

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs101at-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies from device to device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a Data, Address or Address Offset register. The sixteenth working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits, right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 15 for left shifts.

TABLE 4-9: TIMER REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 Re	egister								0000
PR1	0102								Period Reg	gister 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2 Re	egister								0000
PR2	010C								Period Reg	gister 2								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS	S<1:0>	_		TCS	_	0000
Legend:	× = unkr	nown value	on Reset. –	– = unimple	mented, rea	d as '0'. Re	set values a	are shown i	n hexadecin	nal.								

TABLE 4-10: INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140	Input Capture 1 Register												XXXX				
IC1CON	0142	_	-	ICSIDL			_	—	_	-	ICI<1	:0>	ICOV	ICBNE	ICM<2:0>		0000	

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output Con	pare 1 Sec	ondary Reg	gister							XXXX
OC1R	0182		Output Compare 1 Secondary Register Output Compare 1 Register												XXXX			
OC1CON	0184	_	_	OCSIDL	_	_	_	_	_	—	_	_	OCFLT	— OCM<2:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: PORTA REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0		—		_		—	—	—	—			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2		—		_	_	—	—	—	—	_	_	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	_	_	_	_	_	_	_	_	_	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	0000
ODCA	02C6	_	_	_	_	_	_	_	_	_	_	_	ODCA4	ODCA3	_	—	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PORTB REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	_	—	—	—	—	-	—	_	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	OOFF
PORTB	02CA	_	_	_	-	_	_	_	_	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	_	_	_	-	_	_	_	_	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	_	_	-	—		_	_	_	ODCB7	ODCB6	—	—		_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	_	_	ODCB8	ODCB7	ODCB6	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8.** "**Reset**" (DS70192) in the "*dsPIC33F/PIC24H Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- · CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits (except for the POR (RCON<0> bit) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

REGISTER 7	-6: IFS1: I	NTERRUPT	FLAG STAT	US REGISTE	ER 1									
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0							
	_	INT2IF		_	_	_	—							
bit 15							bit 8							
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
		<u> </u>	INT1IF	CNIF	AC1IF ⁽¹	MI2C1IF	SI2C1IF							
bit 7							bit 0							
Legend:														
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'														
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown														
bit 15-14	Unimplement	ted: Read as ')'											
bit 13	INT2IF: Extern	INT2IF: External Interrupt 2 Flag Status bit												
	1 = Interrupt r	1 = Interrupt request has occurred												
bit 10 E		ted: Deed as '	, occurred											
bit 4		nal Interrunt 1) Elaa Status bi	+										
DIL 4	1 = Interrupt r		riay Status Di	it.										
	0 = Interrupt r	equest has not	occurred											
bit 3	CNIF: Input C	hange Notifica	tion Interrupt	Flag Status bit										
	1 = Interrupt r	equest has occ	curred	•										
	0 = Interrupt r	equest has not	occurred											
bit 2	AC1IF: Analog	g Comparator	1 Interrupt Fla	ag Status bit ⁽¹⁾										
	1 = Interrupt r	equest has occ	curred											
h:4 4		equest has hol		an Chatura bit										
DIT				ag Status bit										
	0 = Interrupt r	equest has not	occurred											
bit 0	SI2C1IF: I2C1	1 Slave Events	Interrupt Flac	o Status bit										
	1 = Interrupt r	equest has occ	curred	,										
	0 = Interrupt r	equest has not	occurred											

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER 7 -	-14: IEC3:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 3		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	_	—	_		—	PSEMIE	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—		_	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIE: PWM Special Event Match Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIE ⁽¹⁾	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-2	Unimplemented: Read as '0'
bit 1	U1EIE: UART1 Error Interrupt Enable bit ⁽¹⁾
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in the dsPIC33FJ06GS001 device.

REGISTER 7 -	-19: IPC0		PRIORITY	CONTROL R	EGISTER 0						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T1IP<2:0>		—							
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		IC1IP<2:0>(2)				INT0IP<2:0>					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	Unimpleme	nted: Read as '0)' 								
bit 14-12	11IP<2:0>:	Timer1 Interrupt	Priority bits								
	111 = Interr	upt is Priority 7 (I	nignest prior	ity interrupt)							
	•										
	•										
	001 = Interr 000 = Interr	upt is Priority 1 upt source is disa	abled								
bit 11	Unimpleme	nted: Read as '0)'								
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits ⁽¹⁾										
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is Priority 1										
	000 = Interr	upt source is disa	abled								
bit 7	Unimpleme	nted: Read as '0)'		(2)						
bit 6-4	IC1IP<2:0>:	Input Capture C	hannel 1 Int	errupt Priority b	bits ⁽²⁾						
	111 = Interr	upt is Priority 7 (I	highest prior	ity interrupt)							
	•										
	•										
	001 = Interr	upt is Priority 1									
	000 = Interr	upt source is disa	abled								
DIT 3		nted: Read as 10)'	1.11.							
bit 2-0	IN 10IP<2:0	>: External Interr	upt 0 Priority	/ bits							
	•	upt is Priority 7 (i	nignest prior	ity interrupt)							
	•										
	•										
	001 = Interr	upt is Priority 1	ablad								
	000 = merr	upt source is disa	anieu								
Note de The	aa hita aya ya										

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

2: These bits are not implemented in dsPIC33FJ06GS001/101A/102A devices.

REGISTER	7-30: IPC24	: INTERRUP		CONTROL P	REGISTER 24	4	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		PWM4IP ⁽¹⁾		—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-7	Unimplemer	nted: Read as '	0'				
bit 6-4	PWM4IP<2:0	>: PWM4 Inter	rupt Priority I	oits ⁽¹⁾			
	111 = Interru	pt is Priority 7 (highest prior	ity)			
	•						
	•						
	•						
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				

Note 1: These bits are not implemented in dsPIC33FJ06GS102A/202A devices.

9.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake-up from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER	89-5: PMD6	6: PERIPHER		E DISABLE C	ONTROL RE	EGISTER 6		
U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	
	—	—	—	PWM4MD ⁽¹⁾	_	PWM2MD ⁽²⁾	PWM1MD	
bit 15		·					bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	<u> </u>			—			
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	nt POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	
bit 15-12	Unimplemen	ted: Read as '	o'					
bit 11	PWM4MD: P	WM Generator	4 Module Disa	able bit ⁽¹⁾				
	1 = PWM Ger	nerator 4 modu	le is disabled					
	0 = PWM Ger	nerator 4 modu	le is enabled					
bit 10	Unimplemen	ted: Read as '	o'					
bit 9	PWM2MD: P	WM Generator	2 Module Disa	able bit ⁽²⁾				
	1 = PWM Ger	nerator 2 modu	le is disabled					
	0 = PWM Ger	nerator 2 modu	le is enabled					
bit 8	PWM1MD: P	WM Generator	1 Module Disa	able bit				
	1 = PWM Ger	nerator 1 modu	le is disabled					
	0 = PWM Ger	nerator 1 modu	le is enabled					
bit 7-0	Unimplemen	ted: Read as '	o'					

Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 10-18: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP5F	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP4	R<5:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP5R<5:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP4R<5:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits
	(see Table 10-2 for peripheral function numbers)

REGISTER 10-19: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP7	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP6F	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8	RP7R<5:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP6R<5:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER

bit 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		DTRx<13:8>							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			

hit	Λ
DIL	U.

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	_		ALTDTRx<13:8>								
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			ALTD	TR <7:0>							
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

	Standard Operating Conditions: 3.0V to 3.6V									
	DACTED		(unless otherwise stated)							
	DC CHARACTERISTICS			ing temp	erature	-40°C	\leq TA \leq +85°C for Industrial			
	•					-40°C	\leq TA \leq +125°C for Extended			
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions			
		Program Flash Memory								
D130	Eр	Cell Endurance	10,000		_	E/W	-40°C to +125°C			
D131	Vpr	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage			
D132B	VPEW	VDD for Self-Timed Write	VMIN	_	3.6	V	VMIN = Minimum operating voltage			
D134	TRETD	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated, -40°C to +125°C			
D135	IDDP	Supply Current during Programming	-	10	—	mA				
D137a	TPE	Page Erase Time	20.1	_	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C ⁽²⁾			
D137b	TPE	Page Erase Time	19.5	_	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C ⁽²⁾			
D138a	Tww	Word Write Cycle Time	42.3	_	55.9	μs	Tww = 355 FRC cycles, TA = $+85^{\circ}C^{(2)}$			
D138b	Tww	Word Write Cycle Time	41.1		57.6	μs	Tww = 355 FRC cycles, TA = +125°C ⁽²⁾			

TABLE 25-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = `b011111 (for Minimum), TUN<5:0> = `b100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 25-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

TABLE 25-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operatin	g Conditio	ns: $-40^{\circ}C \le TA \le +85^{\circ}C$ for In $-40^{\circ}C \le TA \le +125^{\circ}C$ for E	dustrial Extended				
Param.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments
	CEFC	External Filter Capacitor Value ⁽¹⁾	4.7	10	_	μF	Capacitor must be low series resistance (< 0.5 Ohms)

Note 1: Typical VCAP voltage = 2.5 volts when $VDD \ge VDDMIN$.

TABLE 25-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Conditions				
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC	
		Oscillator Crystal Frequency	3.0 10		10 32	MHz MHz	XT HS	
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns		
OS25	TCY	Instruction Cycle Time ⁽²⁾	25	_	DC	ns		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	_	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2		ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

^{2:} Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

TABLE 25-41:	: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS
--------------	--

DC CHARACTERISTICS ⁽²⁾			Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic	Min. Typ. Max. Units Comments					
CM10	VIOFF	Input Offset Voltage	-58	+14/-40	66	mV		
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	-	AVDD	V		
CM14	TRESP	Large Signal Response	21	30	49	ns	V+ input step of 100 mv while V- input held at AVDD/2. Delay measured from analog input pin to PWM output pin.	

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

AC and DC CHARACTERISTICS ⁽²⁾			Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments	
DA01	EXTREF	External Voltage Reference ⁽¹⁾	0	_	AVDD – 1.6	V		
DA08	INTREF	Internal Voltage Reference ⁽¹⁾	1.15	1.25	1.35	V		
DA02	CVRES	Resolution	10			Bits		
DA03	INL	Integral Nonlinearity Error	-7	-1	+7	LSB	AVDD = 3.3V, DACREF = (AVDD/2)V	
DA04	DNL	Differential Nonlinearity Error	-5	-0.5	+5	LSB		
DA05	EOFF	Offset Error	0.4	-0.8	2.6	%		
DA06	EG	Gain Error	0.4	-1.8	5.2	%		
DA07	TSET	Settling Time ⁽¹⁾	711	1551	2100	ns	Measured when RANGE = 1 (high range) and the CMREF<9:0> bits transition from 0x1FF to 0x300	

TABLE 25-42: DAC MODULE SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

18-Lead PDIP

18-Lead SOIC (.300")

20-Lead SSOP

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package
Note:	 in the full Microchip part number cannot be marked on one line, it is carried on line, thus limiting the number of available characters for customer-specific in 	

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2

Output Compare (OC1)	290
Reset, Watchdog Timer, Oscillator Start-up	
Timer and Power-up Timer	287
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	296
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	295
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	293
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	294
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	303
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	301
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	297
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	299
System Reset	83
Timer1, Timer2 External Clock	288
Timing Specifications	
10-Bit High-Speed ADC	309
10-Bit High-Speed ADC Requirements	310
Auxiliary PLL Clock	284
Capacitive Loading Requirements on	
Output Pins	282
Constant Current Source	313
DAC	311
DAC Gain Stage to Comparator	312
External Clock Requirements	283
High-Speed ADC Comparator	311
High-Speed PWM Requirements	292
I/O Requirements	286
I2C1 Bus Data Requirements (Master Mode)	306
I2C1 Bus Data Requirements (Slave Mode)	308
Input Capture Requirements	290
Output Compare Requirements	290
PLL Clock	284

Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out			
Reset Requirements 287			
Simple OC/PWM Mode Requirements 291			
SPIx Master Mode (Full-Duplex, CKE = 0,			
CKP = x, SMP = 1) Requirements			
SPIx Master Mode (Full-Duplex, CKE = 1,			
CKP = x, SMP = 1) Requirements			
SPIx Master Mode (Half-Duplex, Transmit Only)			
Requirements 294			
SPIx Maximum Data Clock Rate Summary 293			
SPIx Slave Mode (Full-Duplex, CKE = 0,			
CKP = 0, SMP = 0) Requirements			
SPIx Slave Mode (Full-Duplex, CKE = 0,			
CKP = 1, SMP = 0) Requirements 302			
SPIx Slave Mode (Full-Duplex, CKE = 1,			
CKP = 0, SMP = 0) Requirements			
SPIx Slave Mode (Full-Duplex, CKE = 1,			
CKP = 1, SMP = 0) Requirements			
Timer1 External Clock Requirements 288			
Timer2 External Clock Requirements			

U

0	
Universal Asynchronous Receiver	
Transmitter (UART)	219
Helpful Tips	220
Resources	220
Using the RCON Status Bits	86
V	
Voltage Regulator (On-Chip)	256
w	
Watchdog Timer (WDT)	251, 257
Watchdog Timer Time-out Reset (WDTO)	85
WWW Address	346
WWW, On-Line Support	11