

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs101at-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-16: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	-	—	-	-	—	_				Receive	Register				0000
I2C1TRN	0202	_	_	_	_		_	_					Transmit	Register				OOFF
I2C1BRG	0204	_	_	_	_		_	_				Baud Rate	e Generator	Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT		_	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_			_			Address Register 00							0000		
I2C1MSK	020C	_	_		_	_						AMSK	<9:0>					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: UART1 REGISTER MAP FOR dsPiC33FJ06GS101A, dsPiC33FJ06GS102A, dsPiC33FJ06GS202A AND dsPiC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	-	_	_	_	_	_				UART	Transmit Re	egister				XXXX
U1RXREG	0226	_	-	_	_	_	_	_				UART	Receive Re	egister				0000
U1BRG	0228							В	aud Rate G	enerator Pre	escaler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18:SPI1 REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	—	—	—	—	SPIROV	—	—	—	—	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	-	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Tran	smit and Re	eceive Buffe	r Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33FJ06GS001

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	—	—			INT1R<	5:0>			—		—	—		—	—	—	3F00
RPINR1	0682	—	—	-	_	—	_	_	_	—				INT2R	<5:0>			003F
RPINR2	0684	—	—			T1CKR<	5:0>			—		—	—		—	_	—	3F00
RPINR3	0686	—	_		_	—		—	_	—				T2CKR	<5:0>			003F
RPINR29	06BA	—	_			FLT1R<	5:0>			—		—	—		—	_		3F00
RPINR30	06BC	—	_			FLT3R<	5:0>			—				FLT2R	<5:0>			3F3F
RPINR31	06BE	—	_			FLT5R<	5:0>			—				FLT4R	<5:0>			3F3F
RPINR32	06C0	—	_			FLT7R<	5:0>			—				FLT6R	<5:0>			3F3F
RPINR33	06C2	—	_			SYNCI1R	<5:0>			—				FLT8R	<5:0>			3F3F
RPINR34	06C4	_	_		—	_	_	_	_	_	-			SYNCI2	R<5:0>			003F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33FJ06GS101A AND dsPIC33FJ06GS102A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_			INT1R<	5:0>			_	_	_	_	_	_	_	_	3F00
RPINR1	0682	—	_	_	_	_	_	_	_	_	_		•	INT2R	<5:0>	•	•	003F
RPINR2	0684	—	_			T1CKR<	5:0>		•			_		_	_	_		3F00
RPINR3	0686	—	—	_	_	_	—	_	_	—				T2CKR	<5:0>			003F
RPINR11	0696	—	—	_	_	_	—	_	_	—				OCFAF	<5:0>			003F
RPINR18	06A4	—	—			U1CTSR-	<5:0>							U1RXF	<5:0>			3F3F
RPINR20	06A8	—	—			SCK1R<	5:0>							SDI1R	<5:0>			3F3F
RPINR21	06AA	—	_	_	_	_	_	_	_	_	_			SS1R·	<5:0>			003F
RPINR29	06BA	—	_			FLT1R<	5:0>			_	_	_	—	_	_	_	_	3F00
RPINR30	06BC	—	_			FLT3R<	5:0>			_	_			FLT2R	<5:0>			3F3F
RPINR31	06BE	—	_			FLT5R<	5:0>			_	_			FLT4R	<5:0>			3F3F
RPINR32	06C0	—	_			FLT7R<	5:0>			_	_			FLT6R	<5:0>			3F3F
RPINR33	06C2	—	_			SYNCI1R	<5:0>			_	_			FLT8R	<5:0>			3F3F
RPINR34	06C4	_	_	_	_	_	_	_	_	_				SYNCI2	R<5:0>			003F
Legend:	x = unkr	own value	on Reset	. — = unimp	lemented, re	ad as '0'. R	eset values	are show	n in hexad	decimal.	-							-

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8.** "**Reset**" (DS70192) in the "*dsPIC33F/PIC24H Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- · CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits (except for the POR (RCON<0> bit) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

REGISTER 7	-6: IFS1: I	NTERRUPT	FLAG STAT	US REGISTE	ER 1		
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	_	INT2IF		_	_	_	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		<u> </u>	INT1IF	CNIF	AC1IF ⁽¹	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplement	ted: Read as ')'				
bit 13	INT2IF: Extern	nal Interrupt 2	Flag Status bi	it			
	1 = Interrupt r	equest has occ	curred				
bit 10 E		ted: Deed as '	, occurred				
bit 4		nal Interrunt 1) Elaa Status bi	+			
DIL 4	1 = Interrupt r		riay Status Di	it.			
	0 = Interrupt r	equest has not	occurred				
bit 3	CNIF: Input C	hange Notifica	tion Interrupt	Flag Status bit			
	1 = Interrupt r	equest has occ	curred	•			
	0 = Interrupt r	equest has not	occurred				
bit 2	AC1IF: Analog	g Comparator	1 Interrupt Fla	ag Status bit ⁽¹⁾			
	1 = Interrupt r	equest has occ	curred				
h:4 4		equest has hol		an Chatura bit			
DIT				ag Status bit			
	0 = Interrupt r	equest has not	occurred				
bit 0	SI2C1IF: I2C1	1 Slave Events	Interrupt Flac	o Status bit			
	1 = Interrupt r	equest has occ	curred	,			
	0 = Interrupt r	equest has not	occurred				

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER 7 -	-14: IEC3:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 3		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	_	—	_		—	PSEMIE	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—		_	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIE: PWM Special Event Match Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIE ⁽¹⁾	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2	Unimplemented: Read as '0'
bit 1	U1EIE: UART1 Error Interrupt Enable bit ⁽¹⁾
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in the dsPIC33FJ06GS001 device.

REGISTER 8	-5: ACLK	CON: AUXILI	ARY CLOCI	k divisor (CONTROL RE	GISTER			
R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1		
ENAPLL	APLLCK	SELACLK	_	_	APSTSCLR<2:0> ⁽²⁾				
bit 15				•	•		bit 8		
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
ASRCSEL	FRCSEL	—	—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	ENAPLL: Aux 1 = APLL is e 0 = APLL is d	xiliary PLL Enal nabled isabled	ble bit						
bit 14	APLLCK: AP 1 = Indicates 0 = Indicates	LL Locked Stat that auxiliary P that auxiliary P	us bit (read-ou LL is in lock LL is not in loc	nly) ck					
bit 13	SELACLK: S	elect Auxiliary (Clock Source	for Auxiliary C	lock Divider bit				
	1 = Auxiliary o 0 = Primary P	oscillators provi PLL (Fvco) prov	des the sourc	e clock for au ce clock for au	xiliary clock divio xiliary clock divi	der der			
bit 12-11	Unimplemen	ted: Read as 'd)'						
bit 10-8	APSTSCLR<	2:0>: Auxiliary	Clock Output	Divider bits ⁽²⁾					
	111 = Divideo 110 = Divideo 101 = Divideo 100 = Divideo 011 = Divideo 010 = Divideo 001 = Divideo 001 = Divideo	1 by 1 1 by 2 1 by 4 1 by 8 1 by 16 1 by 32 1 by 64 1 by 256							
bit 7	ASRCSEL: S	elect Reference	e Clock Sourc	e for Auxiliary	Clock bit				
	1 = Primary o 0 = No clock i	scillator is the c input is selected	clock source						
bit 6	FRCSEL: Sel 1 = Selects Fl 0 = Input cloc	ect Reference RC clock for au k source is dete	Clock Source xiliary PLL ermined by AS	for Auxiliary F	PLL bit				
bit 5-0	Unimplemen	ted: Read as 'd)'		-				
Note 1: This	s register is res	et only on a Po	wer-on Reset	(POR).					

(1) _

2: The auxiliary clock postscaler must be configured to divide-by-1 (APSTSCLR<2:0> = 111) for proper operation of the PWM module.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
—			T1CKR<5:0>									
bit 15	•						bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	—	—	_	—		—	_					
bit 7	•						bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown						
bit 15-14	Unimplemen	ted: Read as '	0'									
bit 13-8	T1CKR<5:0>	: Assign Timer	1 External Cl	ock (T1CK) to t	he Correspondi	ng RPn Pin bits	6					
	111111 = Ing	out tied to Vss										
	100011 = Inp	out tied to RP3	5									
	100010 = Inp	out tied to RP34	1									
	100001 = Inp	out tied to RP33	3									
	100000 = Inp	out tied to RP32	2									
	•											
	•											
	•											
	00000 = Inp u	it tied to RP0										

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—			_		—	—	
bit 15							bit 8	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	<u> </u>			OCFA	R<5:0> ⁽¹⁾			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			nown	
bit 15-6	Unimplemen	ted: Read as ')'					
bit 5-0	OCFAR<5:0>	: Assign Outpu	it Compare A	(OCFA) to the	Corresponding	RPn Pin bits ⁽¹⁾)	
	111111 = Inp	out tied to Vss						
	100011 = Inp	out tied to RP35	5					
	100010 = Inp	out fied to RP34	+ >					
	100001 - Inp	out fied to RP32)					
	•							
	•							
	uani = 00000	it tied to RP0						
	- F	-						

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bi			x = Bit is unki	nown					
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
Legend:									
bit 7							bit 0		
	_		SYNCI2R<5:0>						
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
L									
bit 15							bit 8		
—	—	—	_	—	—	—	—		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		

REGISTER 10-15: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34

bit 15-6 Unimplemented: Read as '0'

bit 5-0

SYNCI2R<5:0>: Assign PWM Master Time Base External Synchronization Signal to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32 •

00000 = Input tied to RP0

© 2011-2012 Microchip Technology Inc.

REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

3)
2

- 1 = Center-Aligned mode is enabled
- 0 = Center-Aligned mode is disabled

bit 1 XPRES: External PWM Reset Control bit⁽⁴⁾

1 = Current-limit source resets time base for this PWM generator if it is in Independent Time Base mode 0 = External pins do not affect PWM time base

- bit 0 IUE: Immediate Update Enable bit
 - 1 = Updates to the active MDC/PDCx/SDCx registers are immediate
 - 0 = Updates to the active MDC/PDCx/SDCx registers are synchronized to the PWM time base
- **Note 1:** Software must clear the interrupt status here and the corresponding IFSx bit in the interrupt controller.
 - 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
 - **3:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 4: To operate in External Period Reset mode, configure the CLMOD (FCLCONx<8>) bit = 0 and ITB (PWMCONx<9>) bit = 1.

REGISTER 15-7:	PDCx: PWMx GENERATOR DUTY CYCLE REGISTER ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDCx	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC>	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkı	nown

bit 15-0 PDCx<15:0>: PWMx Generator # Duty Cycle Value bits⁽²⁾

- **Note 1:** In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDCx	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDCx	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at F	'OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown

REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER⁽¹⁾

bit 15-0 SDCx<15:0>: Secondary Duty Cycle for PWMxL Output Pin bits⁽²⁾

- **Note 1:** The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER

bit 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		DTRx<13:8>						
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		

hit	Λ
DIL	U.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			ALTDT	Rx<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTD	TR <7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 18-2: U1STA: UART1 STATUS AND CONTR
--

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1(2)	UTXINV ⁽²⁾	UTXISEL0 ⁽²⁾	—	UTXBRK ⁽²⁾	UTXEN ^(1,2)	UTXBF ⁽²⁾	TRMT ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	L<1:0> ⁽²⁾	ADDEN ⁽²⁾	RIDLE ⁽²⁾	PERR ⁽²⁾	FERR ⁽²⁾	OERR ⁽²⁾	URXDA ⁽²⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	C = Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

UTXISEL<1:0>: Transmission Interrupt Mode Selection bits⁽²⁾ bit 15,13 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies that there is at least one character open in the transmit buffer) bit 14 UTXINV: Transmit Polarity Inversion bit⁽²⁾ If IREN = 0: 1 = U1TX Idle state is '0' 0 = U1TX Idle state is '1' If IREN = 1: 1 = IrDA[®] encoded U1TX Idle state is '1' 0 = IrDA encoded U1TX Idle state is '0' bit 12 Unimplemented: Read as '0' UTXBRK: Transmit Break bit⁽²⁾ bit 11 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission is disabled or completed **UTXEN:** Transmit Enable bit^(1,2) bit 10 1 = Transmit is enabled, U1TX pin is controlled by UART1 0 = Transmit is disabled, any pending transmission is aborted and buffer is reset; U1TX pin is controlled by port bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)⁽²⁾ 1 = Transmit buffer is full 0 = Transmit buffer is not full; at least one more character can be written TRMT: Transmit Shift Register Empty bit (read-only)(2) bit 8 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

2: This bit is not available in the dsPIC33FJ06GS001 device.

REGISTER 19-3: A	ADBASE: ADC BASE REGISTER ⁽¹⁾
------------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADBASE	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
		A	DBASE<7:1>(2)			—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 ADBASE<15:1>: ADC Base Register bits⁽²⁾

This register contains the base address of the user's ADC Interrupt Service Routine (ISR) jump table. This register, when read, contains the sum of the ADBASE register contents and the encoded value of the PxRDY status bits.

The encoder logic provides the bit number of the highest priority PxRDY bits, where P0RDY is the highest priority and P6RDY is the lowest priority.

- bit 0 Unimplemented: Read as '0'
- **Note 1:** As an alternative to using the ADBASE register, the ADCP0-6 ADC Pair Conversion Complete Interrupts can be used to invoke A to D conversion completion routines for individual ADC input pairs.
 - 2: The encoding results are shifted left two bits, so bits 1-0 of the result are always zero.

25.1 DC Characteristics

	Voo Bango	Tomp Pango	Maximum MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302
	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	40
—	Vbor-3.6V ⁽¹⁾	-40°C to +125°C	40

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

TABLE 25-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation Internal Chip Power Dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$	PD	PD PINT + PI/O		W	
$I/O = \Sigma (\{VDD - VOH\} \times IOH\} + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ – ΤΑ)/θJΑ			W

TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 18-Pin SOIC	θJA	57		°C/W	1
Package Thermal Resistance, 18-pin PDIP	θJA	66	-	°C/W	1
Package Thermal Resistance, 20-pin SSOP	θJA	64		°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θJA	34		°C/W	1
Package Thermal Resistance, 28-pin SSOP	θJA	71	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	47	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	45		°C/W	1
Package Thermal Resistance, 36-Pin VTLA	θJA	29	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				3.0V to 3.6V A ≤ +85°C for Industrial A ≤ +125°C for Extended
Param.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions				
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency	100	—	200	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	Measured over 100 ms period

TABLE 25-17:PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$

TABLE 25-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

АС СНА	RACTERI	STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indu $-40^{\circ}C \le TA \le +125^{\circ}C$ for Example 1.25°C			3.0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended	
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS56	Fhpout	On-Chip 16x PLL CCO Frequency	112	118	120	MHz	
OS57	Fhpin	On-Chip 16x PLL Phase Detector Input Frequency	7.0	7.37	7.5	MHz	
OS58	Tsu	Frequency Generator Lock Time	_	_	10	μs	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

TABLE 25-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

АС СНА	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				3.0V to 3.6V $\overline{A} \le +85^{\circ}C$ for Industrial $\overline{A} \le +125^{\circ}C$ for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SY10	TMCL	MCLR Pulse Width (low)	2	_	_	μS	-40°C to +125°C
SY11	TPWRT	Power-up Timer Period	_	64	_	ms	-40°C to +125°C
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +125°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	
SY30	Tost	Oscillator Start-up Time	—	1024 Tosc			Tosc = OSC1 period

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	Units	1	MILLIMETER	s	
Dimens	ion Limits	MIN	NOM	MAX	
Number of Pins	N	36			
Number of Pins per Side	ND	10			
Number of Pins per Side	NE		8		
Pitch	е		0.50 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60	3.75	3.90	
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60	3.75	3.90	
Contact Width	b	0.20	0.25	0.30	

0.20

0.20

L

κ

0.25

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

Contact Length

Contact-to-Exposed Pad

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2

0.30

Output Compare (OC1)	290
Reset, Watchdog Timer, Oscillator Start-up	
Timer and Power-up Timer	287
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	296
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	295
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	293
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	294
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	303
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	301
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	297
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	299
System Reset	83
Timer1, Timer2 External Clock	288
Timing Specifications	
10-Bit High-Speed ADC	309
10-Bit High-Speed ADC Requirements	310
Auxiliary PLL Clock	284
Capacitive Loading Requirements on	
Output Pins	282
Constant Current Source	313
DAC	311
DAC Gain Stage to Comparator	312
External Clock Requirements	283
High-Speed ADC Comparator	311
High-Speed PWM Requirements	292
I/O Requirements	286
I2C1 Bus Data Requirements (Master Mode)	306
I2C1 Bus Data Requirements (Slave Mode)	308
Input Capture Requirements	290
Output Compare Requirements	290
PLL Clock	284

Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out
Reset Requirements 287
Simple OC/PWM Mode Requirements 291
SPIx Master Mode (Full-Duplex, CKE = 0,
CKP = x, SMP = 1) Requirements
SPIx Master Mode (Full-Duplex, CKE = 1,
CKP = x, SMP = 1) Requirements
SPIx Master Mode (Half-Duplex, Transmit Only)
Requirements 294
SPIx Maximum Data Clock Rate Summary 293
SPIx Slave Mode (Full-Duplex, CKE = 0,
CKP = 0, SMP = 0) Requirements
SPIx Slave Mode (Full-Duplex, CKE = 0,
CKP = 1, SMP = 0) Requirements 302
SPIx Slave Mode (Full-Duplex, CKE = 1,
CKP = 0, SMP = 0) Requirements
SPIx Slave Mode (Full-Duplex, CKE = 1,
CKP = 1, SMP = 0) Requirements
Timer1 External Clock Requirements 288
Timer2 External Clock Requirements 289

U

0	
Universal Asynchronous Receiver	
Transmitter (UART)	219
Helpful Tips	220
Resources	220
Using the RCON Status Bits	86
V	
Voltage Regulator (On-Chip)	256
w	
Watchdog Timer (WDT)	251, 257
Watchdog Timer Time-out Reset (WDTO)	85
WWW Address	346
WWW, On-Line Support	11