

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102a-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

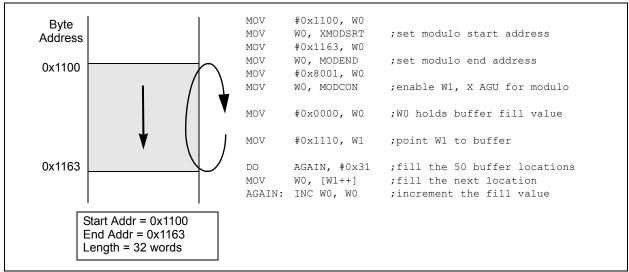
4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Υ	space	Modulo	Addressing	EA
	cal	culations	assume	word-sized	data
	(LS	Sb of ever	y EA is alw	/ays clear).	

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-6: MODULO ADDRESSING OPERATION EXAMPLE

REGISTER 7	-3: INTCO	N1: INTERR		ROL REGISTE	ER 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7			I				bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 15	NSTDIS: Inte	rrupt Nesting E	isable bit				
		nesting is disat					
L:+ 4 4		nesting is enab		1			
bit 14		cumulator A O caused by ove		•			
		not caused by					
bit 13	•	cumulator B O					
		caused by ove		0			
	0 = Trap was	not caused by	overflow of A	ccumulator B			
bit 12				Overflow Trap F	•		
				flow of Accumu			
bit 11	COVBERR: A	Accumulator B	Catastrophic (Overflow Trap F	lag bit		
				flow of Accumu			
bit 10	-	umulator A Ove	-				
	1 = Trap over 0 = Trap is dis	flow of Accum sabled	ulator A				
bit 9	•	umulator B Ove	erflow Trap En	able bit			
		flow of Accum	-				
bit 8	•	astrophic Overf	low Trap Enat	ole bit			
		atastrophic ove	•	mulator A or B i	s enabled		
bit 7	•	Shift Accumula	ator Error Statu	us bit			
				alid accumulator invalid accumul			
bit 6		vide-by-Zero E	-				
		or trap was cau	-				
		or trap was not	•	ivide-by-zero			
bit 5	Unimplemen	ted: Read as '	0'				
bit 4		Math Error Trap					
		or trap has occu					
hit 2		or trap has not (
bit 3		Address Error T	-				
		error trap has c error trap has r					

INTCOMA, INTERDURT CONTROL DECISTER A

REGISTER 7	-4: INTCO	N2: INTERR		ROL REGIST	ER 2		
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_		—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
			_		INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14	0 = Uses stan DISI: DISI In 1 = DISI inst	rnate vector tab idard (default) v struction Status ruction is active ruction is not a	vector table s bit				
bit 13-3	Unimplemen	ted: Read as ')'				
bit 2	1 = Interrupt o	rnal Interrupt 2 on negative edg on positive edg	je	Polarity Selec	t bit		
bit 1	1 = Interrupt o	rnal Interrupt 1 on negative edg on positive edg	ge	Polarity Selec	t bit		
bit 0	1 = Interrupt o	ernal Interrupt 0 on negative edg on positive edge	ge	Polarity Selec	t bit		

REGISTER	7-13: IEC1:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 1		
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_		INT2IE	—	_	_	_	
bit 15					•		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	INT1IE	CNIE	AC1IE ⁽¹⁾	MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	-	ted: Read as '					
bit 13		rnal Interrupt 2					
		request is enab request is not e					
bit 12-5		ited: Read as '					
bit 4	-	rnal Interrupt 1					
Dil 4		request is enab					
		request is not e					
bit 3	CNIE: Input C	Change Notifica	tion Interrupt	Enable bit			
		request is enab					
	•	request is not e					
bit 2		og Comparator		able bit ⁽¹⁾			
		request is enab					
bit 1	•	request is not e 21 Master Even		aabla bit			
		request is enab	-				
		request is enab					
bit 0	•	1 Slave Events		able bit			
		request is enab	•				
	0 = Interrupt r	request is not e	nabled				

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER 7	-16: IEC5:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 5		
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
PWM2IE ⁽¹⁾	PWM1IE	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
			—			—	JTAGIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
			(4)				
bit 15		/M2 Interrupt E					
		request is enab request is not e					
bit 14	•	/M1 Interrupt E					
bit 14		request is enab					
	•	request is not e					
bit 13-1	Unimplemen	ted: Read as '	כי				
bit 0	JTAGIE: JTA	G Interrupt Ena	ble bit				
	1 = Interrupt i	request is enab	led				
	0 = Interrupt i	request is not e	nabled				

REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T1IP<2:0>		—		OC1IP<2:0> ⁽¹⁾	
pit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		IC1IP<2:0> ⁽²⁾		—		INT0IP<2:0>	
oit 7							bit
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimple	mented bit, re	ad as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	own
bit 15	-	ented: Read as '0					
bit 14-12		Timer1 Interrupt	-				
	111 = Interr	upt is Priority 7 (h	lignest prior	ity interrupt)			
	•						
	•						
		upt is Priority 1 upt source is disa	abled				
bit 11	Unimpleme	ented: Read as '0	,				
bit 10-8	OC1IP<2:0	>: Output Compa	re Channel	1 Interrupt Prio	rity bits ⁽¹⁾		
	111 = Interr	upt is Priority 7 (ł	nighest prior	ity interrupt)			
	•						
	•						
	001 = Interr	upt is Priority 1					
		upt source is disa	abled				
bit 7	Unimpleme	ented: Read as '0	,				
bit 6-4	IC1IP<2:0>	: Input Capture C	hannel 1 Int	errupt Priority I	oits ⁽²⁾		
		upt is Priority 7 (I					
	•						
	•						
	001 = Interr	upt is Priority 1					
		upt source is disa	abled				
bit 3	Unimpleme	nted: Read as '0	,				
bit 2-0	INT0IP<2:0	>: External Interr	upt 0 Priority	v bits			
		upt is Priority 7 (I					
	•						
	•						
	•						
	001 = Interr	upt is Priority 1					

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

2: These bits are not implemented in dsPIC33FJ06GS001/101A/102A devices.

REGISTER 8	-5: ACLK	CON: AUXILI	ARY CLOCI		ONTROL RE		
R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1
ENAPLL	APLLCK	SELACLK		—	AF	PSTSCLR<2:0>	(2)
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
ASRCSEL	FRCSEL		—	—			—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	hit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	ENAPLL: Aux	xiliary PLL Enal	ble bit				
	1 = APLL is e	nabled					
	0 = APLL is d	lisabled					
bit 14	APLLCK: AP	LL Locked Stat	us bit (read-o	nly)			
		that auxiliary P that auxiliary P		ck			
bit 13	SELACLK: S	elect Auxiliary	Clock Source	for Auxiliary C	lock Divider bit		
		oscillators provi PLL (Fvco) prov					
bit 12-11	-	ted: Read as '					
bit 10-8	-	2:0>: Auxiliary		Divider bits ⁽²⁾			
	111 = Divideo 110 = Divideo 101 = Divideo 100 = Divideo 011 = Divideo 010 = Divideo 001 = Divideo 001 = Divideo	d by 1 d by 2 d by 4 d by 8 d by 16 d by 32 d by 64					
bit 7	ASRCSEL: S	elect Reference	e Clock Sourc	e for Auxiliary	Clock bit		
	•	scillator is the o					
bit 6	FRCSEL: Sel	lect Reference	Clock Source	for Auxiliary P	LL bit		
	1 = Selects F	RC clock for au k source is dete	ixiliary PLL	-			
	Unimplemen				B		

(1) _

2: The auxiliary clock postscaler must be configured to divide-by-1 (APSTSCLR<2:0> = 111) for proper operation of the PWM module.

REGISTER 8-7:	LFSR	: LINEAR FEED	BACK S	HIFT REGISTI	ER		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				LFSR<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LFS	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at PO	२	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15 Unimplemented: Read as '0'

bit 14-0 LFSR<14:0>: Pseudo Random FRC Trim Value bits

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<5:0>
External Interrupt 2	INT2	RPINR1	INT2R<5:0>
Timer1 External Clock	T1CK	RPINR2	T1CKR<5:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<5:0>
Input Capture 1	IC1	RPINR7	IC1R<5:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<5:0>
UART1 Receive	U1RX	RPINR18	U1RXR<5:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<5:0>
SPI Data Input 1	SDI1	RPINR20	SDI1R<5:0>
SPI Clock Input 1	SCK1	RPINR20	SCK1R<5:0>
SPI Slave Select Input 1	SS1	RPINR21	SS1R<5:0>
PWM Fault Input	FLT1	RPINR29	FLT1R<5:0>
PWM Fault Input	FLT2	RPINR30	FLT2R<5:0>
PWM Fault Input	FLT3	RPINR30	FLT3R<5:0>
PWM Fault Input	FLT4	RPINR31	FLT4R<5:0>
PWM Fault Input	FLT5	RPINR31	FLT5R<5:0>
PWM Fault Input	FLT6	RPINR32	FLT6R<5:0>
PWM Fault Input	FLT7	RPINR32	FLT7R<5:0>
PWM Fault Input	FLT8	RPINR33	FLT8R<5:0>
External Synchronization Signal to PWM Master Time Base	SYNCI1	RPINR33	SYNCI1R<5:0>
External Synchronization Signal to PWM Master Time Base	SYNCI2	RPINR34	SYNCI2R<5:0>

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—		FLT1R<5:0>				
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—		—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 10-10: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

bit 15-14 Unimplemented: Read as '0'

bit 13-8

8 FLT1R<5:0>: Assign PWM Fault Input 1 (FLT1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32 • • •

bit 7-0 Unimplemented: Read as '0'

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT7	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT6	R<5:0>		
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '()'				
bit 13-8	•	: Assign PWM F		=I T7) to the Co	orresponding R	Pn Pin hits	
		put tied to Vss			incoponding is		
		put tied to RP35					
	100010 = ln	put tied to RP34					
		put tied to RP34 put tied to RP33					
	100001 = In		1				
	100001 = In	put tied to RP33	1				
	100001 = In	put tied to RP33	1				
	100001 = In	put tied to RP33	1				
	100001 = In 100000 = In •	put tied to RP33 put tied to RP32	1				
bit 7-6	100001 = In 100000 = In • • • 00000 = Inp	put tied to RP33 put tied to RP32 ut tied to RP0					
bit 7-6	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0	; ; ;	ELT6) to the Co	prresponding P	PDn Din hits	
bit 7-6 bit 5-0	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 :: Assign PWM F	; ; ;	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss	₎ , Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35) ⁾ Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34) ⁾ Fault Input 6 (I	⁻ LT6) to the Co	orresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁼ LT6) to the Co	prresponding R	Pn Pin bits	

REGISTER 10-13: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32

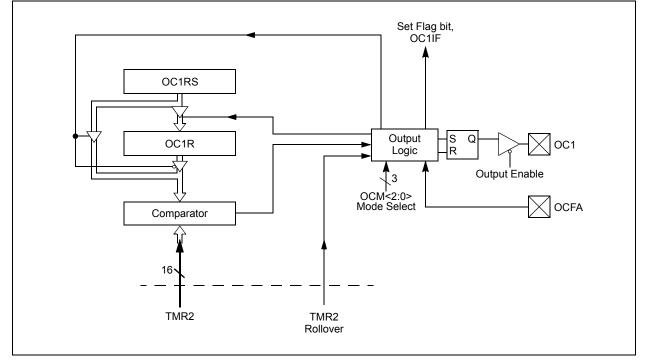
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			SYNCI	1R<5:0>		
bit 15							bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
0-0	0-0	10/00-1	10/00-1		R<5:0>	10/00-1	10.00-1
 bit 7				FLIO	N=0.02		bit
							Dit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	SYNCI1R<5	:0>: Assign PW	M Master Time	e Base Externa	al Synchronizat	tion Signal to th	e
	Correspondi	ng RPn Pin bits					
	111111 = In	put tied to Vss					
	111111 = ln 100011 = ln	put tied to Vss					
	111111 = In 100011 = In 100010 = In	put tied to Vss put tied to RP35 put tied to RP34	1				
	111111 = In 100011 = In 100010 = In 100001 = In	put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	4 3				
	111111 = In 100011 = In 100010 = In 100001 = In	put tied to Vss put tied to RP35 put tied to RP34	4 3				
	111111 = In 100011 = In 100010 = In 100001 = In	put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	4 3				
	111111 = In 100011 = In 100010 = In 100001 = In	put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	4 3				
	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP33	4 3				
hit 7-6	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In •	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP32 ut tied to RP32	4 3 2				
bit 7-6 bit 5-0	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • •	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP32 ut tied to RP30 nted: Read as f	4 3 2 0'		orresponding R	Pn Din hits	
bit 7-6 bit 5-0	111111 = In 100011 = In 100010 = In 100000 = In 00000 = Inp Unimplement FLT8R<5:0>	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP33 put tied to RP35 ut tied to RP0 nted: Read as f c Assign PWM I	4 3 2 0'	FLT8) to the Co	orresponding R	Pn Pin bits	
	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • •	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP33 put tied to RP34 ut tied to RP0 nted: Read as f Assign PWM I put tied to Vss	1 3 2 0' =ault Input 8 (f	FLT8) to the Co	orresponding R	Pn Pin bits	
	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • •	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP33 put tied to RP34 nted: Read as f Assign PWM I put tied to Vss put tied to RP34	1 3 2 0' =ault Input 8 (F	FLT8) to the Co	orresponding R	Pn Pin bits	
	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • •	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP33 put tied to RP34 ut tied to RP0 nted: Read as f Assign PWM I put tied to Vss	4 3 2 0' Fault Input 8 (F 5 4	FLT8) to the Co	orresponding R	Pn Pin bits	
	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • •	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP33 put tied to RP34 nted: Read as f Assign PWM I put tied to Vss put tied to RP34 put tied to RP34	4 3 2 - ault Input 8 (f 5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • •	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP33 put tied to RP34 et tied to RP34 put tied to RP34 put tied to RP34 put tied to RP34 put tied to RP34	4 3 2 - ault Input 8 (f 5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • •	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP33 put tied to RP34 et tied to RP34 put tied to RP34 put tied to RP34 put tied to RP34 put tied to RP34	4 3 2 - ault Input 8 (f 5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	111111 = In 100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • •	put tied to Vss put tied to RP34 put tied to RP34 put tied to RP33 put tied to RP33 put tied to RP34 et tied to RP34 put tied to RP34 put tied to RP34 put tied to RP34 put tied to RP34	4 3 2 - ault Input 8 (f 5 4 3	⁻ LT8) to the Co	orresponding R	Pn Pin bits	

REGISTER 10-14: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33

14.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer1 or Timer2 for its time base. The module compares the value of the timer with the value of one or two Compare registers, depending on the operating mode selected. The state of the output pin changes when the timer value matches the Output Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.


The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

Note:	The outp	out compa	re module	is	not
		ted in the	dsPIC33FJ0	6GS	6001
	device.				

If a Fault condition is detected on the OCFA pin, the output pin(s) of the output compare module are placed in tri-state. The user may elect to use a pull-down or pull-up resistor on the PWM pin to provide for a desired state if a Fault condition occurs.

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

REGISTER 15-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTCM	IP <15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	SE	EVTCMP <7:3>	•		_	—	_
bit 7							bit 0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 SEVTCMP<15:3>: Special Event Compare Count Value bits bit 2-0 Unimplemented: Read as '0'

REGISTER 15-5: MDC: PWM MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC<	15:8> ^(1,2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	<7:0> ^(1,2)			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	nd as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits^(1,2)

Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSb to 3 LSbs.

REGISTER 15-9: PHASEX: PWMx PRIMARY PHASE SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10000	10000	10000	-	-	1000 0	10000	1000 0
			PHASEx•	<15:8> (1,2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHASEx	<7:0> ^(1,2)			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PHASEx<15:0>:** PWMx Phase Shift Value or Independent Time Base Period for PWM Generator bits^(1,2)

Note 1: If the ITB (PWMCONx<9>) bit = 0, the following applies based on the mode of operation:

- Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs.
- True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Phase shift value for PWMxL only.

2: If the ITB (PWMCONx<9>) bit = 1, the following applies based on the mode of operation:

• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL.

- True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Independent time base period value for PWMxL only.
- The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period-0x0008.

DC CHARACT	ERISTICS	$\begin{tabular}{ c c c c c } \hline Standard Operating Conditions: 3.0V to 3.6V (unless otherwise Operating temperature -40°C \leq TA \leq +85^\circ$C for Industrial -40°C \leq TA \leq +125^\circ$C for Extended $$ \end{tabular}$						
Param.	Typical ⁽¹⁾	Max.	Doze Ratio	Units		Condi	tions	
Doze Current	(IDOZE) ⁽²⁾				•			
DC73a	30	45	1:2	mA				
DC73f	16	23	1:64	mA	-40°C	3.3V	40 MIPS	
DC73g	16	23	1:128	mA				
DC70a	30	45	1:2	mA				
DC70f	16	23	1:64	mA	+25°C	3.3V	40 MIPS	
DC70g	16	23	1:128	mA				
DC71a	30	45	1:2	mA				
DC71f	16	23	1:64	mA	+85°C	3.3V	40 MIPS	
DC71g	16	23	1:128	mA				
DC72a	30	45	1:2	mA				
DC72f	16	23	1:64	mA	+125°C	3.3V	40 MIPS	
DC72g	16	23	1:128	mA	1			

TABLE 25-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

· Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail

· CLKO is configured as an I/O input pin in the Configuration Word

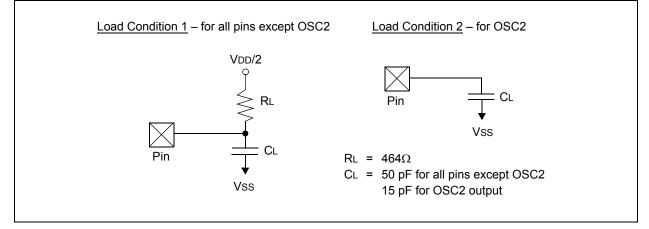
· All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD; WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational

 No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)

• CPU is executing while (1) statement


25.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 AC characteristics and timing parameters.

TABLE 25-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Table 25-1.

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	_	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCL1, SDA1		_	400	pF	In I ² C™ mode

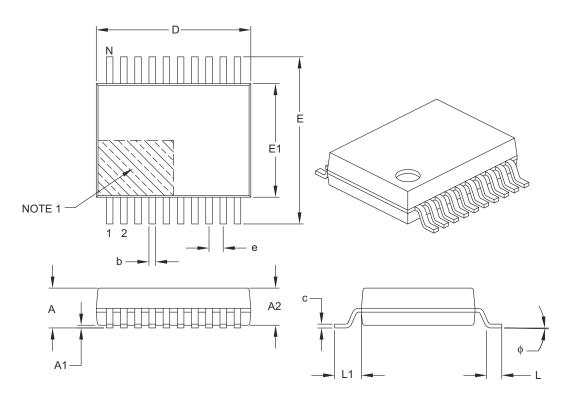

IADLL A	23-43. 0	ONSTANT CONNENT 500	NOL 3		CATIO	NO NO	
DC CHARACTERISTICS ⁽¹⁾			(unless	s otherw	/ise stat	pnditions ed) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended	
Param. Symbol Characteristic Min.				Тур.	Max.	Units	Conditions
CC01	Idd	Current Consumption	_	30		μA	
CC02 IREG Regulation of Current with — Voltage On				±3	—	%	
CC03	Ιουτ	Current Output at Terminal	—	10		μA	

TABLE 25-45: CONSTANT CURRENT SOURCE SPECIFICATIONS

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

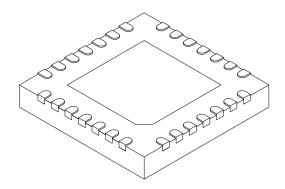
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimer	nsion Limits	MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	e		0.65 BSC		
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	_	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е	0.65 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.70	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2