

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102a-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ06GS001/101A/ 102A/202A and dsPIC33FJ09GS302 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, regardless if ADC module is not used
- (see Section 2.2 "Decoupling Capacitors")
 VCAP
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP[™] Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible; for example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside of this range, the application must start up in the FRC mode first. The default PLL settings after a POR, with an oscillator frequency outside of this range, will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG register.

The bits in the registers that correspond to the Analog-to-Digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain Analog-to-Digital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all Analog-to-Digital pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (see Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during the code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

The devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	—	_	_	_	—	_	—		_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	—	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	—	T2IF	—		_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	—	—	INT2IF	—	_	_	_	—	—	—	—	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	008A	—	—	_	—	—	_	PSEMIF	—	—	—	—	—	_	_	_	_	0000
IFS4	008C	_	_	_	_	_	_	_	—	_	_	_	_	_	_	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_	_	_	—	_	_	_	_	_	_	_	JTAGIF	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	_	—	AC2IF	_	_	_	_	_	PWM4IF	_	0000
IFS7	0092	_	_	_	_	_	_	_	—	_	_	_	ADCP6IF	_	_	ADCP3IF	ADCP2IF	0000
IEC0	0094	_	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	—	T2IE	_	_	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	_	_	INT2IE	_	_	_	_	—	_	_	_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	_	_	_	_	_	PSEMIE	—	_	_	_	_	_	_	_	_	0000
IEC4	009C	_	_	_	_	_	_	_	—	_	_	_	_	_	_	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	_	_	_	_	_	—	_	_	_	_	_	_	_	JTAGIE	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	_	_	_	_	—	AC2IE	_	_	_	_	_	PWM4IE	_	0000
IEC7	00A2	_	_	_	_	_	_	_	—	_	_	_	ADCP6IE	_	_	ADCP3IE	ADCP2IE	0000
IPC0	00A4	_		T1IP<2:0>		—	C	DC1IP<2:0	>	—		IC1IP<2:0>	>	_		INT0IP<2:0>		4444
IPC1	00A6	_		T2IP<2:0>		_	_	_	—	_	_	_	_		_	_	_	4000
IPC2	00A8	_		U1RXIP<2:0)>	_	SPI1IP<2:0>)>	_	SPI1EIP<2:0>		_	_	_	_	4440	
IPC3	00AA	_	—	_	—			—				ADIP<2:0>	•	—	U1TXIP<2:0>		•	0044
IPC4	00AC	_		CNIP<2:0>		_	ŀ	AC1IP<2:0	>	_	Ν	MI2C1IP<2:)>	_	9	SI2C1IP<2:0	>	4444
IPC5	00AE	_	_	_	_	_	_	_	—	_	_	_	_	_		INT1IP<2:0>		0004
IPC7	00B2	_	—	_	—	—		—	—	_		INT2IP<2:0	>	—	_	—		0040
IPC14	00C0	_	_	_	_	_	_	_	—	_	F	PSEMIP<2:)>	_	_	_	_	0040
IPC16	00C4	_	_	_	_	_	_	_	—	_		U1EIP<2:0	>	_	_	_	_	0040
IPC20	00CC	_	_	_	_	_	_	_	—	_	_	_	_	_		JTAGIP<2:0>	•	0004
IPC23	00D2	_		PWM2IP<2:0)>	_	P١	WM1IP<2:	0>	_	_	_	_	_	_	_	_	4400
IPC24	00D4	_	_	_	_	_	_	_	—	_	F	PWM4IP<2:	0>	_	_	_	_	0040
IPC25	00D6	_		AC2IP<2:0	>	_	_	_	—	_	_	_	_	_	_	_	_	4000
IPC27	00DA	—	, A	ADCP1IP<2:	0>	—	A	DCP0IP<2	:0>			_		—	_	—	—	4400
IPC28	00DC	—	—	—	_	—	—	_	—	—	A	DCP3IP<2:	0>	—	А	DCP2IP<2:0	>	0044
IPC29	00DE	—	—	—	_	—	—	_	—	—	_	—	—	—	А	DCP6IP<2:0	>	0004
INTTREG	00E0	_	_	_	_		ILR<3	3:0>		_			١	/ECNUM<6:0)>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND
dsPIC33FJ09GS302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0	—	—			RP1	R<5:0>			—	—			RP0R	<5:0>			0000
RPOR1	06D2	_	_			RP3	3R<5:0>			_	_	RP2R<5:0>					0000	
RPOR2	06D4	_	_		RP5R<5:0>					_	_	RP4R<5:0>						0000
RPOR3	06D6	_	_		RP7R<5:0>					_	_			RP6R	<5:0>			0000
RPOR4	06D8	_	_		RP9R<5:0>				_	_	RP8R<5:0>					0000		
RPOR5	06DA	_	_			RP1	1R<5:0>			_	_	RP10R<5:0>					0000	
RPOR6	06DC	_	_			RP1	3R<5:0>			_	_	RP12R<5:0>					0000	
RPOR7	06DE	_	_		RP15R<5:0>					_	_	RP14R<5:0>					0000	
RPOR16	06F0	_	_		RP33<5:0>				_	_	RP32<5:0>					0000		
RPOR17	06F2	_	_			RPS	35<5:0>				_			RP34	<5:0>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

				-			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register bits (write-only)

REGISTER 7 -	-14: IEC3:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 3				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
—	_	—	_		—	PSEMIE	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	—		_	—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unkn	c = Bit is unknown		

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIE: PWM Special Event Match Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIE ⁽¹⁾	—
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-2	Unimplemented: Read as '0'
bit 1	U1EIE: UART1 Error Interrupt Enable bit ⁽¹⁾
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in the dsPIC33FJ06GS001 device.

9.5 PMD Control Registers

REGISTER 9)-1: PMD	1: PERIPHER	AL MODULI		ONTROL RE	GISTER 1	
U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0
—	—	_	T2MD	T1MD	—	PWMMD ⁽¹⁾	—
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	_	U1MD ⁽²⁾	_	SPI1MD ⁽²⁾	_	—	ADCMD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	T2MD: Timer2 Module Disable bit
	1 = Timer2 module is disabled0 = Timer2 module is enabled
bit 11	T1MD: Timer1 Module Disable bit
	1 = Timer1 module is disabled0 = Timer1 module is enabled
bit 10	Unimplemented: Read as '0'
bit 9	PWMMD: PWM Module Disable bit ⁽¹⁾
	 1 = PWM module is disabled 0 = PWM module is enabled
bit 8	Unimplemented: Read as '0'
bit 7	I2C1MD: I2C1 Module Disable bit
	 1 = I2C1 module is disabled 0 = I2C1 module is enabled
bit 6	Unimplemented: Read as '0'
bit 5	U1MD: UART1 Module Disable bit ⁽²⁾
	1 = UART1 module is disabled 0 = UART1 module is enabled
bit 4	Unimplemented: Read as '0'
bit 3	SPI1MD: SPI1 Module Disable bit ⁽²⁾
	1 = SPI1 module is disabled0 = SPI1 module is enabled
bit 2-1	Unimplemented: Read as '0'
bit 0	ADCMD: ADC Module Disable bit
	 1 = ADC module is disabled 0 = ADC module is enabled
Note 1:	Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be

- **Note 1:** Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be re-initialized.
 - 2: This bit is not implemented in the dsPIC33FJ06GS001 device.

REGISTER S	-3: PIVID			DISABLE C		GISTERS	
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
	_	_	_		CMPMD ⁽¹⁾	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	—		—	—	_
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W		bit	U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

DECISTED 0 2. AL MODULE DISABLE CONTROL DECISTED 2 DMD2. DE

bit	15-11	Unimplemented: Re	ad as '0'

bit 10	CMPMD: Analog Comparator Module Disable bit ⁽¹⁾
	1 = Analog comparator module is disabled
	0 = Analog comparator module is enabled
bit 9-0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	_	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Generator Module Disable bit
	1 = Reference clock generator module is disabled
	0 = Reference clock generator module is enabled
bit 2-0	Unimplemented: Read as '0'

10.6.2.3 Virtual Pins

Four virtual RPn pins (RP32, RP33, RP34 and RP35) are supported, which are identical in functionality to all other RPn pins, with the exception of pinouts. These four pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP32 and the PWM Fault input can be configured for RP32 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

10.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared, after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—			_		—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	<u> </u>			OCFA	R<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	eadable bit W = Writable bit			U = Unimple	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as ')'				
bit 5-0	OCFAR<5:0>	: Assign Outpu	it Compare A	(OCFA) to the	Corresponding	RPn Pin bits ⁽¹⁾)
	111111 = Inp	out tied to Vss					
	100011 = Inp	out tied to RP35	5				
	100010 = Inp	out fied to RP34	+ >				
	100001 - Inp	out fied to RP32)				
•							
	•						
	•						
	uani = 00000	it tied to RP0					
	- F	-					

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—					
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
				SS1R	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable bit		U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as '0	,				
bit 5-0	SS1R<5:0>: /	Assign SPI1 Sla	ve Select In	put (SS1) to the	e Correspondin	ig RPn Pin bits ⁽	1)
	111111 = Inp	out tied to Vss					
	100011 = Inp	out tied to RP35					
	100010 = Inp	out tied to RP34					
	100001 = Inp	out fied to RP33					
	100000 – mp						
	•						
	•						
	•						
	00000 lines						

REGISTER 10-9: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

REGISTER 10-16: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—			RP1R<5:0>						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RPOF	२<5:0>				
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bi	t	U = Unimplen	nented bit, rea	ad as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-14	Unimplemen	ted: Read as '0'							
bit 13-8	RP1R<5:0>:	Peripheral Outpu	ut Function	is Assigned to F	RP1 Output Pi	n bits			
	(see Table 10-2 for peripheral function numbers)								

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP0R<5:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-17: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP3F	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP2	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP3R<5:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP2R<5:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-22: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP13R	<5:0>(1)		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP12F	R<5:0> ⁽¹⁾		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 10-23: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RP15F	R<5:0> ⁽¹⁾		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP14F	R<5:0> ⁽¹⁾		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP14R<5:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 15-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTCN	IP <15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	SE	EVTCMP <7:3>	>		—	—	—
bit 7							bit 0
I a manual.							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 SEVTCMP<15:3>: Special Event Compare Count Value bits bit 2-0 Unimplemented: Read as '0'

REGISTER 15-5: MDC: PWM MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			MDC<	15:8> ^(1,2)				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			MDC	<7:0> ^(1,2)				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit			x = Bit is unkr	nown				

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits^(1,2)

Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSb to 3 LSbs.

REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER (CONTINUED)

bit 8	SMEN: SMBus Input Levels bit
	 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)
	 1 = Enables interrupt when a general call address is received in the I2C1RSR (module is enabled for reception) 0 = General call address is disabled
bit 6	STREN: SCL1 Clock Stretch Enable bit (when operating as I ² C slave)
	Used in conjunction with SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDA1 and SCL1 pins and transmits ACKDT data bit. Hardware is clear at end of master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	1 = Enables Receive mode for I ² C. Hardware is clear at end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Stop condition on SDA1 and SCL1 pins. Hardware is clear at end of master Stop sequence. 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Repeated Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master Start
	0 = Start condition is not in progress

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	—	-	—	CMREF	<9:8> ⁽¹⁾	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CMREF	⁼ <7:0> ⁽¹⁾				
bit 7							bit 0	
Legend:								
R = Readable I	oit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-10	Unimplemen	ted: Read as 'o)'					
bit 9-0	CMREF<9:0>	Comparator F	Reference Vo	tage Select bit	ts ⁽¹⁾			
	1111111111	= (CMREF * II	NTREF/1024)	or (CMREF *	(AVDD/2)/1024)	volts dependir	ng on RANGE	
		bit or (CMRE	EF * EXTREF	/1024) if EXTF	REF is set			
	•							
	•							
	•							
	0000000000	= 0.0 volts						

REGISTER 20-2: CMPDACx: COMPARATOR DAC CONTROL x REGISTER

Note 1: These bits are not implemented in dsPIC33FJ06GS101A/102A devices.

FIGURE 25-6: INPUT CAPTURE (CAP1) TIMING CHARACTERISTICS

TABLE 25-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param.	Symbol	Characteristic ⁽¹⁾		Min.	Max.	Units	Conditions	
IC10	TccL	IC1 Input Low Time	No prescaler	0.5 Tcy + 20		ns		
			With prescaler	10	—	ns		
IC11	TccH	IC1 Input High Time	No prescaler	0.5 Tcy + 20	—	ns		
			With prescaler	10	—	ns		
IC15	TccP	IC1 Input Period		(Tcy + 40)/N		ns	N = prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 25-7: OUTPUT COMPARE MODULE (OC1) TIMING CHARACTERISTICS

TABLE 25-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC10	TccF	OC1 Output Fall Time	—	_		ns	See Parameter DO32
OC11	TccR	OC1 Output Rise Time	—		—	ns	See Parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-41:	: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS
--------------	--

DC CHARACTERISTICS ⁽²⁾			Standar Operatir	d Operati ng tempera	n g Condi t ature: -40° -40°0	t ions (u C ≤ TA ≤ C ≤ TA ≤	nless otherwise stated) ≤ +85°C for Industrial ≤ +125°C for Extended	
Param.	Symbol	Characteristic	Min. Typ. Max. Units Comments					
CM10	VIOFF	Input Offset Voltage	-58	+14/-40	66	mV		
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	-	AVDD	V		
CM14	TRESP	Large Signal Response	21	30	49	ns	V+ input step of 100 mv while V- input held at AVDD/2. Delay measured from analog input pin to PWM output pin.	

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

AC and DC CHARACTERISTICS ⁽²⁾			Standar Operatir	rd Opera ng tempe	nting Condition erature: -40°C -40°C	ons (unl ≤ Ta ≤ + ≤ Ta ≤ +	ess otherwise stated) 85°C for Industrial 125°C for Extended
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments
DA01	EXTREF	External Voltage Reference ⁽¹⁾	0	_	AVDD – 1.6	V	
DA08	INTREF	Internal Voltage Reference ⁽¹⁾	1.15	1.25	1.35	V	
DA02	CVRES	Resolution	10			Bits	
DA03	INL	Integral Nonlinearity Error	-7	-1	+7	LSB	AVDD = 3.3V, DACREF = (AVDD/2)V
DA04	DNL	Differential Nonlinearity Error	-5	-0.5	+5	LSB	
DA05	EOFF	Offset Error	0.4	-0.8	2.6	%	
DA06	EG	Gain Error	0.4	-1.8	5.2	%	
DA07	TSET	Settling Time ⁽¹⁾	711	1551	2100	ns	Measured when RANGE = 1 (high range) and the CMREF<9:0> bits transition from 0x1FF to 0x300

TABLE 25-42: DAC MODULE SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

INDEX

Α	
AC Characteristics	282
Internal LPRC Accuracy	285
Internal RC Accuracy	285
Load Conditions	282
Temperature and Voltage Specifications	282
Alternate Interrupt Vector Table (AIVT)	87
Arithmetic Logic Unit (ALU)	31
Assembler	
MPASM Assembler	268
Auxiliary Clock Generation	125
В	
Bit-Reversed Addressing	69
Example	70
Implementation	69
Sequence Table (16-Entry)	70
Block Diagrams	
16-Bit Timer1 Module	173
Boost Converter Implementation	21
Connections for On-Chip Voltage Regulator	256
Constant Current Source	249
CPU Core	26
Digital PFC	21
DSP Engine	32
dsPIC33FJ06GS001 Device ADC	226
dsPIC33FJ06GS001/101A/102A/202A	and
dsPIC33FJ09GS302	14
dsPIC33FJ06GS101A Device ADC	227
dsPIC33FJ06GS102A Device ADC	228
dsPIC33FJ06GS202A Device ADC	229
dsPIC33FJ09GS302 Device ADC	230
High-Speed Analog Comparator	243
	245
	212
Input Capture	1//
Interleaved PFC	22
MULR PIN Connections	18
	. 150
Output Compare	170
Partitioned Output Pair, Complementary	179
Partitioned Output Pair, Complementary	196
P WWW WOULE	100 22
Phase-Shinted Full-Bhage Converter	125
Recommended Minimum Connection	120
Remanable MUX Input for U1RX	148
Reset System	140
Shared Port Structure	146
Simplified Conceptual High-Speed PWM	185
Single-Phase Synchronous Buck Converter	22
SPI	205
Type B Timer2	175
UART	210
Watchdog Timer (WDT)	257
Brown-out Reset (BOR)	, 256
	,

С

C Compilers	
MPLAB C18	268
Capacitor on Internal Voltage Regulator (VCAP)	18
Clock Switching	134
Enabling	134
Sequence	134
Code Examples	
Port Write/Read	147
PWRSAV Instruction Syntax	137
Code Protection	251
Configuration Bits	251
Description	254
Configuring Analog Port Pins	147
Constant Current Source	
Description	249
Features	249
CPU	
Barrel Shifter	35
Control Registers	
Data Addressing Overview	25
DSP Engine Overview	25
MCU Special Features	
Special Features	251
CPU Clocking System	124
PLL Configuration	125
Selection	124
Sources	124
Customer Change Notification Service	346
Customer Notification Service	346
Customer Support	346

D

DAC	244
Buffer Gain	244
Output Range	245
Data Accumulators and Adder/Subtracter	33
Data Space Write Saturation	35
Overflow and Saturation	33
Round Logic	34
Write Back	34
Data Address Space	39
Alignment	39
Memory Map for Devices with 1 Kbyte of RAM	41
Memory Map for Devices with 256 Bytes of RAM.	40
Near Data Space	39
Software Stack	66
Width	39
X and Y Data	42
DC and AC Characteristics	
Graphs and Tables	315
DC Characteristics	
Doze Current (IDOZE)	277
I/O Pin Input Specifications	278
I/O Pin Output Specifications	280
Idle Current (IIDLE)	275
Operating Current (IDD)	274
Operating MIPS vs. Voltage	272
Power-Down Current (IPD)	276
Program Memory	281
Temperature and Voltage Specifications	273