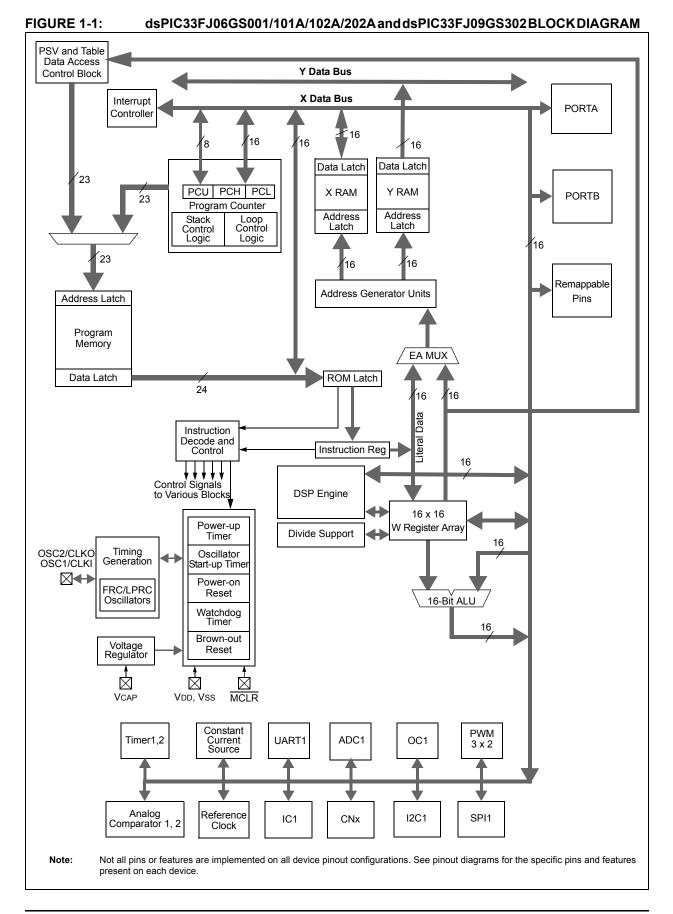


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102at-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies from device to device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a Data, Address or Address Offset register. The sixteenth working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits, right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

TABLE 4-16: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_		—	—	—	—	_				Receive	Register				0000
I2C1TRN	0202	_		_	_	-	_	_	_				Transmit	Register				OOFF
I2C1BRG	0204	_		_	_	-	_	_				Baud Rate	e Generator	Register				0000
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_		_	_	-	_					Address I	Register					0000
I2C1MSK	020C	_	_		—	_	_					AMSK	<9:0>					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: UART1 REGISTER MAP FOR dsPiC33FJ06GS101A, dsPiC33FJ06GS102A, dsPiC33FJ06GS202A AND dsPiC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	-	_	_	_	-				UART	Transmit Re	egister				XXXX
U1RXREG	0226	_	_	-	_	_	_	-				UART	Receive Re	egister				0000
U1BRG	0228		-			•		B	aud Rate Ge	enerator Pre	escaler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18:SPI1 REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL					_		SPIROV	_	_	_	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL		_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Tran	smit and Re	ceive Buffe	er Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-	26:	PERIPI	HERAL	. PIN SE	LECT IN	PUT RE	GISTER	R MAP	FOR d	sPIC33	FJ06GS	202A AN	ID dsP	IC33FJ0	9GS302			
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RPINR0	0680	—	—			INT1R<	5:0>			—	—	-	—	—	—	—	-	Î
RPINR1	0682	_	_	_	_	_	—	—	—	—	_			INT2R	<5:0>			Ĩ
RPINR2	0684	_	_			T1CKR<	5:0>			—	_	_	—	_	_	_	_	Ĩ
RPINR3	0686	_	_	_	_	_	—	—	—	—	_			T2CKF	<5:0>			Ĩ
RPINR7	068E	_	_	_	_	_	_	—	—	—	_			IC1R<	<5:0>			Ī
RPINR11	0696	_	_	_	_	_	—	_	—	—	_			OCFAF	<5:0>			Ī
RPINR18	06A4	_	_			U1CTSR-	<5:0>			—	_			U1RXF	<5:0>			Ī
RPINR20	06A8	_	_			SCK1R<	5:0>			_	_			SDI1R	<5:0>			Ī
RPINR21	06AA	_	_	_	—	_	_	—	—	_				SS1R	<5:0>			Τ

_

_

_

_

_

_

_

_

_

_

_

_

RPINR34 Legend:

RPINR29

RPINR30

RPINR31

RPINR32

RPINR33

06BA

06BC

06BE

06C0

06C2

06C4

_

_

_

_

_

_

_

_

_

_

_

_

x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FLT1R<5:0>

FLT3R<5:0>

FLT5R<5:0>

FLT7R<5:0>

SYNCI1R<5:0>

TABLE 4-27: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0	_	_		RP1R<5:0> RP3R<5:0>					_	—			RP0R<	<5:0>			0000
RPOR1	06D2	_	_							_	_	RP2R<5:0>						0000
RPOR2	06D4	_	_		RP5R<5:0>					_	_			RP4R	<5:0>			0000
RPOR3	06D6	_	—			RP7	R<5:0>			—	_	RP6R<5:0>						0000
RPOR16	06F0	_	_		RP33R<5:0>					—	_			RP32R	<5:0>			0000
RPOR17	06F2	_	_		RP35R<5:0>					_	-			RP34R	<5:0>			0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All Resets 3F00 003F 3F00 003F 003F 003F 3F3F 3F3F

003F

3F00

3F3F

3F3F

3F3F

3F3F

003F

_

_

FLT2R<5:0>

FLT4R<5:0>

FLT6R<5:0>

FLT8R<5:0>

SYNCI2R<5:0>

_

REGISTER 7	-16: IEC5:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 5		
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
PWM2IE ⁽¹⁾	PWM1IE	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
			—			—	JTAGIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
			(4)				
bit 15		/M2 Interrupt E					
		request is enab request is not e					
bit 14	•	/M1 Interrupt E					
bit 14		request is enab					
	•	request is not e					
bit 13-1	Unimplemen	ted: Read as '	כי				
bit 0	JTAGIE: JTA	G Interrupt Ena	ble bit				
	1 = Interrupt i	request is enab	led				
	0 = Interrupt i	request is not e	nabled				

REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER	R 7-26: IPC14:	INTERRUPT			REGISTER 14		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—			—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		PSEMIP<2:0>		—	_		—
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	PSEMIP<2:0	PWM Special	al Event Match	n Interrupt Prio	rity bits		
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	•						

- 001 = Interrupt is Priority 1
- 000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

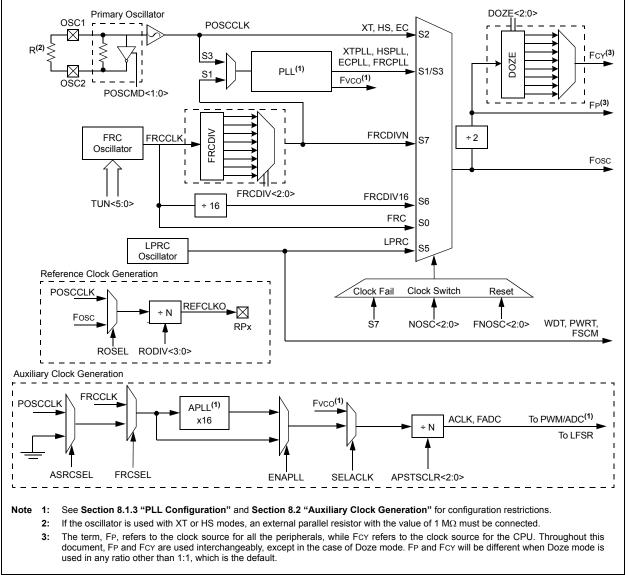
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		U1EIP<2:0> ⁽¹⁾		—	—	—	—
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	U1EIP<2:0>: UART1 Error Interrupt Priority bits ⁽¹⁾
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		ADCP1IP<2:0>	>	—		ADCP0IP<2:0>	
bit 15					•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			_	_	_		_
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	• • 001 = Inter	rupt is Priority 7 (rupt is Priority 1		ty interrupt)			
bit 11		rupt source is dis ented: Read as '					
bit 10-8	ADCP0IP<	2:0>: ADC Pair 0 rupt is Priority 7 (Conversion		Priority bits		
		rupt is Priority 1 rupt source is dis	abled				


8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase Lock Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection
- An auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: OSCILLATOR SYSTEM DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	_	_	_	—	—	—	PLLDIV8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLDI	V<7:0>				
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit i				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	
				'0' = Bit is cle	ared	x = Bit is unk	nown	
-n = Value a bit 15-9		'1' = Bit is setted: Read as '		'0' = Bit is cle	ared	x = Bit is unk	nown	
	Unimplemen	ted: Read as '	0'		ared as 'M', PLL mu		nown	
bit 15-9	Unimplemen	ted: Read as ' •: PLL Feedba	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0>	ted: Read as ' •: PLL Feedba	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0>	ted: Read as ' •: PLL Feedba	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0>	ted: Read as ' •: PLL Feedba	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0>	ted: Read as ' •: PLL Feedbac = 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • •	ted: Read as ' •: PLL Feedbac = 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • •	ted: Read as ' •: PLL Feedbac = 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • •	ted: Read as ' •: PLL Feedbac = 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • •	ted: Read as f PLL Feedbac 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • • • • • • • • • • • • • • • • • • •	ted: Read as f PLL Feedbac 513 50 (default)	0'				nown	

Note 1: This register is reset only on a Power-on Reset (POR).

REGISTER	REGISTER 9-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6							
U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	
_	_	—		PWM4MD ⁽¹⁾	—	PWM2MD ⁽²⁾	PWM1MD	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
				<u> </u>				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	
bit 15-12	Unimplomon	ted: Read as '	۰,					
bit 11	•	NM Generator		able bit(1)				
	1 = PWM Ger	nerator 4 modu nerator 4 modu	le is disabled					
bit 10	Unimplement	ted: Read as ')'					
bit 9	PWM2MD: PWM Generator 2 Module Disable bit ⁽²⁾							
	 1 = PWM Generator 2 module is disabled 0 = PWM Generator 2 module is enabled 							
bit 8	PWM1MD: PWM Generator 1 Module Disable bit							
	1 = PWM Generator 1 module is disabled 0 = PWM Generator 1 module is enabled							
bit 7-0	Unimplemented: Read as '0'							

Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11. "Timers"** (DS70205) in the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC) or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source
- The Timer1 External Clock Input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler

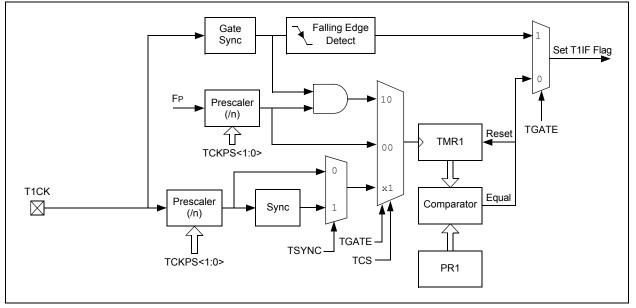
The unique features of Timer1 allow it to be used for Real-Time Clock applications. A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- · Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer1 modes are determined by the following bits:


- Timer1 Clock Source Control bit: TCS (T1CON<1>)
- Timer1 Synchronization Control bit: TSYNC (T1CON<2>)
- Timer1 Gate Control bit: TGATE (T1CON<6>)

The Timer1 control bit settings for different operating modes are given in the Table 11-1.

TABLE 11-1:	TIMER1 MODI	E SETTINGS
-------------	-------------	------------

Mode	TCS	TGATE	TSYNC
Timer1	0	0	х
Gated Timer1	0	1	х
Synchronous Counter	1	х	1
Asynchronous Counter	1	х	0

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—	_	—		AMSK	<9:8>
bit 15	·			·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			AMS	K<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unkn	iown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSK<9:0>: Mask for Address bit x Select bits

1 = Enables masking for bit x of incoming message address; bit match not required in this position

0 = Disables masking for bit x; bit match required in this position

18.3 UART Registers

REGISTER 18-1: U1MODE: UART1 MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ^(1,3)	—	USIDL ⁽³⁾	IREN ^(2,3)	RTSMD ⁽³⁾	—	UEN<	1:0> ⁽³⁾
bit 15							bit 8

R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE ⁽³⁾	LPBACK ⁽³⁾	ABAUD ⁽³⁾	URXINV ⁽³⁾	BRGH ⁽³⁾	PDSEL<	:1:0> ⁽³⁾	STSEL ⁽³⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit			
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	UARTEN: UART1 Enable bit ^(1,3)
	 1 = UART1 is enabled; all UART1 pins are controlled by UART1, as defined by UEN<1:0> 0 = UART1 is disabled; all UART1 pins are controlled by port latches; UART1 power consumption is minimal
bit 14	Unimplemented: Read as '0'
bit 13	USIDL: Stop in Idle Mode bit ⁽³⁾
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ^(2,3)
	1 = $IrDA^{\ensuremath{\mathbb{R}}}$ encoder and decoder are enabled 0 = $IrDA^{\ensuremath{\mathbb{R}}}$ encoder and decoder are disabled
bit 11	RTSMD: Mode Selection for U1RTS Pin bit ⁽³⁾
	$1 = \overline{\text{U1RTS}} \text{ pin is in Simplex mode}$ 0 = U1RTS pin is in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UART1 Pin Enable bits ⁽³⁾
	 11 = U1TX, U1RX and BCLK pins are enabled and used; U1CTS pin is controlled by port latches 10 = U1TX, U1RX, U1CTS and U1RTS pins are enabled and used 01 = U1TX, U1RX and U1RTS pins are enabled and used; U1CTS pin is controlled by port latches 00 = U1TX and U1RX pins are enabled and used; U1CTS and U1RTS/BCLK pins are controlled by port latches
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit ⁽³⁾
	 1 = UART1 will continue to sample the U1RX pin; interrupt is generated on falling edge; bit is cleared in hardware on following rising edge 0 = No wake-up is enabled
bit 6	LPBACK: UART1 Loopback Mode Select bit ⁽³⁾
	1 = Enable Loopback mode
	0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit ⁽³⁾
	 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (0x55) before other data; cleared in hardware upon completion
	0 = Baud rate measurement is disabled or completed
Note 1:	Refer to Section 17. "UART" (DS70188) in the <i>"dsPIC33F/PIC24H Family Reference Manual"</i> for information on enabling the UART module for receive or transmit operation.
2:	This feature is only available for the 16x BRG mode (BRGH = 0).

3: This bit is not available in the dsPIC33FJ06GS001 device.

19.0 HIGH-SPEED 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 44. "High-Speed 10-Bit ADC" (DS70321) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 family of devices provides high-speed successive approximation, Analog-to-Digital conversions to support applications such as AC-to-DC and DC-to-DC Power Converters.

19.1 Features Overview

The ADC module comprises the following features:

- 10-bit resolution
- Unipolar inputs
- One Successive Approximation Register (SAR)
- · Up to eight external input channels
- · Up to two internal analog inputs
- Dedicated result register for each analog input
- ±1 LSB accuracy at 3.3V
- Single supply operation
- 2 Msps conversion rate at 3.3V
- Low-power CMOS technology

19.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- AC/DC Power Supplies
- DC/DC Converters
- Power Factor Correction (PFC)

This ADC works with the high-speed PWM module in power control applications that require high-frequency control loops. This small conversion delay reduces the "phase lag" between measurement and control system response. Up to three inputs may be sampled at a time (two inputs from the dedicated Sample-and-Hold circuits and one from the shared Sample-and-Hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1, AN0), (AN3, AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application:

- Result alignment options
- · Automated sampling
- External conversion start control
- Two internal inputs to monitor INTREF and EXTREF input signals (not available in dsPIC33FJ06GS101A/102A devices)

Block diagrams of the ADC module are shown in Figure 19-1 through Figure 19-5.

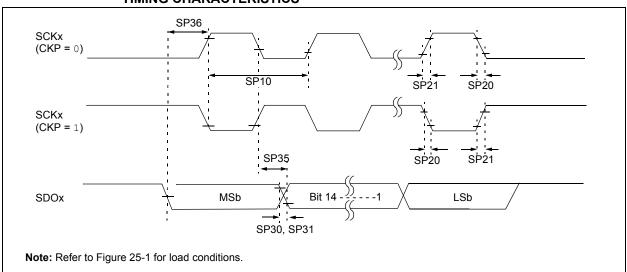
19.3 Module Functionality

The high-speed, 10-bit ADC module is designed to support power conversion applications when used with the high-speed PWM module. The ADC has one SAR and only one conversion can be processed at a time, yielding a conversion rate of 2 Msps or the equivalent of one 10-bit conversion, in half a microsecond ($0.5 \ \mu s$).

The ADC module supports up to eight external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN12 and AN13, are connected to the EXTREF and INTREF voltages, respectively.

Note: The dsPIC33FJ06GS101A/102A devices do not have the internal connection to EXTREF.

The analog reference voltage is defined as the device supply voltage (AVDD/AVSS).


R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CMPON ⁽¹⁾	_	CMPSIDL ⁽¹⁾	HYSSE	L<1:0> ⁽¹⁾	FLTREN ⁽¹⁾	FCLKSEL ⁽¹⁾	DACOE ⁽¹⁾			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
INSEL	<1:0> ⁽¹⁾	EXTREF ⁽¹⁾	HYSPOL ⁽¹⁾	CMPSTAT ⁽¹⁾	HGAIN ⁽¹⁾	CMPPOL ⁽¹⁾	RANGE ⁽¹⁾			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
hit 1E		mparator Opera	ting Mada bit	(1)						
bit 15		itor module is e	-							
	•	tor module is d		es power cons	umption)					
bit 14	Unimplemer	nted: Read as '	0'							
bit 13	CMPSIDL: S	top in Idle Mode	e bit ⁽¹⁾							
	1 = Discontin	ues module op	eration when	device enters lo	dle mode.					
	1 = Discontinues module operation when device enters Idle mode.0 = Continues module operation in Idle mode									
		If a device has multiple comparators, any CMPSIDL bit that is set to '1' disables all comparators while								
	in Idle mode.			(4)						
bit 12-11		0>: Comparator	Hysteresis S	elect bits(")						
	11 = 45 mV ł	•								
	10 = 30 mV h 01 = 15 mV h									
		eresis is selecte	ed							
bit 10	-	gital Filter Enabl								
		ter is enabled								
	•	ter is disabled								
bit 9	FCLKSEL: D	Digital Filter and	Pulse Stretch	er Clock Selec	t bit ⁽¹⁾					
	1 = Digital filt	ter and pulse st	retcher operat	e with the PWN	/I clock					
	0 = Digital filt	ter and pulse st	retcher operat	e with the syste	em clock					
bit 8	DACOE: DA	C Output Enabl	e ⁽¹⁾							
		log voltage is o			_					
hit 7 G		llog voltage is n			1					
bit 7-6		: Input Source S		iparator bits ??						
		CMPxD input pi CMPxC input pi								
		CMPxB input pi								
		CMPxA input pi								
Note 1: Thi	s bit is not impl	lemented in dsF	21C33F.106G.S	101A/102A dev	vices.					
	•					The software m	nust ensure			
						ective DACOE b				
• -					- '					

REGISTER 20-1: CMPCONX: COMPARATOR CONTROL x REGISTER

3: For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in Section 25.0 "Electrical Characteristics".

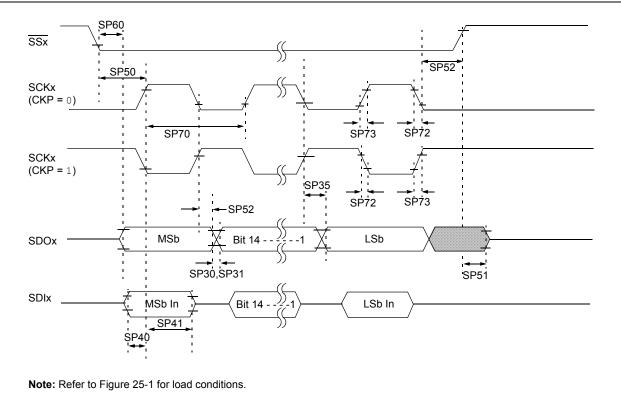
Bit Field	Description
PLLKEN	PLL Lock Enable bit
	 1 = Clock switch to PLL source will wait until the PLL lock signal is valid 0 = Clock switch will not wait for the PLL lock signal
JTAGEN	JTAG Enable bit
	1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicate on PGEC1 and PGED1
	10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3
	00 = Reserved, do not use

TABLE 22-3: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

FIGURE 25-12: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 25-30: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

АС СНА	ARACTERIST	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	_		15	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—		_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHA	RACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Charac	teristic	Min. ⁽¹⁾	Max.	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μs			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM20	TF:SCL	SDA1 and SCL1 Fall Time	100 kHz mode	_	300	ns	CB is specified to be from 10 pF to 400 pF		
			400 kHz mode	20 + 0.1 Св	300	ns			
			1 MHz mode ⁽²⁾	_	100	ns	1		
IM21	TR:SCL	SDA1 and SCL1 Rise Time	100 kHz mode	_	1000	ns	CB is specified to be from 10 pF to 400 pF		
			400 kHz mode	20 + 0.1 Св	300	ns			
			1 MHz mode ⁽²⁾	_	300	ns			
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns			
			400 kHz mode	100	—	ns			
			1 MHz mode ⁽²⁾	40	_	ns			
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μs			
			400 kHz mode	0	0.9	μs	-		
			1 MHz mode ⁽²⁾	0.2	_	μs			
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for Repeated Start condition		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM31	Thd:sta	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	After this period the first clock pulse is		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated		
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			400 kHz mode	Tcy/2 (BRG + 1)		μs	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns			
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		ns	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns	-		
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode		3500	ns			
			400 kHz mode		1000	ns			
			1 MHz mode ⁽²⁾	—	400	ns	1		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be		
			400 kHz mode	1.3		μs	free before a new transmission can star		
			1 MHz mode ⁽²⁾	0.5		μS			
IM50	Св	Bus Capacitive L			400	pF			
IM51	TPGD	Pulse Gobbler De	-	65	390	ns	See Note 3		

TABLE 25-37: I2C1 BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

NOTES: