	CMPMD	_	_	_	_	—	_	_	_	_	_	0000
PMD4	0776		_	_	_	_	_	_	_	_	_	—	_	REFOMD	_	_	_	0000
PMD6	077A		_	_	_	PWM4MD	_	PWM2MD	PWM1MD	_	_	—	_	_	_	_	_	0000
PMD7	077C		_	_	_	_	_	CMP2MD	CMP1MD	_	_	—	_	_	_	_	_	0000
PMD8	077E	_		_		—	—	—	—	—		—		—	-	CCSMD	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	—	_	—
bit 15	·					·	bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	—		ADCP6IF	—	—	ADCP3IF ⁽¹⁾	ADCP2IF ⁽²⁾
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-5	Unimplemen	ted: Read as	'O'				
bit 4	ADCP6IF: A	DC Pair 6 Con	version Done I	nterrupt Flag S	Status bit		
	1 = Interrupt	request has o	curred				
	0 = Interrupt	request has no	ot occurred				
bit 3-2	Unimplemen	ted: Read as	'0'				
bit 1	ADCP3IF: A	DC Pair 3 Con	version Done I	nterrupt Flag S	Status bit ⁽¹⁾		
	1 = Interrupt	request has o	curred				
	0 = Interrupt	request has no	ot occurred				
bit 0	ADCP2IF: AI	DC Pair 2 Con	version Done I	nterrupt Flag S	Status bit ⁽²⁾		
	1 = Interrupt	request has o	curred				
		request has no					

- Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.
 - 2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER	9-5: PMD6	: PERIPHER	AL MODULE	E DISABLE C	ONTROL RE	GISTER 6	
U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
_	_	—		PWM4MD ⁽¹⁾	—	PWM2MD ⁽²⁾	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
				<u> </u>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-12	Unimplomon	ted: Read as '	۰,				
bit 11	•	NM Generator		able bit(1)			
	1 = PWM Ger	nerator 4 modu nerator 4 modu	le is disabled				
bit 10	Unimplement	ted: Read as ')'				
bit 9	PWM2MD: PV	WM Generator	2 Module Disa	able bit ⁽²⁾			
	±	nerator 2 modu nerator 2 modu					
bit 8	PWM1MD: PV	WM Generator	1 Module Disa	able bit			
		nerator 1 modu nerator 1 modu					
bit 7-0	Unimplement	ted: Read as ')'				

Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

10.9 Peripheral Pin Select Registers

The following registers are implemented for remappable peripheral configuration:

- 15 Input Remappable Peripheral Registers
- 19 Output Remappable Peripheral Registers
- Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.6.3.1 "Control Register Lock" for a specific command sequence.

Not all Output Remappable Peripheral registers are implemented on all devices. See the register description of the specific register for further details.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			INT1	R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 7-0

bit 13-8 INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits

INT IN CONF. / Congri External III
111111 = Input tied to Vss
100011 = Input tied to RP35
100010 = Input tied to RP34
100001 = Input tied to RP33
100000 = Input tied to RP32
•
•
•
00000 = Input tied to RP0
Unimplemented: Read as '0'

bit 0

REGISTER 10-18: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP5F	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP4F	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP5R<5:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP4R<5:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits
	(see Table 10-2 for peripheral function numbers)

REGISTER 10-19: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP7	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP6F	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8	RP7R<5:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP6R<5:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-2 for peripheral function numbers)

17.2 I²C Registers

I2C1CON and I2C1STAT are control and status registers, respectively. The I2C1CON register is readable and writable. The lower six bits of I2C1STAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2C1RSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2C1RCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read

- I2C1TRN is the transmit register to which bytes are written during a transmit operation
- The I2C1ADD register holds the slave address
- A status bit, ADD10, indicates 10-Bit Address mode
- The I2C1BRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2C1RSR and I2C1RCV together form a double-buffered receiver. When I2C1RSR receives a complete byte, it is transferred to I2C1RCV, and an interrupt pulse is generated.

REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

I2CEN: I2C1 Enable bit
 1 = Enables the I2C1 module and configures the SDA1 and SCL1 pins as serial port pins 0 = Disables the I2C1 module; all I²C pins are controlled by port functions
Unimplemented: Read as '0'
I2CSIDL: Stop in Idle Mode bit
 1 = Discontinues module operation when device enters an Idle mode 0 = Continues module operation in Idle mode
SCLREL: SCL1 Release Control bit (when operating as I ² C slave)
1 = Releases SCL1 clock 0 = Holds SCL1 clock low (clock stretch)
<u>If STREN = 1:</u> Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear at beginning of slave transmission. Hardware is clear at end of slave reception.
<u>If STREN = 0:</u> Bit is R/S (i.e., software can only write '1' to release clock). Hardware is clear at beginning of slave transmission.
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit
1 = IPMI mode is enabled; all addresses Acknowledged0 = IPMI mode is disabled
A10M: 10-Bit Slave Address bit
 1 = I2C1ADD is a 10-bit slave address 0 = I2C1ADD is a 7-bit slave address
DISSLW: Disable Slew Rate Control bit
1 = Slew rate control is disabled
0 = Slew rate control is enabled

REGISTER 18-1: U1MODE: UART1 MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit ⁽³⁾ 1 = U1RX Idle state is '0' 0 = U1RX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit⁽³⁾ 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
	0 = BRG generates 16 clocks per bit period (16 baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits ⁽³⁾
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit ⁽³⁾ 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).
 - 3: This bit is not available in the dsPIC33FJ06GS001 device.

19.4 ADC Control Registers

The ADC module uses the following control and status registers:

- ADCON: ADC Control Register
- ADSTAT: ADC Status Register
- ADBASE: ADC Base Register(1)
- ADPCFG: ADC Port Configuration Register
- ADCPC0: ADC Convert Pair Control Register 0
- ADCPC1: ADC Convert Pair Control Register 1
- ADCPC3: ADC Convert Pair Control Register 3(1)

The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG register configures the port pins as analog inputs or as digital I/Os. The ADCPCx registers control the triggering of the ADC conversions. See Register 19-1 through Register 19-7 for detailed bit configurations.

Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual Sample-and-Hold circuits can be triggered independently of each other.

REGISTER 19-1: ADCON: ADC CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
ADON	—	ADSIDL	SLOWCLK ⁽¹⁾	—	GSWTRG	-	FORM ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ⁽¹⁾	SEQSAMP ⁽¹⁾	ASYNCSAMP ⁽¹⁾	_		ADCS<2:0>(1)	
bit 7							bit 0

Legend:						
R = Reada	ıble bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
bit 15	1 = ADC	ADC Operating Mode bit module is operating module is off				
bit 14	Unimple	mented: Read as '0'				
bit 13	ADSIDL	: Stop in Idle Mode bit				
		ontinues module operation wh inues module operation in Idle				
bit 12	SLOWC	LK: Enable Slow Clock Divide	r bit ⁽¹⁾			
		c is clocked by the auxiliary PL c is clocked by the primary PL	, ,			
bit 11	Unimple	mented: Read as '0'				
bit 10	GSWTR	G: Global Software Trigger bit				
	ADCPCx	• · · ·	rigger conversions if selected by ared by the user prior to initiating			
bit 9	Unimple	mented: Read as '0'				

Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).

REGISTER	19-5: ADCP	CU: ADC CO	NVERT PA	IR CONTROL	REGISTER ()	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN1	PEND1	SWTRG1			TRGSRC1<4:0)>	
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN0	PEND0	SWTRG0			TRGSRC0<4:0)>	
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15				sted conversion	of channels Al	N3 and AN2 is o	completed
bit 14		ding Conversio	on Status 1 bi	t			
	1 = Conversi	-		2 is pending; se	et when selecte	d trigger is asse	erted
bit 13		oftware Trigger	1 bit				
	1 = Starts co This bit is au	onversion of AN	I3 and AN2 (i ared by hardv	f selected by the vare when the F			
hit 10 0				ation hita			
bit 12-8	Selects trigge	4:0>: Trigger 1 er source for co ner2 period mat	onversion of a	analog channels	AN3 and AN2.		
	•	·					
	•						
	• 11011 = Res 11010 = PW	served /M Generator 4	current-limit	ADC trigger			
	11001 = Res	served					
		/M Generator 2 /M Generator 1 served					
	•						
	•						
		M Generator 4	secondary tr	igger is selecte	d		
	10000 = Res 01111 = PW		secondarv tr	igger is selecte	d		
				igger is selected			
	01101 = Res 01100 = Tim	served ner1 period mat	ch				
	•						
	00110 = Res 00101 = PW 00100 = PW 00011 = PW	M Generator 4	primary trigg primary trigg nt Trigger is s	er is selected er is selected selected			
	00001 = Ind i	ividual software conversion is e	trigger is se				

REGISTER 19-5: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then conversion will be performed when the conversion resources are available.

REGISTER 19-7: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3 ⁽¹⁾									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQEN6	PEND6	SWTRG6			TRGSRC6<4	:0>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, re	ad as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-8	Unimplemen	ted: Read as '0	,						
bit 7	IRQEN6: Inte	rrupt Request E	nable 6 bit						
	1 = Enable IR	Q generation w	hen requeste	ed conversion o	of channels AN	N13 and AN12 i	s completed		

ADADAA ADA AANNEDT DAID AANTDAL DEGIATED A(1)

	0 = IRQ is not generated
bit 6	PEND6: Pending Conversion Status 6 bit 1 = Conversion of channels AN13 and AN 12 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	SWTRG6: Software Trigger 6 bit
	 1 = Starts conversion of AN13 (INTREF) and AN12 (EXTREF) if selected by TRGSRC bits⁽²⁾ This bit is automatically cleared by hardware when the PEND6 bit is set. 0 = Conversion has not started

Note 1: If other conversions are in progress, conversion will be performed when the conversion resources are available.

2: AN13 is internally connected to Vref in all devices. AN12 is internally connected to the EXTREF pin in the dsPIC33FJ06001/202A and dsPIC33FJ09GS302 devices. The dsPIC33FJ06GS101A/102A devices not have an EXTREF pin; therefore, any data read on the corresponding AN12 input will be invalid.

REGISTER 19-7: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3⁽¹⁾ (CONTINUED)

```
bit 4-0
              TRGSRC6<4:0>: Trigger 6 Source Selection bits
              Selects trigger source for conversion of analog channels AN13 and AN12.
               11111 = Timer2 period match
              11011 = Reserved
              11010 = PWM Generator 4 current-limit ADC trigger
              11001 = Reserved
              11000 = PWM Generator 2 current-limit ADC trigger
              10111 = PWM Generator 1 current-limit ADC trigger
              10110 = Reserved
              10010 = Reserved
              10001 = PWM Generator 4 secondary trigger is selected
              10000 = Reserved
              01111 = PWM Generator 2 secondary trigger is selected
              01110 = PWM Generator 1 secondary trigger is selected
              01101 = Reserved
```

01101 = Timer1 period match 01100 = Timer1 period match 01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00011 = Global software trigger is selected 00001 = Individual software trigger is selected

00000 = No conversion is enabled

- **Note 1:** If other conversions are in progress, conversion will be performed when the conversion resources are available.
 - 2: AN13 is internally connected to Vref in all devices. AN12 is internally connected to the EXTREF pin in the dsPIC33FJ06001/202A and dsPIC33FJ09GS302 devices. The dsPIC33FJ06GS101A/102A devices not have an EXTREF pin; therefore, any data read on the corresponding AN12 input will be invalid.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	_	—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—		—
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			CCSC			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplei	mented bit, read	1 as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk			x = Bit is unkr	nown			

REGISTER 22-1: CONSTANT CURRENT SOURCE CALIBRATION REGISTER

bit 23-6 Unimplemented: Read as '0'

bit 5-0 CCSCAL<5:0>: Constant Current Source Calibration bits

The value of these bits must be copied into the ISRCCAL<5:0> bits (ISRCCON<5:0>). Refer to the Current Source Control register (Register 21-1) in **Section 21.0** "**Constant Current Source**".

25.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

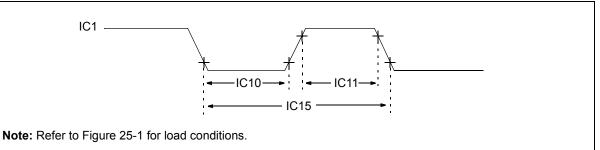
Absolute maximum ratings are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss, when $V_{DD} \ge 3.0 V^{(3)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when VDD < 3.0V ⁽³⁾	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sourced/sunk by any 4x I/O pin	
Maximum current sourced/sunk by any 16x I/O pin	45 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
 - 3: See the "Pin Diagrams" section for 5V tolerant pins.

DC CHARA	ACTERISTICS	8	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise s otherwise s -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended \end{array}$					
Param.	Typical ⁽¹⁾	Max.	Units			Conditions		
Operating	Current (IDD)	(2)						
DC20d	15	23	mA	-40°C				
DC20a	15	23	mA	+25°C	3.3V	10 MIPS		
DC20b	15	23	mA	+85°C	3.3V	TO MIPS		
DC20c	15	23	mA	+125°C				
DC21d	23	34	mA	-40°C				
DC21a	23	34	mA	+25°C	0.01/	16 MIPS ⁽³⁾		
DC21b	23	34	mA	+85°C	- 3.3V	16 MIPS(*)		
DC21c	23	34	mA	+125°C				
DC22d	25	38	mA	-40°C				
DC22a	25	38	mA	+25°C	2.21/	20 MIPS ⁽³⁾		
DC22b	25	38	mA	+85°C	- 3.3V	20 MIPS(*)		
DC22c	25	38	mA	+125°C				
DC23d	34	51	mA	-40°C				
DC23a	34	51	mA	+25°C	3.3V	30 MIPS ⁽³⁾		
DC23b	34	51	mA	+85°C	- 3.3V	30 MIPS(*)		
DC23c	34	51	mA	+125°C				
DC24d	43	64	mA	-40°C				
DC24a	43	64	mA	+25°C	2 2)/	40 MIPS ⁽³⁾		
DC24b	43	64	mA	+85°C	- 3.3V	40 MIP 5 9		
DC24c	43	64	mA	+125°C				
DC25d	83	125	mA	-40°C		40 MIPS		
DC25a	83	125	mA	+25°C	3.3V	See Note 2, except PWM and ADC		
DC25b	83	125	mA	+85°C	J.JV	are operating at maximum speed		
DC25c	83	125	mA	+125°C		(PTCON2 = 0x0000)		


TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD; WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU is executing while (1) statement
- **3:** These parameters are characterized but not tested in manufacturing.

FIGURE 25-6: INPUT CAPTURE (CAP1) TIMING CHARACTERISTICS

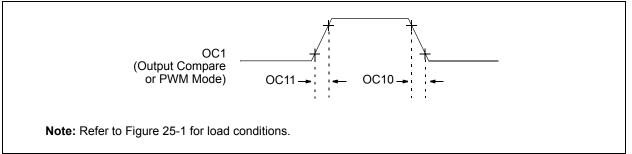
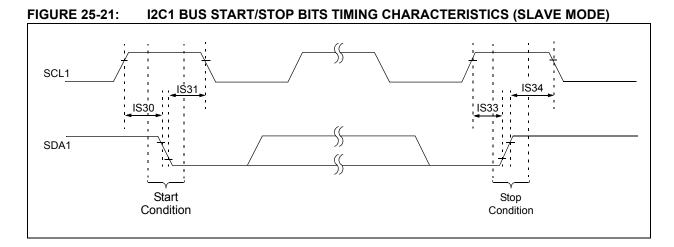
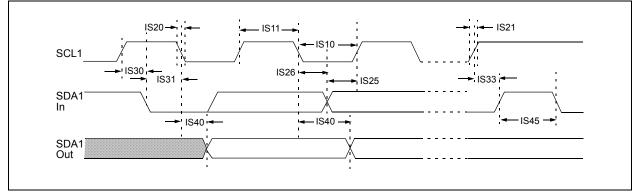


TABLE 25-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. Symbol Characteristic ⁽¹⁾				Min.	Max.	Units	Conditions	
IC10 TccL IC1 Input Low Time		No prescaler	0.5 Tcy + 20	_	ns			
			With prescaler	10		ns		
IC11	TccH	IC1 Input High Time	No prescaler	0.5 Tcy + 20	_	ns		
			With prescaler	10	_	ns		
IC15	TccP	IC1 Input Period	·	(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)	

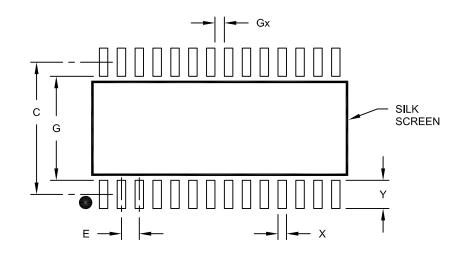
Note 1: These parameters are characterized but not tested in manufacturing.


FIGURE 25-7: OUTPUT COMPARE MODULE (OC1) TIMING CHARACTERISTICS


TABLE 25-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC10	TccF	OC1 Output Fall Time	— — — ns See Parameter DO32				
OC11	OC11 TccR OC1 Output Rise Time — — — ns See Parameter DO3					See Parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.



NOTES:

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units					
Dimensio	n Limits	MIN	NOM	MAX		
Contact Pitch	Contact Pitch E					
Contact Pad Spacing	С		9.40			
Contact Pad Width (X28)	Х			0.60		
Contact Pad Length (X28)	Y			2.00		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	7.40				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A