



Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

•XFI

| Product Status             | Obsolete                                                                          |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 40 MIPs                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                             |
| Number of I/O              | 21                                                                                |
| Program Memory Size        | 6KB (2K x 24)                                                                     |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | · · · · · · · · · · · · · · · · · · ·                                             |
| RAM Size                   | 256 x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                         |
| Data Converters            | A/D 6x10b                                                                         |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 28-VQFN Exposed Pad                                                               |
| Supplier Device Package    | 28-QFN-S (6x6)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102at-e-mm |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

### **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.

### 3.3 Special MCU Features

A 17-bit by 17-bit single-cycle multiplier is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The 16/16 and 32/16 divide operations are supported, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.



### FIGURE 3-1: CPU CORE BLOCK DIAGRAM

| File<br>Name | SFR<br>Addr. | Bit 15  | Bit 14  | Bit 13     | Bit 12  | Bit 11  | Bit 10 | Bit 9      | Bit 8 | Bit 7    | Bit 6   | Bit 5      | Bit 4   | Bit 3      | Bit 2  | Bit 1       | Bit 0         | All<br>Resets |
|--------------|--------------|---------|---------|------------|---------|---------|--------|------------|-------|----------|---------|------------|---------|------------|--------|-------------|---------------|---------------|
| INTCON1      | 0080         | NSTDIS  | OVAERR  | OVBERR     | COVAERR | COVBERR | OVATE  | OVBTE      | COVTE | SFTACERR | DIV0ERR | —          | MATHERR | ADDRERR    | STKERR | OSCFAIL     | —             | 0000          |
| INTCON2      | 0082         | ALTIVT  | DISI    | _          | _       | _       | _      | _          | —     | _        | —       |            | _       | _          | INT2EP | INT1EP      | INT0EP        | 0000          |
| IFS0         | 0084         | _       | —       | ADIF       | U1TXIF  | U1RXIF  | SPI1IF | SPI1EIF    | —     | T2IF     | —       |            | _       | T1IF       | OC1IF  | IC1IF       | INTOIF        | 0000          |
| IFS1         | 0086         | —       | —       | INT2IF     | —       | _       | _      | _          | —     | —        | —       | —          | INT1IF  | CNIF       | AC1IF  | MI2C1IF     | SI2C1IF       | 0000          |
| IFS3         | 008A         | —       | —       | _          | —       | —       | _      | PSEMIF     | —     | —        | —       | —          | _       | _          | _      | —           | _             | 0000          |
| IFS4         | 008C         | _       | _       | _          | _       | _       | _      | _          | —     | _        | _       | _          | _       | _          | _      | U1EIF       | _             | 0000          |
| IFS5         | 008E         | PWM2IF  | PWM1IF  | _          | _       | _       | _      | _          | —     | _        | _       | _          | _       | _          | _      | _           | JTAGIF        | 0000          |
| IFS6         | 0090         | ADCP1IF | ADCP0IF | _          | _       | _       | _      | _          | —     | AC2IF    | _       | _          | _       | _          | _      | PWM4IF      | _             | 0000          |
| IFS7         | 0092         | _       | _       | _          | _       | _       | _      | _          | —     | _        | _       | _          | ADCP6IF | _          | _      | ADCP3IF     | ADCP2IF       | 0000          |
| IEC0         | 0094         | _       | _       | ADIE       | U1TXIE  | U1RXIE  | SPI1IE | SPI1EIE    | —     | T2IE     | _       | _          | _       | T1IE       | OC1IE  | IC1IE       | <b>INTOIE</b> | 0000          |
| IEC1         | 0096         | _       | _       | INT2IE     | _       | _       | _      | _          | —     | _        | _       | _          | INT1IE  | CNIE       | AC1IE  | MI2C1IE     | SI2C1IE       | 0000          |
| IEC3         | 009A         | _       | _       | _          | _       | _       | _      | PSEMIE     | —     | _        | _       | _          | _       | _          | _      | _           | _             | 0000          |
| IEC4         | 009C         | _       | _       | _          | _       | _       | _      | _          | —     | _        | _       | _          | _       | _          | _      | U1EIE       | _             | 0000          |
| IEC5         | 009E         | PWM2IE  | PWM1IE  | _          | _       | _       | _      | _          | —     | _        | _       | _          | _       | _          | _      | _           | JTAGIE        | 0000          |
| IEC6         | 00A0         | ADCP1IE | ADCP0IE | _          | _       | _       | _      | _          | —     | AC2IE    | _       | _          | _       | _          | _      | PWM4IE      | _             | 0000          |
| IEC7         | 00A2         | _       | _       | _          | _       | _       | _      | _          | —     | _        | _       | _          | ADCP6IE | _          | _      | ADCP3IE     | ADCP2IE       | 0000          |
| IPC0         | 00A4         | _       |         | T1IP<2:0>  |         | —       | C      | DC1IP<2:0  | >     | —        |         | IC1IP<2:0> | >       | _          |        | INT0IP<2:0> |               | 4444          |
| IPC1         | 00A6         | _       |         | T2IP<2:0>  |         | _       | _      | _          | —     | _        | _       | _          | _       |            | _      | _           | _             | 4000          |
| IPC2         | 00A8         | _       |         | U1RXIP<2:0 | )>      | _       | S      | SPI1IP<2:0 | )>    | _        | 9       | SPI1EIP<2: | )>      | _          | _      | _           | _             | 4440          |
| IPC3         | 00AA         | _       | —       | _          | —       |         |        | —          |       |          |         | ADIP<2:0>  | •       | —          | ι      | J1TXIP<2:0> | •             | 0044          |
| IPC4         | 00AC         | _       |         | CNIP<2:0>  |         | _       | ŀ      | AC1IP<2:0  | >     | _        | Ν       | MI2C1IP<2: | )>      | _          | 9      | SI2C1IP<2:0 | >             | 4444          |
| IPC5         | 00AE         | _       | _       | _          | _       | _       | _      | _          | —     | _        | _       | _          | _       | _          |        | INT1IP<2:0> |               | 0004          |
| IPC7         | 00B2         | _       | —       | _          | —       | —       |        | —          | —     | _        |         | INT2IP<2:0 | >       | —          | _      | —           |               | 0040          |
| IPC14        | 00C0         | _       | _       | _          | _       | _       | _      | _          | —     | _        | F       | PSEMIP<2:  | )>      | _          | _      | _           | _             | 0040          |
| IPC16        | 00C4         | _       | _       | _          | _       | _       | _      | _          | —     | _        |         | U1EIP<2:0  | >       | _          | _      | _           | _             | 0040          |
| IPC20        | 00CC         | _       | _       | _          | _       | _       | _      | _          | —     | _        | _       | _          | _       | _          |        | JTAGIP<2:0> | •             | 0004          |
| IPC23        | 00D2         | _       |         | PWM2IP<2:0 | )>      | _       | P١     | WM1IP<2:   | 0>    | _        | _       | _          | _       | _          | _      | _           | _             | 4400          |
| IPC24        | 00D4         | _       | _       | _          | _       | _       | _      | _          | —     | _        | F       | PWM4IP<2:  | 0>      | _          | _      | _           | _             | 0040          |
| IPC25        | 00D6         | _       |         | AC2IP<2:0  | >       | _       | _      | _          | —     | _        | _       | _          | _       | _          | _      | _           | _             | 4000          |
| IPC27        | 00DA         | —       | , A     | ADCP1IP<2: | 0>      | —       | A      | DCP0IP<2   | :0>   |          |         | _          |         | —          | _      | —           | —             | 4400          |
| IPC28        | 00DC         | —       | —       | —          | _       | —       | —      | _          | —     | —        | A       | DCP3IP<2:  | 0>      | —          | А      | DCP2IP<2:0  | >             | 0044          |
| IPC29        | 00DE         | —       | —       | —          | _       | —       | —      | _          | —     | —        | _       | —          | —       | —          | А      | DCP6IP<2:0  | >             | 0004          |
| INTTREG      | 00E0         | _       | _       | _          | _       |         | ILR<3  | 3:0>       |       | _        |         |            | ١       | /ECNUM<6:0 | )>     |             |               | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

|           |                | USFICJ  | 323036 | 53302   |         |                 |         |           |          |         |         |         |        |         |          |         |         |               |
|-----------|----------------|---------|--------|---------|---------|-----------------|---------|-----------|----------|---------|---------|---------|--------|---------|----------|---------|---------|---------------|
| File Name | Addr<br>Offset | Bit 15  | Bit 14 | Bit 13  | Bit 12  | Bit 11          | Bit 10  | Bit 9     | Bit 8    | Bit 7   | Bit 6   | Bit 5   | Bit 4  | Bit 3   | Bit 2    | Bit 1   | Bit 0   | All<br>Resets |
| PWMCON4   | 0480           | FLTSTAT | CLSTAT | TRGSTAT | FLTIEN  | CLIEN           | TRGIEN  | ITB       | MDCS     | DTC     | <1:0>   | —       | —      | —       | CAM      | XPRES   | IUE     | 0000          |
| IOCON4    | 0482           | PENH    | PENL   | POLH    | POLL    | PMOD            | )<1:0>  | OVRENH    | OVRENL   | OVRDA   | \T<1:0> | FLTDA   | T<1:0> | CLDA    | T<1:0>   | SWAP    | OSYNC   | 0000          |
| FCLCON4   | 0484           | IFLTMOD |        |         | CLSRC<4 | :0>             |         | CLPOL     | CLMOD    |         | F       | LTSRC<4 | :0>    |         | FLTPOL   | FLTMO   | D<1:0>  | 0000          |
| PDC4      | 0486           |         |        |         |         | PDC4<15:0> 01   |         |           |          |         |         |         | 0000   |         |          |         |         |               |
| PHASE4    | 0488           |         |        |         |         | PHASE4<15:0> 00 |         |           |          |         |         |         | 0000   |         |          |         |         |               |
| DTR4      | 048A           | _       | —      |         |         |                 |         |           |          | DTR4<1  | 3:0>    |         |        |         |          |         |         | 0000          |
| ALTDTR4   | 048C           | _       | —      |         |         |                 |         |           | /        | ALTDTR4 | <13:0>  |         |        |         |          |         |         | 0000          |
| SDC4      | 048E           |         |        |         |         |                 |         |           | SDC4<15  | :0>     |         |         |        |         |          |         |         | 0000          |
| SPHASE4   | 0490           |         |        |         |         |                 |         | 5         | SPHASE4< | 15:0>   |         |         |        |         |          |         |         | 0000          |
| TRIG4     | 0492           |         |        |         |         |                 | TRGC    | MP<15:3>  |          |         |         |         |        |         | —        | _       | —       | 0000          |
| TRGCON4   | 0494           |         | TRGD   | IV<3:0> |         | _               | _       | _         | —        | DTM     | —       |         |        | TRG     | STRT<5:0 | >       |         | 0000          |
| STRIG4    | 0496           |         |        |         |         |                 | STRGC   | MP<15:3>  |          |         |         |         |        |         | —        | _       | —       | 0000          |
| PWMCAP4   | 0498           |         |        |         |         |                 | PWMC    | AP4<15:3> |          |         |         |         |        |         | —        | _       | _       | 0000          |
| LEBCON4   | 049A           | PHR     | PHF    | PLR     | PLF     | FLTLEBEN        | CLLEBEN |           |          | L       | EB<6:0> |         |        |         | _        | _       | _       | 0000          |
| AUXCON4   | 049E           | HRPDIS  | HRDDIS | _       | _       | _               | _       | _         | _        | _       | _       |         | CHOPS  | EL<3:0> |          | CHOPHEN | CHOPLEN | 0000          |
| 1         |                |         | - ·    |         |         |                 |         |           |          |         |         |         |        |         |          |         |         |               |

# TABLE 4-15: HIGH-SPEED PWM GENERATOR 4 REGISTER MAP FOR dsPIC33FJ06GS001, dsPIC33FJ06GS101A AND dsPIC33FJ09GS302

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

|                 |     |                  |      | -                |                 |                |       |
|-----------------|-----|------------------|------|------------------|-----------------|----------------|-------|
| U-0             | U-0 | U-0              | U-0  | U-0              | U-0             | U-0            | U-0   |
|                 | —   | —                | —    | —                | —               | —              | _     |
| bit 15          |     |                  |      |                  |                 |                | bit 8 |
|                 |     |                  |      |                  |                 |                |       |
| W-0             | W-0 | W-0              | W-0  | W-0              | W-0             | W-0            | W-0   |
|                 |     |                  | NVMK | EY<7:0>          |                 |                |       |
| bit 7           |     |                  |      |                  |                 |                | bit 0 |
|                 |     |                  |      |                  |                 |                |       |
| Legend:         |     |                  |      |                  |                 |                |       |
| R = Readable    | bit | W = Writable b   | bit  | U = Unimplei     | mented bit, rea | ad as '0'      |       |
| -n = Value at F | POR | '1' = Bit is set |      | '0' = Bit is cle | eared           | x = Bit is unk | nown  |

### REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register bits (write-only)

### 7.3 Interrupt Control and Status Registers

The following registers are implemented for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

### 7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

### 7.3.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

### 7.3.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

### 7.3.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

### 7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit is found in IEC0<0> and the INT0IP bits are found in the first position of IPC0 (IPC0<2:0>).

### 7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-35.

| REGISTER 7-          | -1: SR: C               | PU STATUS I          | REGISTER | ')                |                  |        |       |  |  |
|----------------------|-------------------------|----------------------|----------|-------------------|------------------|--------|-------|--|--|
| R-0                  | R-0                     | R/C-0                | R/C-0    | R-0               | R/C-0            | R-0    | R/W-0 |  |  |
| OA                   | OB                      | SA                   | SB       | OAB               | SAB              | DA     | DC    |  |  |
| bit 15               |                         |                      |          |                   |                  |        | bit 8 |  |  |
|                      |                         |                      |          |                   |                  |        |       |  |  |
| R/W-0 <sup>(3)</sup> | R/W-0 <sup>(3)</sup>    | R/W-0 <sup>(3)</sup> | R-0      | R/W-0             | R/W-0            | R/W-0  | R/W-0 |  |  |
|                      | IPL<2:0> <sup>(2)</sup> |                      | RA       | N                 | OV               | Z      | С     |  |  |
| bit 7                |                         |                      |          |                   |                  |        | bit 0 |  |  |
|                      |                         |                      |          |                   |                  |        |       |  |  |
| Legend:              |                         | C = Clearable        | bit      | U = Unimpler      | mented bit, read | as '0' |       |  |  |
| R = Readable         | bit                     | W = Writable         | bit      | -n = Value at POR |                  |        |       |  |  |
| '1' = Bit is set     |                         | '0' = Bit is clea    | ared     | x = Bit is unk    | nown             |        |       |  |  |

### (4)

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits<sup>(2,3)</sup>

111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: For complete register details, see Register 3-1.

### 2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.

3: The IPL<2:0> status bits are read-only when NSTDIS (INTCON1<15>) = 1.

#### CORCON: CORE CONTROL REGISTER<sup>(1)</sup> **REGISTER 7-2:**

| U-0     | U-0   | U-0           | R/W-0  | R/W-0               | R-0   | R-0     | R-0   |
|---------|-------|---------------|--------|---------------------|-------|---------|-------|
| —       | —     | —             | US     | EDT                 |       | DL<2:0> |       |
| bit 15  |       |               |        |                     |       |         | bit 8 |
|         |       |               |        |                     |       |         |       |
| R/W-0   | R/W-0 | R/W-1         | R/W-0  | R/C-0               | R/W-0 | R/W-0   | R/W-0 |
| SATA    | SATB  | SATDW         | ACCSAT | IPL3 <sup>(2)</sup> | PSV   | RND     | IF    |
| bit 7   |       |               |        |                     |       |         | bit 0 |
|         |       |               |        |                     |       |         |       |
| Legend: |       | C = Clearable | e bit  |                     |       |         |       |

| R = Readable bit    | W = Writable bit    | -n = Value at POR           | '1' = Bit is set |
|---------------------|---------------------|-----------------------------|------------------|
| 0' = Bit is cleared | 'x = Bit is unknown | U = Unimplemented bit, read | as '0'           |
|                     |                     |                             |                  |

IPL3: CPU Interrupt Priority Level Status bit 3(2) bit 3

- 1 = CPU Interrupt Priority Level is greater than 7
  - 0 = CPU Interrupt Priority Level is 7 or less

### Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

| R/W-0           | R/W-0                          | R/W-0                                | R/W-0                            | R/W-0                      | R/W-0            | R/W-0           | R/W-0 |
|-----------------|--------------------------------|--------------------------------------|----------------------------------|----------------------------|------------------|-----------------|-------|
| NSTDIS          | OVAERR                         | OVBERR                               | COVAERR                          | COVBERR                    | OVATE            | OVBTE           | COVTE |
| bit 15          | 1                              |                                      |                                  | 1                          |                  |                 | bit 8 |
|                 |                                |                                      |                                  |                            |                  |                 |       |
| R/W-0           | R/W-0                          | U-0                                  | R/W-0                            | R/W-0                      | R/W-0            | R/W-0           | U-0   |
| SFTACERR        | DIV0ERR                        | _                                    | MATHERR                          | ADDRERR                    | STKERR           | OSCFAIL         | —     |
| bit 7           |                                |                                      |                                  |                            |                  |                 | bit 0 |
|                 |                                |                                      |                                  |                            |                  |                 |       |
| Legend:         |                                |                                      |                                  |                            |                  |                 |       |
| R = Readable    | bit                            | W = Writable                         | bit                              | U = Unimplen               | nented bit, read | as '0'          |       |
| -n = Value at F | POR                            | '1' = Bit is set                     |                                  | '0' = Bit is clea          | ared             | x = Bit is unkn | IOWN  |
| bit 15          |                                | rrunt Nooting F                      | )iaabla bit                      |                            |                  |                 |       |
| DIL 15          | 1 = Interrupt r                | nesting is disat                     |                                  |                            |                  |                 |       |
|                 | 0 = Interrupt r                | nesting is enab                      | led                              |                            |                  |                 |       |
| bit 14          | OVAERR: Ac                     | cumulator A O                        | verflow Trap F                   | lag bit                    |                  |                 |       |
|                 | 1 = Trap was                   | caused by ove                        | rflow of Accur                   | nulator A                  |                  |                 |       |
|                 | 0 = Trap was                   | not caused by                        | overflow of A                    | ccumulator A               |                  |                 |       |
| bit 13          | OVBERR: Ac                     | cumulator B O                        | verflow Trap F                   | lag bit                    |                  |                 |       |
|                 | 1 = 1rap was $0 = T$ rap was   | caused by ove                        | overflow of Accur                | nulator B                  |                  |                 |       |
| bit 12          | COVAERR: A                     | Accumulator A                        | Catastrophic (                   | Overflow Trap F            | lag bit          |                 |       |
|                 | 1 = Trap was                   | caused by cat                        | astrophic over                   | flow of Accumu             | lator A          |                 |       |
|                 | 0 = Trap was                   | not caused by                        | catastrophic c                   | overflow of Acc            | umulator A       |                 |       |
| bit 11          | COVBERR: A                     | Accumulator B                        | Catastrophic (                   | Overflow Trap F            | -lag bit         |                 |       |
|                 | 1 = Trap was                   | caused by cat                        | astrophic over                   | flow of Accumu             | lator B          |                 |       |
| bit 10          |                                | mulator A Ove                        |                                  | blo bit                    |                  |                 |       |
| bit TO          | 1 = Trap over                  | flow of Accum                        | ilator A                         |                            |                  |                 |       |
|                 | 0 = Trap is dis                | sabled                               |                                  |                            |                  |                 |       |
| bit 9           | OVBTE: Accu                    | umulator B Ove                       | erflow Trap En                   | able bit                   |                  |                 |       |
|                 | 1 = Trap over                  | flow of Accum                        | ulator B                         |                            |                  |                 |       |
|                 | 0 = Irap is dis                | sabled                               |                                  | 1. 1.9                     |                  |                 |       |
| DIT 8           | 1 = Trap on o                  | astrophic Over                       | low Trap Enac                    | Die Dit<br>mulator A or B  | is onabled       |                 |       |
|                 | 0 = Trap is dis                | sabled                               |                                  |                            |                  |                 |       |
| bit 7           | SFTACERR:                      | Shift Accumula                       | ator Error Statu                 | us bit                     |                  |                 |       |
|                 | 1 = Math erro                  | r trap was cau                       | sed by an inva                   | ilid accumulato            | r shift          |                 |       |
|                 | 0 = Math erro                  | r trap was not                       | caused by an                     | invalid accumu             | lator shift      |                 |       |
| bit 6           | DIVOERR: Di                    | vide-by-Zero E                       | rror Trap Statu                  | is bit                     |                  |                 |       |
|                 | 1 = Math erro                  | or trap was cau<br>or trap was not   | sed by a divide<br>caused by a d | e-by-zero<br>ivide-by-zero |                  |                 |       |
| bit 5           | Unimplemen                     | ted: Read as '                       | 0'                               |                            |                  |                 |       |
| bit 4           | MATHERR: N                     | Aath Error Trac                      | Status bit                       |                            |                  |                 |       |
|                 | 1 = Math erro                  | r trap has occu                      | ırred                            |                            |                  |                 |       |
|                 | 0 = Math erro                  | or trap has not o                    | occurred                         |                            |                  |                 |       |
| bit 3           | ADDRERR: A                     | Address Error 7                      | rap Status bit                   |                            |                  |                 |       |
|                 | 1 = Address e<br>0 = Address e | error trap has c<br>error trap has r | ccurred<br>ot occurred           |                            |                  |                 |       |

#### INTCOMA, INTERDURT CONTROL DECISTER A

### REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

| bit 2 | STKERR: Stack Error Trap Status bit                |
|-------|----------------------------------------------------|
|       | 1 = Stack error trap has occurred                  |
|       | 0 = Stack error trap has not occurred              |
| bit 1 | <b>OSCFAIL:</b> Oscillator Failure Trap Status bit |
|       | 1 = Oscillator failure trap has occurred           |
|       | 0 = Oscillator failure trap has not occurred       |
| bit 0 | Unimplemented: Read as '0'                         |

© 2011-2012 Microchip Technology Inc.

| <b>REGISTER 7</b>     | -9: IFS5: I     | NTERRUPT         | FLAG STAT                  | US REGIST        | ER 5             |                 |        |
|-----------------------|-----------------|------------------|----------------------------|------------------|------------------|-----------------|--------|
| R/W-0                 | R/W-0           | U-0              | U-0                        | U-0              | U-0              | U-0             | U-0    |
| PWM2IF <sup>(1)</sup> | PWM1IF          |                  |                            |                  | —                |                 |        |
| bit 15                |                 |                  |                            |                  |                  |                 | bit 8  |
|                       |                 |                  |                            |                  |                  |                 |        |
| U-0                   | U-0             | U-0              | U-0                        | U-0              | U-0              | U-0             | R/W-0  |
| —                     |                 |                  | —                          | —                | —                |                 | JTAGIF |
| bit 7                 |                 |                  |                            |                  |                  |                 | bit 0  |
|                       |                 |                  |                            |                  |                  |                 |        |
| Legend:               |                 |                  |                            |                  |                  |                 |        |
| R = Readable          | bit             | W = Writable     | bit                        | U = Unimpler     | mented bit, read | l as '0'        |        |
| -n = Value at P       | POR             | '1' = Bit is set |                            | '0' = Bit is cle | ared             | x = Bit is unki | nown   |
|                       |                 |                  |                            |                  |                  |                 |        |
| bit 15                | PWM2IF: PW      | M2 Interrupt F   | ag Status bit <sup>(</sup> | 1)               |                  |                 |        |
|                       | 1 = Interrupt r | equest has oc    | curred                     |                  |                  |                 |        |
|                       | 0 = Interrupt r | request has not  | occurred                   |                  |                  |                 |        |
| bit 14                | PWM1IF: PW      | M1 Interrupt F   | ag Status bit              |                  |                  |                 |        |
|                       | 1 = Interrupt r | equest has oc    | curred                     |                  |                  |                 |        |
|                       | 0 = Interrupt r | equest has not   | ccurred                    |                  |                  |                 |        |
| bit 13-1              | Unimplemen      | ted: Read as '   | 0'                         |                  |                  |                 |        |
| bit 0                 | JTAGIF: JTA     | G Interrupt Flag | g Status bit               |                  |                  |                 |        |
|                       | 1 = Interrupt r | equest has oc    | curred                     |                  |                  |                 |        |
|                       | 0 = Interrupt r | request has not  | occurred                   |                  |                  |                 |        |

Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

| REGISTER /-2                                                              | 4: IPC5: | INTERRUPT    | PRIORITY |              | EGISTERS         |             |       |
|---------------------------------------------------------------------------|----------|--------------|----------|--------------|------------------|-------------|-------|
| U-0                                                                       | U-0      | U-0          | U-0      | U-0          | U-0              | U-0         | U-0   |
| —                                                                         | _        | —            | _        |              | —                | —           | —     |
| bit 15                                                                    |          |              |          |              |                  |             | bit 8 |
|                                                                           |          |              |          |              |                  |             |       |
| U-0                                                                       | U-0      | U-0          | U-0      | U-0          | R/W-1            | R/W-0       | R/W-0 |
| —                                                                         | _        | _            | _        |              |                  | INT1IP<2:0> |       |
| bit 7                                                                     |          |              |          |              |                  |             | bit 0 |
|                                                                           |          |              |          |              |                  |             |       |
| Legend:                                                                   |          |              |          |              |                  |             |       |
| R = Readable bi                                                           | it       | W = Writable | bit      | U = Unimpler | mented bit, read | 1 as '0'    |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow |          |              |          |              |                  | nown        |       |
| •                                                                         |          |              |          |              |                  |             |       |

#### 

| bit 15-3 | Unimplemented: Read as '0 | )' |
|----------|---------------------------|----|
|----------|---------------------------|----|

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) ٠ 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

### REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

| U-0    | U-1          | U-0         | U-0   | U-0 | U-0 | U-0 | U-0   |  |  |  |  |
|--------|--------------|-------------|-------|-----|-----|-----|-------|--|--|--|--|
| —      | —            |             |       |     |     |     | —     |  |  |  |  |
| bit 15 | bit 15 bit 8 |             |       |     |     |     |       |  |  |  |  |
|        |              |             |       |     |     |     |       |  |  |  |  |
| U-0    | R/W-1        | R/W-0       | R/W-0 | U-0 | U-0 | U-0 | U-0   |  |  |  |  |
| —      |              | INT2IP<2:0> |       | —   | —   | —   | —     |  |  |  |  |
| bit 7  |              |             |       |     |     |     | bit 0 |  |  |  |  |
|        |              |             |       |     |     |     |       |  |  |  |  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3-0 Unimplemented: Read as '0'

### 10.6.2.3 Virtual Pins

Four virtual RPn pins (RP32, RP33, RP34 and RP35) are supported, which are identical in functionality to all other RPn pins, with the exception of pinouts. These four pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP32 and the PWM Fault input can be configured for RP32 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

# 10.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

### 10.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.



Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

### 10.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

### 10.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared, after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

### 10.9 Peripheral Pin Select Registers

The following registers are implemented for remappable peripheral configuration:

- 15 Input Remappable Peripheral Registers
- 19 Output Remappable Peripheral Registers
- Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.6.3.1 "Control Register Lock" for a specific command sequence.

Not all Output Remappable Peripheral registers are implemented on all devices. See the register description of the specific register for further details.

### REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

| U-0    | U-0 | R/W-1 | R/W-1      | R/W-1 | R/W-1 | R/W-1 | R/W-1 |  |  |  |
|--------|-----|-------|------------|-------|-------|-------|-------|--|--|--|
| —      | —   |       | INT1R<5:0> |       |       |       |       |  |  |  |
| bit 15 |     |       |            |       |       |       | bit 8 |  |  |  |
|        |     |       |            |       |       |       |       |  |  |  |
| U-0    | U-0 | U-0   | U-0        | U-0   | U-0   | U-0   | U-0   |  |  |  |

| U-0   | U-0 | U-0 | U-0 | <u> </u> |   | U-0 | U-0   |
|-------|-----|-----|-----|----------|---|-----|-------|
| —     | —   | -   | —   | —        | — | —   | —     |
| bit 7 |     |     |     |          |   |     | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits

bit 7-0

| U-0                               | U-0                                                                      | R/W-1 | R/W-1 | R/W-1                              | R/W-1  | R/W-1 | R/W-1 |  |
|-----------------------------------|--------------------------------------------------------------------------|-------|-------|------------------------------------|--------|-------|-------|--|
| —                                 | —                                                                        |       |       | FLT1                               | R<5:0> |       |       |  |
| bit 15                            |                                                                          |       |       |                                    |        |       | bit 8 |  |
|                                   |                                                                          |       |       |                                    |        |       |       |  |
| U-0                               | U-0                                                                      | U-0   | U-0   | U-0                                | U-0    | U-0   | U-0   |  |
| _                                 | —                                                                        | —     |       | —                                  | —      | —     | —     |  |
| bit 7                             |                                                                          |       |       |                                    |        |       | bit 0 |  |
|                                   |                                                                          |       |       |                                    |        |       |       |  |
| Legend:                           |                                                                          |       |       |                                    |        |       |       |  |
| R = Readable bit W = Writable bit |                                                                          |       | oit   | U = Unimplemented bit, read as '0' |        |       |       |  |
| -n = Value at F                   | n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow |       |       |                                    |        | nown  |       |  |
|                                   |                                                                          |       |       |                                    |        |       |       |  |
|                                   |                                                                          |       |       |                                    |        |       |       |  |

### REGISTER 10-10: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

bit 15-14 Unimplemented: Read as '0'

bit 13-8

8 FLT1R<5:0>: Assign PWM Fault Input 1 (FLT1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32 • • •

bit 7-0 Unimplemented: Read as '0'

### 14.2 Output Compare Control Registers

| U-0    | U-0        | R/W-0  | U-0     | U-0 | U-0   | U-0      | U-0   |  |  |
|--------|------------|--------|---------|-----|-------|----------|-------|--|--|
|        |            | OCSIDL |         |     |       | _        |       |  |  |
| bit 15 | bit 15 bit |        |         |     |       |          |       |  |  |
|        |            |        |         |     |       |          |       |  |  |
| U-0    | U-0        | U-0    | R-0, HC | U-0 | R/W-0 | R/W-0    | R/W-0 |  |  |
|        | _          | —      | OCFLT   | —   |       | OCM<2:0> |       |  |  |
| bit 7  |            |        |         |     |       |          | bit 0 |  |  |

### REGISTER 14-1: OC1CON: OUTPUT COMPARE 1 CONTROL REGISTER

| Legend:           | HC = Hardware Clearable bit |                           |                    |
|-------------------|-----------------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit            | U = Unimplemented bit, re | ad as '0'          |
| -n = Value at POR | '1' = Bit is set            | '0' = Bit is cleared      | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                          |
|-----------|-------------------------------------------------------------------------------------|
| bit 13    | OCSIDL: Stop Output Compare in Idle Mode Control bit                                |
|           | 1 = Output Compare 1 halts in CPU Idle mode                                         |
|           | 0 = Output Compare 1 continues to operate in CPU Idle mode                          |
| bit 12-5  | Unimplemented: Read as '0'                                                          |
| bit 4     | OCFLT: PWM Fault Condition Status bit                                               |
|           | 1 = PWM Fault condition has occurred (cleared in hardware only)                     |
|           | 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111) |
| bit 3     | Unimplemented: Read as '0'                                                          |
| bit 2-0   | OCM<2:0>: Output Compare Mode Select bits                                           |
|           | 111 = PWM mode on OC1, Fault pin is enabled                                         |
|           | 110 = PWM mode on OC1, Fault pin is disabled                                        |
|           | 101 = Initializes OC1 pin low, generates continuous output pulses on OC1 pin        |
|           | 100 = Initializes OC1 pin low, generates single output pulse on OC1 pin             |
|           | 011 = Compare event toggles OC1 pin                                                 |
|           | 010 = Initializes OC1 pin high, compare event forces OC1 pin low                    |
|           | 001 = Initializes OC1 pin low, compare event forces OC1 pin high                    |
|           | 000 = Output compare channel is disabled                                            |

| 110/110    |                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                             |                      |             |
|------------|-----------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|----------------------|-------------|
|            | $\frac{1}{10} HS/HC-0$                  | HS/HC-0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                             | K/W-0                |             |
|            | ULSIANU                                 | IKGSIAI                                     | FLIIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GLIEN                             | IKGIEN                      | 118,4                |             |
| DIC 15     |                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                             |                      | DIL 8       |
| R/W-       | 0 R/W-0                                 | 11-0                                        | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U-0                               | R/W-0                       | R/W-0                | R/W-0       |
| 1011       | DTC<1:0>                                | _                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | CAM <sup>(2,3)</sup>        | XPRES <sup>(4)</sup> | IUE         |
| bit 7      | 2.0                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | •••                         | /                    | bit 0       |
|            |                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                             |                      |             |
| Legend:    |                                         | HC = Hardware                               | Clearable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HS = Hardw                        | are Settable bi             | t                    |             |
| R = Read   | lable bit                               | W = Writable bit                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U = Unimple                       | mented bit, rea             | ad as 'O'            |             |
| -n = Value | e at POR                                | '1' = Bit is set                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '0' = Bit is cle                  | eared                       | x = Bit is unl       | known       |
|            |                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                             |                      |             |
| bit 15     | FLTSTAT: Fa                             | ult Interrupt Statu                         | s bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                             |                      |             |
|            | 1 = Fault inte                          | rrupt is pending                            | a: this hit is clos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arod by sotting                   |                             |                      |             |
| hit 14     | CL STAT: Cur                            | rrent-l imit Interrur                       | ig, this bit is clea<br>at Status bit(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | area by setting                   |                             |                      |             |
|            | 1 = Current-li                          | mit interrupt is pe                         | ndina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                             |                      |             |
|            | 0 = No currer                           | nt-limit interrupt is                       | pending; this bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t is cleared by                   | setting CLIEN               | = 0                  |             |
| bit 13     | TRGSTAT: Tr                             | rigger Interrupt Sta                        | atus bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                             |                      |             |
|            | 1 = Trigger in                          | terrupt is pending                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | TROJEN                      |                      |             |
| h:: 40     |                                         | r interrupt is pend                         | ing; this bit is clo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eared by settin                   | ig TRGIEN = 0               |                      |             |
| DIT 12     | 1 = Fault inte                          | it interrupt Enable                         | DIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                             |                      |             |
|            | 0 = Fault inte                          | rrupt is disabled a                         | ind the FLTSTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T bit is cleared                  |                             |                      |             |
| bit 11     | CLIEN: Curre                            | ent-Limit Interrupt                         | Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                             |                      |             |
|            | 1 = Current-li<br>0 = Current-li        | mit interrupt is en<br>mit interrupt is dis | abled<br>abled and the C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LSTAT bit is c                    | leared                      |                      |             |
| bit 10     | TRGIEN: Trig                            | gger Interrupt Ena                          | ble bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                             |                      |             |
|            | 1 = A trigger o<br>0 = Trigger ev       | event generates a<br>vent interrupts are    | an interrupt requed to a second the second term of ter | est<br>ne TRGSTAT b               | it is cleared               |                      |             |
| bit 9      | ITB: Indepen                            | dent Time Base M                            | lode bit <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                             |                      |             |
|            | 1 = PHASEx/<br>0 = PTPER re             | SPHASEx registe<br>egister provides ti      | er provides time<br>ming for this PV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | base period fo<br>/M generator    | r this PWM ge               | nerator              |             |
| bit 8      | MDCS: Maste                             | er Duty Cycle Reg                           | gister Select bit <sup>(;</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3)                                |                             |                      |             |
|            | 1 = MDC regi<br>0 = PDCx/SD             | ister provides duty<br>OCx register provid  | / cycle informati<br>les duty cycle ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on for this PW<br>formation for t | M generator<br>his PWM gene | erator               |             |
| bit 7-6    | DTC<1:0>: D                             | ead-Time Control                            | bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                             |                      |             |
|            | 11 = Reserve                            | ed                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                             |                      |             |
|            | 10 = Dead-tin<br>01 = Negative          | ne function is disa                         | abled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Loutout modes                     | 3                           |                      |             |
|            | 00 = Positive                           | dead time activel                           | y applied for all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | output modes                      | •                           |                      |             |
| bit 5-3    | Unimplemen                              | ted: Read as '0'                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                             |                      |             |
| Note 1:    | Software must clea                      | ar the interrupt sta                        | atus here and th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e correspondir                    | ng IFSx bit in ti           | he interrupt co      | ontroller.  |
| 2:         | The Independent T<br>CAM bit is ignored | Time Base mode (<br>I.                      | (ITB = 1) must b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e enabled to u                    | se Center-Alig              | ned mode. If         | TB = 0, the |
| 3:         | These bits should yield unpredictable   | be changed only<br>e results.               | when PTEN = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . Changing the                    | e clock selectio            | on during oper       | ation will  |
| 4:         | To operate in Exte                      | rnal Period Reset<br>9>) bit = 1.           | mode, configur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e the CLMOD                       | (FCLCONx<8                  | >) bit = 0 and       |             |

### REGISTER 15-6: PWMCONX: PWMx CONTROL REGISTER



### FIGURE 25-15: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

# TABLE 25-33:SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

| АС СНА       |                       | Standard Op<br>(unless othe                                  | Standard Operating Conditions: 3.0V to 3.6V<br>(unless otherwise stated)<br>Operating temperature $-40^{\circ}C < Ta < +85^{\circ}C$ for industrial |                    |     |       |                                         |  |  |
|--------------|-----------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|-----------------------------------------|--|--|
|              |                       |                                                              | -40 C $\leq$ TA $\leq$ +85 C for Industrial<br>-40 C $\leq$ TA $\leq$ +125 °C for Extended                                                          |                    |     |       |                                         |  |  |
| Param<br>No. | Symbol                | Characteristic <sup>(1)</sup>                                | Min                                                                                                                                                 | Тур <sup>(2)</sup> | Max | Units | Conditions                              |  |  |
| SP70         | TscP                  | Maximum SCKx Input Frequency                                 | _                                                                                                                                                   | _                  | 15  | MHz   | See Note 3                              |  |  |
| SP72         | TscF                  | SCKx Input Fall Time                                         | —                                                                                                                                                   | _                  | _   | ns    | See Parameter<br>DO32 and <b>Note 4</b> |  |  |
| SP73         | TscR                  | SCKx Input Rise Time                                         | —                                                                                                                                                   |                    |     | ns    | See Parameter<br>DO31 and <b>Note 4</b> |  |  |
| SP30         | TdoF                  | SDOx Data Output Fall Time                                   | _                                                                                                                                                   |                    | _   | ns    | See Parameter<br>DO32 and <b>Note 4</b> |  |  |
| SP31         | TdoR                  | SDOx Data Output Rise Time                                   | _                                                                                                                                                   |                    | _   | ns    | See Parameter<br>DO31 and <b>Note 4</b> |  |  |
| SP35         | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge                    | _                                                                                                                                                   | 6                  | 20  | ns    |                                         |  |  |
| SP36         | TdoV2scH,<br>TdoV2scL | SDOx Data Output Setup to<br>First SCKx Edge                 | 30                                                                                                                                                  |                    | _   | ns    |                                         |  |  |
| SP40         | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data Input to SCKx Edge                   | 30                                                                                                                                                  | _                  | _   | ns    |                                         |  |  |
| SP41         | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge                    | 30                                                                                                                                                  | _                  | _   | ns    |                                         |  |  |
| SP50         | TssL2scH,<br>TssL2scL | $\overline{SSx} \downarrow$ to SCKx $\uparrow$ or SCKx Input | 120                                                                                                                                                 |                    | —   | ns    |                                         |  |  |
| SP51         | TssH2doZ              | SSx ↑ to SDOx Output<br>High-Impedance                       | 10                                                                                                                                                  | -                  | 50  | ns    | See Note 4                              |  |  |
| SP52         | TscH2ssH<br>TscL2ssH  | SSx after SCKx Edge                                          | 1.5 Tcy + 40                                                                                                                                        | —                  | _   | ns    | See Note 4                              |  |  |
| SP60         | TssL2doV              | SDOx Data Output Valid after<br>SSx Edge                     | —                                                                                                                                                   | _                  | 50  | ns    |                                         |  |  |

**Note 1:** These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

**3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.







**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Units                    |          | MILLIMETERS |       |       |
|--------------------------|----------|-------------|-------|-------|
| Dimensio                 | n Limits | MIN         | NOM   | MAX   |
| Number of Pins           | Ν        | 28          |       |       |
| Pitch                    | е        | 0.65 BSC    |       |       |
| Overall Height           | А        | -           | -     | 2.00  |
| Molded Package Thickness | A2       | 1.65        | 1.75  | 1.85  |
| Standoff                 | A1       | 0.05        | -     | -     |
| Overall Width            | Е        | 7.40        | 7.80  | 8.20  |
| Molded Package Width     | E1       | 5.00        | 5.30  | 5.60  |
| Overall Length           | D        | 9.90        | 10.20 | 10.50 |
| Foot Length              | L        | 0.55        | 0.75  | 0.95  |
| Footprint                | L1       | 1.25 REF    |       |       |
| Lead Thickness           | с        | 0.09        | -     | 0.25  |
| Foot Angle               | ¢        | 0°          | 4°    | 8°    |
| Lead Width               | b        | 0.22        | -     | 0.38  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B