

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

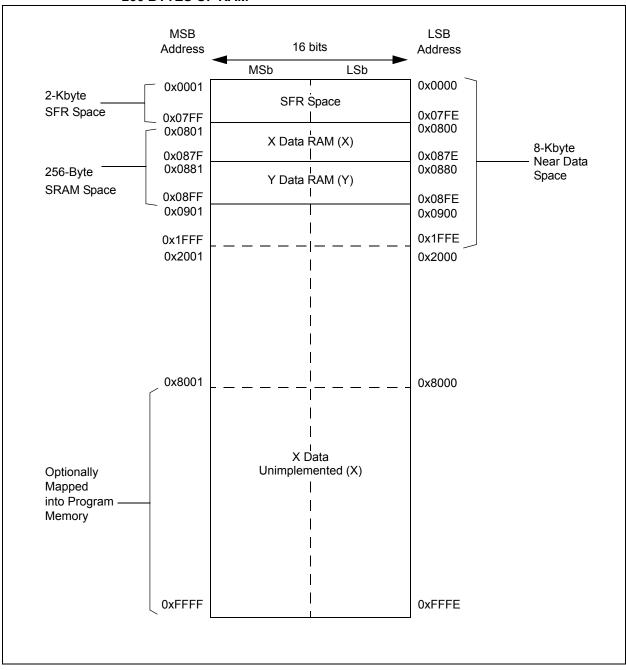
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102a-i-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3	2. 0010	ON: CORE (EGISTER			
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit
Legend:		C = Clearable	e bit				
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clea	red	'x = Bit is unk	nown	U = Unimpler	mented bit, read	d as '0'	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	US: DSP Mult	tiply Unsigned	Signed Contro	ol bit			
		ne multiplies a ne multiplies a					
bit 11	0		ation Control bi	it(1)			
	1 = Terminate		loop at end of		eration		
	0 = No effect	1		1.			
bit 10-8			Level Status bi	IS			
	111 = 7 DO lo	ops active					
	•						
	• 001 = 1 DO lo	on active					
	000 = 0 DO lo						
bit 7	SATA: ACCA	Saturation En	able bit				
		tor A saturatio					
bit 6		tor A saturatio Saturation En					
		tor B saturation					
		tor B saturatio					
bit 5		-	from DSP Eng		Enable bit		
			tion is enabled tion is disablec				
bit 4			ration Mode S				
	1 = 9.31 satu r	ration (super s	aturation)				
		ration (normal	-	·· (2)			
bit 3			Level Status b				
			evel is greater evel is 7 or less				
bit 2	PSV: Program	n Space Visibil	ity in Data Spa	ice Enable bit			
			e in data space				
hit 1	•	•	sible in data sp	bace			
bit 1		ng Mode Seleo	ounding is enal	hled			
			rounding is ena				
bit 0			tiplier Mode Se				
			or DSP multiply d for DSP mult				

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ06GS001/101A/102A DEVICES WITH 256 BYTES OF RAM

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, included in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

TABLE 4-19: CONSTANT CURRENT SOURCE REGISTER MAP

File Na	me AD	R	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ISRCCO	ON 050	00	ISRCEN	_		—	_	0	UTSEL<2:()>	—				ISRCCA	L<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON		ADSIDL	SLOWCLK		GSWTRG		FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	A	DCS<2:0	>	0003
ADPCFG	0302	-	_	_	_	_	_	_	_	PCFG7	PCFG6	_	PCFG3 PCFG2 PCFG1 PCFG0					0000
ADSTAT	0306	_								0000								
ADBASE	0308		ADBASE<15:1>00							0000								
ADCPC0	030A	IRQEN1	PEND1 SWTRG1 TRGSRC1<4:0> IRQEN0 PEND0 SWTRG0 TRGSRC0<4:0> 0000								0000							
ADCPC1	030C	IRQEN3	PEND3	SWTRG3		TRO	SRC3<4:0>			_	_	_	—	_	_	_	_	0000
ADCPC3	0310	-	_	_	_	_	_	_	_	IRQEN6	PEND6	SWTRG6		TRGS	RC6<4:0>			0000
ADCBUF0	0320								ADC Da	ata Buffer 0								XXXX
ADCBUF1	0322								ADC Da	ata Buffer 1								XXXX
ADCBUF2	0324								ADC Da	ata Buffer 2								XXXX
ADCBUF3	0326								ADC Da	ata Buffer 3								XXXX
ADCBUF6	032C								ADC Da	ata Buffer 6								XXXX
ADCBUF7	032E								ADC Da	ata Buffer 7								XXXX
ADCBUF12	0338								ADC Da	ita Buffer 12	2							XXXX
ADCBUF13	033A								ADC Da	ta Buffer 1	3							XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7	-4: INTCO	N2: INTERR		ROL REGIST	ER 2		
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_		—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
			_		INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14	0 = Uses stan DISI: DISI In 1 = DISI inst	rnate vector tab idard (default) v struction Status ruction is active ruction is not a	vector table s bit				
bit 13-3	Unimplemen	ted: Read as ')'				
bit 2	1 = Interrupt o	rnal Interrupt 2 on negative edg on positive edg	je	Polarity Selec	t bit		
bit 1	1 = Interrupt o	rnal Interrupt 1 on negative edg on positive edg	ge	Polarity Selec	t bit		
bit 0	1 = Interrupt o	ernal Interrupt 0 on negative edg on positive edge	ge	Polarity Selec	t bit		

REGISTER	7-5: IFS0: I	INTERRUPT	FLAG STAT	US REGIST	ER 0		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
	—	ADIF	U1TXIF ⁽¹⁾	U1RXIF ⁽¹⁾	SPI1IF ⁽¹⁾	SPI1EIF ⁽¹⁾	
oit 15							bit
	11.0	11.0	11.0				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0 OC1IF ⁽¹⁾	R/W-0	R/W-0
T2IF bit 7	—	_	_	T1IF	UC IIF."	ICTIF ⁽⁻⁾	INT0IF bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15-14	Unimplemen	ted: Read as	0'				
bit 13	-			nterrupt Flag S	Status bit		
	1 = Interrupt i	request has oc request has no	curred				
bit 12		RT1 Transmitte		g Status bit ⁽¹⁾			
		request has oc		,			
		request has no					
oit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag S	Status bit ⁽¹⁾			
		request has oc request has no					
bit 10	SPI1IF: SPI1	Event Interrup	ot Flag Status b	oit ⁽¹⁾			
		request has oc request has no					
bit 9	SPI1EIF: SPI	1 Error Interru	pt Flag Status	bit ⁽¹⁾			
		request has oc request has no					
bit 8	Unimplemen	ted: Read as	0'				
bit 7	T2IF: Timer2	Interrupt Flag	Status bit				
		request has oc request has no					
bit 6-4	Unimplemen	ted: Read as	0'				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	•	request has oc request has no					
bit 2	-	-		upt Flag Status	s bit ⁽¹⁾		
	1 = Interrupt	request has oc request has no	curred	apt hag oldide			
bit 1	-	-		-lag Status bit ⁽	2)		
		request has oc request has no					
bit 0	-	rnal Interrupt 0		t			
	1 = Interrupt ı	request has oc request has no	curred				
Note 1: Th	nis bit is not impl	emented in the	ASPIC33F IOF	GS001 device	4		
	no bit io not impl				·•		

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 7-2	4: IPC5:	INTERRUPT	PRIORITY	CONTROL RI	EGISTER 5			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
—	_	—	_			INT1IP<2:0>		
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) ٠ 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-1	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		INT2IP<2:0>		—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3-0 Unimplemented: Read as '0'

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles; otherwise, the program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and the old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

The following steps outline the procedure to disable all user interrupts:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0xE0 with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(Level 8-Level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

8.5 Clock Switching Operation

Applications are free to switch among any of the four clock sources (primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.5.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC<2:0> control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

8.5.2 OSCILLATOR SWITCHING SEQUENCE

To perform a clock switch, the following basic sequence is required:

- 1. If desired, read the COSC<2:0> bits to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC<2:0> control bits for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSC<2:0> status bits with the new value of the NOSC<2:0> control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC<2:0> bit values are transferred to the COSC<2:0> status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled).

Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

- 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
- 3: Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/ PIC24H Family Reference Manual" for details.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT1	R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—		—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 10-10: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

bit 15-14 Unimplemented: Read as '0'

bit 13-8

8 FLT1R<5:0>: Assign PWM Fault Input 1 (FLT1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32 • • •

bit 7-0 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHASE	x<15:8> ^(1,2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHAS	Ex<7:0> ^(1,2)			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable b		it	U = Unimplemented bit, read as '0'				
-n = Value at POR		POR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **SPHASEx<15:0>:** Secondary Phase Offset for PWMxL Output Pin bits^(1,2) (used in Independent PWM mode only)

- **Note 1:** If the ITB (PWMCONx<9>) bit = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), SPHASEx<15:0> = Not used.
 - True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Phase shift value for PWMxL only.
 - **2:** If the ITB (PWMCONx<9>) bit = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), SPHASEx<15:0> = Not used.
 - True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Independent time base period value for PWMxL only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB<	6:5>			
bit 15							bit			
	D 444 0	D 444 0	DAMA	DAMA						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
L:1 7		LEB<4:0>				—				
bit 7							bit			
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15	PHR: PWM	PHR: PWMxH Rising Edge Trigger Enable bit								
		1 = Rising edge of PWMxH will trigger LEB counter								
	0 = LEB ignores rising edge of PWMxH									
bit 14	PHF: PWMxH Falling Edge Trigger Enable bit									
	1 = Falling edge of PWMxH will trigger LEB counter									
	0 = LEB ignores falling edge of PWMxH									
bit 13	PLR: PWMxL Rising Edge Trigger Enable bit									
	1 = Rising edge of PWMxL will trigger LEB counter 0 = LEB ignores rising edge of PWMxL									
bit 12	PLF: PWMxL Falling Edge Trigger Enable bit									
	1 = Falling edge of PWMxL will trigger LEB counter									
	0 = LEB ignores falling edge of PWMxL									
bit 11	FLTLEBEN: Fault Input LEB Enable bit									
	1 = Leading-edge blanking is applied to selected Fault input									
	0 = Leading-edge blanking is not applied to selected Fault input									
bit 10	CLLEBEN: Current-Limit LEB Enable bit									
	1 = Leading-edge blanking is applied to selected current-limit input									
	0 = Leading-edge blanking is not applied to selected current-limit input									
bit 9-3	LEB<6:0>: Leading-Edge Blanking for Current-Limit and Fault Inputs bits									
		8.32 nsec incre								
bit 2-0	Unimplemented: Read as '0'									

REGISTER 15-18: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit (I²C™)" (DS70195) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated CircuitTM (I^2C^{TM}) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCL1 pin is the clock
- The SDA1 pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, please see the Microchip web site (www.microchip.com) for the latest *"dsPIC33F/PIC24H Family Reference Manual"* sections.

REGISTER	19-5: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)
bit 7	IRQEN0: Interrupt Request Enable 0 bit
	 1 = Enables IRQ generation when requested conversion of channels AN1 and AN0 is completed 0 = IRQ is not generated
bit 6	PEND0: Pending Conversion Status 0 bit
	 1 = Conversion of channels AN1 and AN0 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	SWTRG0: Software Trigger 0 bit 1 = Starts conversion of AN1 and AN0 (if selected by the TRGSRCx bits) ⁽¹⁾ This bit is automatically cleared by hardware when the PEND0 bit is set. 0 = Conversion has not started
bit 4-0	TRGSRC0<4:0>: Trigger 0 Source Selection bits Selects trigger source for conversion of analog channels AN1 and AN0. 11111 = Timer2 period match
	•
	•
	11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = Reserved
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved
	•
	•
	10010 = Reserved 10001 = PWM Generator 4 secondary trigger is selected
	10000 = Reserved
	01111 = PWM Generator 2 secondary trigger is selected
	01110 = PWM Generator 1 secondary trigger is selected
	01101 = Reserved 01100 = Timer1 period match
	•
	•
	•
	01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected
	00110 = Reserved
	00101 = PWM Generator 2 primary trigger is selected
	00100 = PWM Generator 1 primary trigger is selected
	00011 = PWM Special Event Trigger is selected
	00010 = Global software trigger is selected 00001 = Individual software trigger is selected
	00000 = No conversion is enabled

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then conversion will be performed when the conversion resources are available.

21.3 Current Source Control Register

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
ISRCEN	—	_	_	_		OUTSEL<2:0>		
bit 15							bit	
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
	-			ISRCC	AL<5:0>			
bit 7							bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit				'0' = Bit is clea	ared	x = Bit is unknown		
bit 14-11 bit 10-8	Unimplemented: Read as '0' OUTSEL<2:0>: Output Current Select bits							
	•							
	111 = Reserved 110 = Reserved							
	101 = Reserved							
	100 = Select input pin, ISRC4 (AN4) 011 = Select input pin, ISRC3 (AN5)							
	010 = Select input pin, ISRC2 (AN6)							
	001 = Select input pin, ISRC1 (AN7) 000 = No output is selected							
bit 7-6	Unimplemented: Read as '0'							
bit 5-0	ISRCCAL<5:0>: Current Source Calibration bits							
	The calibration value must be copied from Flash address, 0x800840, into these bits. Refer to the Constant Current Source Calibration Register (Register 22-1) in Section 22.0 "Special Features" for more information.							

REGISTER 21-1: ISRCCON: CONSTANT CURRENT SOURCE CONTROL REGISTER⁽¹⁾

Note 1: This register is available in the dsPIC33FJ09GS302 device only.

Field	Description				
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}				
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}				
Wn	One of 16 Working registers ∈ {W0W15}				
Wnd	One of 16 Destination Working registers ∈ {W0W15}				
Wns	One of 16 Source Working registers ∈ {W0W15}				
WREG	W0 (Working register used in file register instructions)				
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }				
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }				
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}				
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}				
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}				
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}				

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

24.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

24.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

24.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

NOTES:

Revision C (August 2012)

This revision includes minor typographical updates and content corrections. Major changes include new figures in Section 26.0 "DC and AC Device Characteristics Graphs", updated values in Table 25-39 in Section 25.0 "Electrical Characteristics" and updated package drawings in Section 27.0 "Packaging Information". NOTES: