

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102at-i-mm

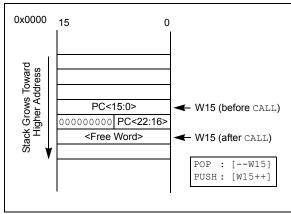
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3.1 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-5. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

Note:	A PC push during exception processing							
	concatenates the SRL register to the MSb							
	of the PC prior to the push.							


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x1000 in RAM, initialize the SPLIM with the value 0x0FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.4 Instruction Addressing Modes

The addressing modes shown in Table 4-39 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.4.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all of the addressing modes shown above. Individual instructions can support different subsets of these addressing modes.

Flash Memory Control Registers 5.5

bit 15 Invariant	R/SO-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Image: Image	WR ⁽¹⁾	WREN ⁽¹⁾	WRERR ⁽¹⁾	_	—	_	—	_
	bit 15		· · ·					bit 8
- ERASE ⁽¹⁾ - NVMOP<3:0:: 1.2 bit 7	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 bit 7 Legend: SO = Settable Only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit ⁽¹⁾ 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the b cleared by hardware once operation is complete. This bit can only be set (not cleared) in software once operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations o = Inhibits Flash program/erase operations o = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation sepecified by NVMOP<3:0> on the next WR command bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1011 = No operation 0010 = Memory page erase operation 0011 = No oper	_		_	_		NVMOP	<3:0> ^(1,2)	-
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit ⁽¹⁾ 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bic cleared by hardware once operation is complete. This bit can only be set (not cleared) in software one operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation selectified by NVMOP<3:0> on the next WR command 0 = Performs the program operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1010 = Erase general segment 0011 = Memory page erase operation 0011 = No operation 0011 = Reserved If ERASE = 0: 11111 = No operation	bit 7							bit
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit ⁽¹⁾ 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bic cleared by hardware once operation is complete. This bit can only be set (not cleared) in software once operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Depration 1101 = Erase general segment 0101 = No operation 1101 = No operation	Legend:		SO = Settab	le Only bit				
bit 15 WR: Write Control bit ⁽¹⁾ 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the b cleared by hardware once operation is complete. This bit can only be set (not cleared) in softwa 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as 'o' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) <u>If ERASE = 1:</u> 1111 = No operation 1001 = Erase general segment 0010 = Reserved 0000 = Reserved <u>If ERASE = 0:</u> 1111 = No operation 1001 = No operation	R = Readable	e bit	W = Writable	e bit	U = Unimple	mented bit, read	l as '0'	
1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bicleared by hardware once operation is complete. This bit can only be set (not cleared) in software or erase operation is complete and inactive 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation specified hy NVMOP<3:0> on the next WR command 0 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 011 = No operation 1101 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1101 = No operation 1111 = No operation 1101 = No operation	-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkr	iown
cleared by hardware once operation is complete. This bit can only be set (not cleared) in softwa 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1010 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0010 = Reserved 0000 = Reserved 1111 = No operation 1011	bit 15				r orono oporati	on The operation	an is colf timed	and the bit i
bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation Select bits ^(1,2) bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0010 = Reserved 0000 = Reserved 0000 = Reserved 1111 = No operation 1011 = No operation 1011 = No operation 1011 = No operation 1011 = No operation 0010 = Memory word program operation 0011 = Memory word program operation 0010 = No operation 0011 = No operation 0010 = No operation 0011 = No operation 0010 = No operati		cleared by	hardware onc	eoperation	is complete. Th	is bit can only be		
1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0000 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1101 = No operation 0011 = No operation 1011 = No operation 10011 = No operation 1001 = No operation 0011 = No operation 1011 = No operation 1011 = No operation 1001 = No operation 0011 = Ne operation 0011 = Ne operatio	bit 14	•		· · · P				
1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0010 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0101 = No operation 0011 = Nemory word program operation 011 = No operation 0011 = Nemory word program operation 0011 = Nemory word program operation 0011 = Nemory word program operation 0010 = No operation 0010 = No operation								
1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 101 = Erase general segment 0011 = Reserved 0010 = Memory page erase operation 0011 = Reserved 1111 = No operation 1101 = No operation 0010 = Reserved If ERASE = 0: 11111 = No operation 1101 = No operation 0011 = Reserved 0000 = Reserved 1101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 0011 = Nemory word program operation 0011 = Memory word program operation 0011 = No operation 011 = No operation 0110 = No operation 011 = No operation	bit 13	WRERR: Write	Sequence Er	ror Flag bit ⁽	1)			
bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0010 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 101 = No operation 101 = No operation 0011 = Memory word program operation 0010 = No operation		1 = An improp automatica	per program of ally on any set	or erase se attempt of t	equence attem he WR bit)		on has occurre	ed (bit is se
bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1011 = Erase general segment 0011 = Kno operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0010 = Memory page erase operation 0011 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1001 = No operation 1001 = No operation 0010 = No operation 0011 = No operation 0011 = No operation 0010 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0111 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0011 = No operation	hit 10 7				ipieted normali	у		
1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1011 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0101 = No operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1001 = No operation 0011 = No operation 0011 = No operation 0010 = No operation 0011 = No operation		-						
 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation 	DILO		•			<3:0> on the new	vt WP comman	d
bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation								
bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation 0010 = No operation	bit 5-4				,			
If ERASE = 1: 1111 = No operation 101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0011 = Memory word program operation 0010 = No operation	bit 3-0	-			ts ^(1,2)			
<pre>1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved <u>If ERASE = 0:</u> 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation</pre>								
0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation 0010 = No operation		•						
0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved <u>If ERASE = 0:</u> 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation				ent				
0001 = Reserved 0000 = Reserved <u>If ERASE = 0:</u> 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation				oneration				
If ERASE = 0: 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation				peration				
<pre>1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation</pre>		0000 = Reserv	red					
1101 = No operation 0011 = Memory word program operation 0010 = No operation			vration					
0011 = Memory word program operation 0010 = No operation								
				m operation	I			
0001 = Reserved		0010 = No ope	ration					
0000 = Reserved								
		-						
Note 1: These bits can only be reset on a Power-on Reset (POR).								

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

REGISTER	7-5: IFS0: I	INTERRUPT	FLAG STAT	US REGIST	ER 0		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
	—	ADIF	U1TXIF ⁽¹⁾	U1RXIF ⁽¹⁾	SPI1IF ⁽¹⁾	SPI1EIF ⁽¹⁾	
oit 15							bit
	11.0	11.0	11.0				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0 OC1IF ⁽¹⁾	R/W-0	R/W-0
T2IF bit 7	—	_		T1IF	UC IIF."	ICTIF ⁽⁻⁾	INT0IF bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15-14	Unimplemen	ted: Read as	0'				
bit 13	-			nterrupt Flag S	Status bit		
	1 = Interrupt i	request has oc request has no	curred				
bit 12		RT1 Transmitte		g Status bit ⁽¹⁾			
		request has oc		,			
		request has no					
oit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag S	Status bit ⁽¹⁾			
		request has oc request has no					
bit 10	SPI1IF: SPI1	Event Interrup	ot Flag Status b	oit ⁽¹⁾			
		request has oc request has no					
bit 9	SPI1EIF: SPI	1 Error Interru	pt Flag Status	bit ⁽¹⁾			
		request has oc request has no					
bit 8	Unimplemen	ted: Read as	0'				
bit 7	T2IF: Timer2	Interrupt Flag	Status bit				
		request has oc request has no					
bit 6-4	Unimplemen	ted: Read as	0'				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	•	request has oc request has no					
bit 2	-	-		upt Flag Status	s bit ⁽¹⁾		
	1 = Interrupt	request has oc request has no	curred	apt hag oldide			
bit 1	-	-		-lag Status bit ⁽	2)		
		request has oc request has no					
bit 0	-	rnal Interrupt 0		t			
	1 = Interrupt ı	request has oc request has no	curred				
Note 1: Th	nis bit is not impl	emented in the	ASPIC33F IOF	GS001 device	4		
	no bit io not impl				·•		

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 7-	-12: IEC0:	INTERRUPT	ENABLE CO	ONTROL REC	GISTER 0				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
—	_	ADIE	U1TXIE ⁽¹⁾	U1RXIE ⁽¹⁾	SPI1IE ⁽¹⁾	SPI1EIE ⁽¹⁾			
bit 15							bit 8		
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
T2IE	_	_		T1IE	OC1IE ⁽¹⁾	IC1IE ⁽²⁾	INTOIE		
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value at P		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkno	own		
			•	0 2000 0.00					
bit 15-14	Unimplemen	ted: Read as	ʻ0 '						
bit 13	ADIE: ADC1	Conversion Co	omplete Interru	ipt Enable bit					
		request is enal							
		request is not e		(4)					
bit 12			er Interrupt Ena	ble bit ⁽¹⁾					
	•	request is enal request is not e							
bit 11	-	-	Interrupt Enabl	e hit(1)					
		request is enal	-	C Dit					
		request is not e							
bit 10	SPI1IE: SPI1 Event Interrupt Enable bit ⁽¹⁾								
		request is enal request is not (
bit 9	•	•	upt Enable bit ⁽¹	1)					
		request is enal							
	•	request is not e							
bit 8	Unimplemen	ted: Read as	ʻ0'						
bit 7		Interrupt Enab							
		request is enal							
bit 6-4	•	request is not o							
bit 3	-	ited: Read as							
bit 5		Interrupt Enat request is enal							
		request is not e							
bit 2	OC1IE: Outp	ut Compare Cl	nannel 1 Interro	upt Enable bit ⁽¹)				
		request is enal request is not e							
bit 1	•	•	nel 1 Interrupt E	Enable bit(2)					
		request is enal							
	•	request not en							
bit 0	INTOIE: Exter	rnal Interrupt 0	Enable bit						
		request is enal request is not e							
Note 1: This	bit is not impl	emented in ds		001/1010/102/	daviaca				

REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A/102A devices.

2: This bit is not implemented in the dsPIC33FJ06GS001 device.

REGISTER 7	-30: IPC24:				REGISTER 24		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	—	—	_
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		PWM4IP ⁽¹⁾			—	—	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-7	-	ted: Read as '					
bit 6-4	PWM4IP<2:0	>: PWM4 Inter	rupt Priority b	oits ⁽¹⁾			
	111 = Interrup	ot is Priority 7 (highest priori	ty)			
	•						
	•						
	•						
	001 = Interrup	ot is Priority 1					
		ot source is dis	abled				

Note 1: These bits are not implemented in dsPIC33FJ06GS102A/202A devices.

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles; otherwise, the program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and the old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

The following steps outline the procedure to disable all user interrupts:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0xE0 with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(Level 8-Level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

These devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. Devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

These devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

The devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device will wake-up from Sleep mode on any of these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

REGISTER 9-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7									
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	_	—	_			CMP2MD ⁽¹⁾	CMP1MD ⁽¹⁾		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	—	—	—	—	—			
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown			

bit 15-10	Unimplemented: Read as '0'
bit 9	CMP2MD: Analog Comparator 2 Module Disable bit ⁽¹⁾
	1 = Analog Comparator 2 module is disabled0 = Analog Comparator 2 module is enabled
bit 8	CMP1MD: Analog Comparator 1 Module Disable bit ⁽¹⁾
	1 = Analog Comparator 1 module is disabled0 = Analog Comparator 1 module is enabled
bit 7-0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

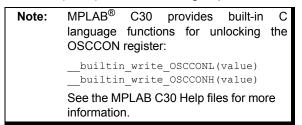
10.6.2.3 Virtual Pins

Four virtual RPn pins (RP32, RP33, RP34 and RP35) are supported, which are identical in functionality to all other RPn pins, with the exception of pinouts. These four pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP32 and the PWM Fault input can be configured for RP32 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

10.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:


- · Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared, after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP9R	<5:0> ⁽¹⁾		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			RP8R	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at F	-n = Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared x = Bit is unknown				nown		

REGISTER 10-20: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP9R<5:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP8R<5:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 10-21: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				RP11F	<5:0> ⁽¹⁾			
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		RP10R<5:0> ⁽¹⁾						
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits⁽¹⁾ bit 13-8 (see Table 10-2 for peripheral function numbers) bit 7-6 Unimplemented: Read as '0'
- RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits⁽¹⁾ bit 5-0 (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

14.2 Output Compare Control Registers

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	U-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	—		OCM<2:0>	
bit 7							bit 0

REGISTER 14-1: OC1CON: OUTPUT COMPARE 1 CONTROL REGISTER

Legend:	HC = Hardware Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare 1 halts in CPU Idle mode
	0 = Output Compare 1 continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	1 = PWM Fault condition has occurred (cleared in hardware only)
	0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	Unimplemented: Read as '0'
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OC1, Fault pin is enabled
	110 = PWM mode on OC1, Fault pin is disabled
	101 = Initializes OC1 pin low, generates continuous output pulses on OC1 pin
	100 = Initializes OC1 pin low, generates single output pulse on OC1 pin
	011 = Compare event toggles OC1 pin
	010 = Initializes OC1 pin high, compare event forces OC1 pin low
	001 = Initializes OC1 pin low, compare event forces OC1 pin high
	000 = Output compare channel is disabled

NOTES:

REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER

bit 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—		DTRx<13:8>					
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

hit	0

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_		ALTDTRx<13:8>						
bit 15	-						bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			ALTD ⁻	TR <7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplen	nented bit, rea	ad as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB<	6:5>				
bit 15							bit				
	D 444 0	D 444 0	DAMA	DAMA							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
L:1 7		LEB<4:0>				—					
bit 7							bit				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	PHR: PWM	xH Rising Edge	Trigger Enabl	le bit							
		dge of PWMxH		B counter							
	0 = LEB ign	ores rising edge	of PWMxH								
bit 14	PHF: PWM	PHF: PWMxH Falling Edge Trigger Enable bit									
	1 = Falling edge of PWMxH will trigger LEB counter 0 = LEB ignores falling edge of PWMxH										
	•	•••									
bit 13		PLR: PWMxL Rising Edge Trigger Enable bit									
	1 = Rising edge of PWMxL will trigger LEB counter 0 = LEB ignores rising edge of PWMxL										
bit 12	•	L Falling Edge T		e hit							
		• •									
		 1 = Falling edge of PWMxL will trigger LEB counter 0 = LEB ignores falling edge of PWMxL 									
bit 11	FLTLEBEN	FLTLEBEN: Fault Input LEB Enable bit									
	1 = Leading-edge blanking is applied to selected Fault input										
	0 = Leading	-edge blanking is	s not applied	to selected Fau	llt input						
bit 10	CLLEBEN: Current-Limit LEB Enable bit										
	 1 = Leading-edge blanking is applied to selected current-limit input 0 = Leading-edge blanking is not applied to selected current-limit input 										
	•				•						
bit 9-3		Leading-Edge Bl	•	urrent-Limit and	Fault Inputs bit	S					
		8.32 nsec incre									
bit 2-0		ented: Read as '									

REGISTER 15-18: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

REGISTER	19-5: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)
bit 7	IRQEN0: Interrupt Request Enable 0 bit
	 1 = Enables IRQ generation when requested conversion of channels AN1 and AN0 is completed 0 = IRQ is not generated
bit 6	PEND0: Pending Conversion Status 0 bit
	 1 = Conversion of channels AN1 and AN0 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	SWTRG0: Software Trigger 0 bit 1 = Starts conversion of AN1 and AN0 (if selected by the TRGSRCx bits) ⁽¹⁾ This bit is automatically cleared by hardware when the PEND0 bit is set. 0 = Conversion has not started
bit 4-0	TRGSRC0<4:0>: Trigger 0 Source Selection bits Selects trigger source for conversion of analog channels AN1 and AN0. 11111 = Timer2 period match
	•
	•
	11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger
	11001 = Reserved
	11000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved
	•
	•
	10010 = Reserved
	10001 = PWM Generator 4 secondary trigger is selected
	10000 = Reserved
	01111 = PWM Generator 2 secondary trigger is selected 01110 = PWM Generator 1 secondary trigger is selected
	01101 = Reserved
	01100 = Timer1 period match
	•
	•
	01000 = Reserved
	00111 = PWM Generator 4 primary trigger is selected
	00110 = Reserved
	00101 = PWM Generator 2 primary trigger is selected
	00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected
	00010 = Global software trigger is selected
	00001 = Individual software trigger is selected
	00000 = No conversion is enabled

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then conversion will be performed when the conversion resources are available.

TABLE 22-1: CONFIGURATION FLASH BYTES FOR dsPIC33FJ06GS001/101A/X02A DEVICES

Address	Name	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
000FF0	FICD	_	Reserved ⁽¹⁾	_	JTAGEN	Reserved ⁽²⁾		_	ICS<	:1:0>
000FF4	FWDT	—	FWDTEN	—	PLLKEN	WDTPRE	WDTPOST<3:0>			
000FF6	FOSC	—	FCKS	M<1:0>	IOL1WAY	—	—	— OSCIOFNC POSCMD<1:0>		
000FF8	FOSCSEL	—	IESO	—	—	—	—	FNOSC<2:0>		
000FFA	FGS				_	—	_		GCP	GWRP

Legend: — = unimplemented, read as '1'.

Note 1: This bit is reserved for use by development tools.

2: This bit is reserved; program as '0'.

TABLE 22-2: CONFIGURATION FLASH BYTES FOR dsPIC33FJ09GS302 DEVICES

Address	Name	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0017F0	FICD		Reserved ⁽¹⁾	_	JTAGEN	Reserved ⁽²⁾	_	— ICS<1:0>		
0017F4	FWDT	—	FWDTEN	—	PLLKEN	WDTPRE	WDTPOST<3:0>			
0017F6	FOSC	_	FCKSM<1:0>		IOL1WAY	—	—	OSCIOFNC POSCMD<1:0>		ID<1:0>
0017F8	FOSCSEL	—	IESO	—	—	—	—	FNOSC<2:0>		
0017FA	FGS	—	—	—		—	—	—	GCP	GWRP

Legend: — = unimplemented, read as '1'.

Note 1: This bit is reserved for use by development tools.

2: This bit is reserved; program as '0'.

24.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

24.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

24.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

24.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

24.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

AC CHA	RACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Charac	teristic	Min. ⁽¹⁾	Max.	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μs			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM20	TF:SCL	SDA1 and SCL1 Fall Time	100 kHz mode	_	300	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 p		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDA1 and SCL1 Rise Time	100 kHz mode	_	1000	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns			
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns			
			400 kHz mode	100	—	ns			
			1 MHz mode ⁽²⁾	40	_	ns			
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μs			
			400 kHz mode	0	0.9	μs	-		
			1 MHz mode ⁽²⁾	0.2	_	μs			
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for Repeated Start condition		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	After this period the		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated		
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			400 kHz mode	Tcy/2 (BRG + 1)		μs	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns			
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		ns	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns	-		
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode		3500	ns			
			400 kHz mode		1000	ns			
			1 MHz mode ⁽²⁾	—	400	ns	1		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be		
			400 kHz mode	1.3		μs	free before a new		
			1 MHz mode ⁽²⁾	0.5		μS	transmission can start		
IM50	Св	Bus Capacitive L			400	pF			
IM51	TPGD	Pulse Gobbler De	-	65	390	ns	See Note 3		

TABLE 25-37: I2C1 BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11