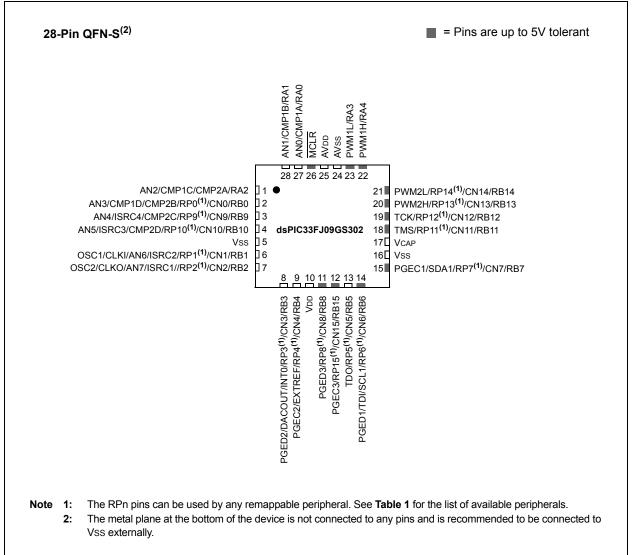


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102at-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Referenced Sources

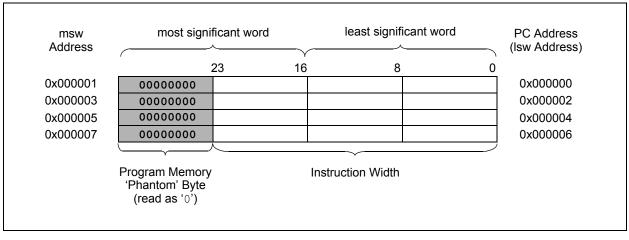
This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered the primary reference for the operation of a particular module or device feature.

Note:	To ace	cess th	listed b	elow,				
	visit	the	Microchip	web	site			
	(www.microchip.com).							

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)
- Section 41. "Interrupts (Part IV)" (DS70300)
- Section 42. "Oscillator (Part IV)" (DS70307)
- Section 43. "High-Speed PWM" (DS70323)
- Section 44. "High-Speed 10-Bit ADC" (DS70321)
- Section 45. "High-Speed Analog Comparator" (DS70296)

NOTES:

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (see Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during the code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

The devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, included in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

TABLE 4-28:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND
dsPIC33FJ09GS302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0	_	_		RP1R<5:0>					-	RP0R<5:0>						0000	
RPOR1	06D2	_	_		RP3R<5:0>					_	_			RP2R	<5:0>			0000
RPOR2	06D4	_	_		RP5R<5:0>				_	_	RP4R<5:0>					0000		
RPOR3	06D6	_	_		RP7R<5:0>				_	_	RP6R<5:0>					0000		
RPOR4	06D8	_	_			RP9	R<5:0>			_	_			RP8R	<5:0>			0000
RPOR5	06DA	—	_			RP1 ²	1R<5:0>			—	_			RP10R	<5:0>			0000
RPOR6	06DC	_	_			RP1	3R<5:0>			_	_			RP12R	<5:0>			0000
RPOR7	06DE	_	_		RP15R<5:0>				_	_			RP14R	<5:0>			0000	
RPOR16	06F0	_	_		RP33<5:0>			_	_			RP32	<5:0>			0000		
RPOR17	06F2		_			RP3	5<5:0>				-			RP34	<5:0>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

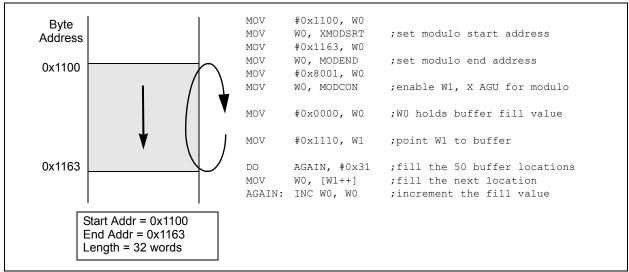
4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Υ	space	Modulo	Addressing	EA
	calculations		assume	word-sized	data
	(LS	Sb of ever	y EA is alw	/ays clear).	

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-6: MODULO ADDRESSING OPERATION EXAMPLE

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8.** "**Reset**" (DS70192) in the "*dsPIC33F/PIC24H Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

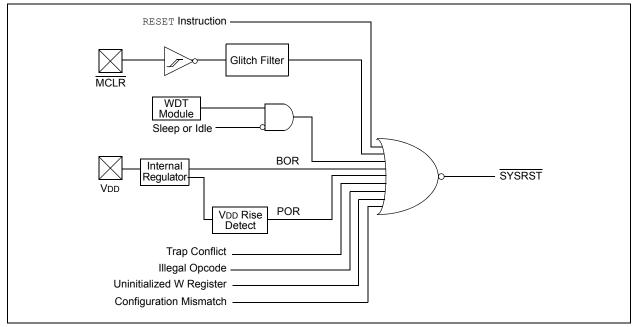
The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- · CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.


Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits (except for the POR (RCON<0> bit) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

REGISTER 7-7	7: IFS3:	INTERRUPT I	FLAG STA	TUS REGIST	ER 3		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	_	—	_	—	_	PSEMIF	
bit 15				·		•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	_	—	—
bit 7		•				•	bit 0
Legend:							
R = Readable b	it	W = Writable I	/ritable bit U = Unimplemented bit, read as '0'				
-n = Value at PC)R	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIF: PWM Special Event Match Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-8: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	_	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	_	_	—	U1EIF ⁽¹⁾	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2	Unimplemented: Read as '0'
bit 1	U1EIF: UART1 Error Interrupt Flag Status bit ⁽¹⁾
	 I = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in the dsPIC33FJ06GS001 device.

REGISTER	REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14										
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—	—	—			—				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—		PSEMIP<2:0>		—	_		—				
bit 7							bit 0				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-7	Unimplemen	ted: Read as '	0'								
bit 6-4	PSEMIP<2:0	PWM Special	al Event Match	n Interrupt Prio	rity bits						
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	•										

- 001 = Interrupt is Priority 1
- 000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		U1EIP<2:0> ⁽¹⁾		—	—	—	—
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	U1EIP<2:0>: UART1 Error Interrupt Priority bits ⁽¹⁾
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		PWM2IP ⁽¹⁾				PWM1IP<2:0>				
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	—	—	—	—	_	— —			
bit 7							bit (
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	Unimplemer	nted: Read as '	כי							
bit 14-12	PWM2IP<2:0>: PWM2 Interrupt Priority bits ⁽¹⁾									
	111 = Interrupt is Priority 7 (highest priority)									
	•									
	•									
	•									
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled									
bit 11	Unimplemer	nted: Read as '	כ'							
bit 10-8	PWM1IP<2:0	. PWM1IP<2:0>: PWM1 Interrupt Priority bits								
	111 = Interru	111 = Interrupt is Priority 7 (highest priority)								
	•									
	•									
	•									
		pt is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 7-0		nted: Read as '								

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
			_	_		—				
bit 15							bit 8			
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
bit 7							bit 0			
. .										
Legend:										
R = Readab	ole bit	W = Writable	bit	-	mented bit, read	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			
	l lucius a lo un ou	ntad. Daad as (<u>.</u>							
bit 15-6	•	nted: Read as '					`			
bit 5-0		>: Assign Outpu	it Compare A	(OCFA) to the	Corresponding	RPn Pin bits)			
		111111 = Input tied to Vss								
	100011 = Input tied to RP35									
	100010 = Input tied to RP34									
	100001 = Input tied to RP33									
	100000 = In	put tied to RP32	2							
	•	•								
	•									
	•									
	00000 = Inp	ut tied to RP0								

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
						FRMDLY	_		
bit 7							bit C		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bi		x = Bit is unkno	3it is unknown		
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit						
	1 = Framed SPIx support enabled (SSx pin used as Frame Sync pulse input/output)								
		Plx support dis							
bit 14		me Sync Pulse		ntrol bit					
	1 = Frame Sync pulse input (slave) 0 = Frame Sync pulse output (master)								
bit 13	,	ame Sync Puls	()						
DIL 13		inc pulse is act	•						
		nc pulse is act	0						
bit 12-2		ted: Read as '							
oit 1	FRMDLY: Fra	ame Sync Pulse	e Edge Select	t bit					
	1 = Frame Sync pulse coincides with first bit clock								
	0 = Frame Sy	nc pulse prece	des first bit cl	lock					
bit 0	Unimplemen	ted: This bit m	ust not be set	t to '1' by the us	ser application				

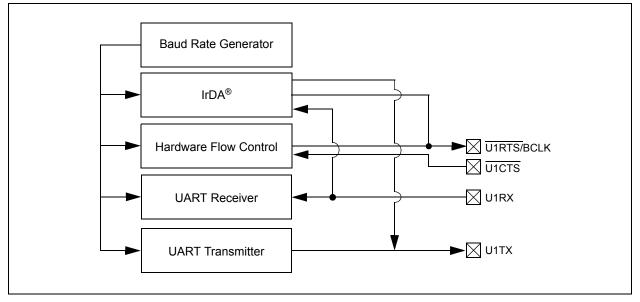
REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is a serial I/O module. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the U1CTS and U1RTS pins, and also includes an IrDA[®] encoder and decoder.

Note:	The dsPIC33FJ06GS001 device does not
	have a UART module.


The primary features of the UART module are:

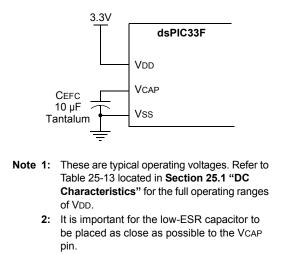
- Full-duplex, 8-bit or 9-bit data transmission through the U1TX and U1RX pins
- Even, Odd or No Parity options (for 8-bit data)
- One or two Stop bits
- Hardware flow control option with U1CTS and U1RTS pins
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In First-Out (FIFO) transmit data buffer
- · 4-deep FIFO receive data buffer
- · Parity, framing and buffer overrun error detection
- Support for 9-bit mode with address detect (9th bit = 1)
- · Transmit and Receive interrupts
- Separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- · Support for Sync and Break characters
- Support for automatic baud rate detection
- IrDA encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- BRG
- · Asynchronous transmitter
- · Asynchronous receiver

FIGURE 18-1: UART SIMPLIFIED BLOCK DIAGRAM

22.2 On-Chip Voltage Regulator


The devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 22-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 25-13, located in **Section 25.1 "DC Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

On a POR, it takes approximately 20 µs for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

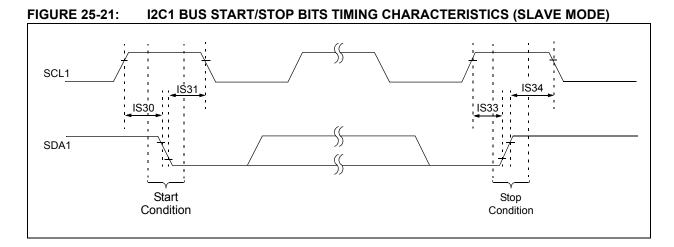
FIGURE 22-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 2.5V when $VDD \ge VDDMIN$.

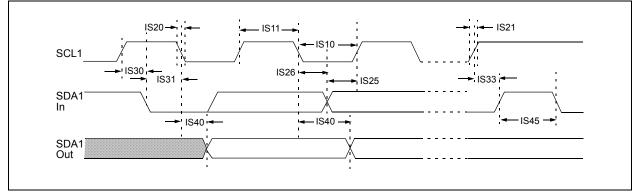
22.3 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).


If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until the OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of, TFSCM = 100, is applied. The total delay in this case is TFSCM.


The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

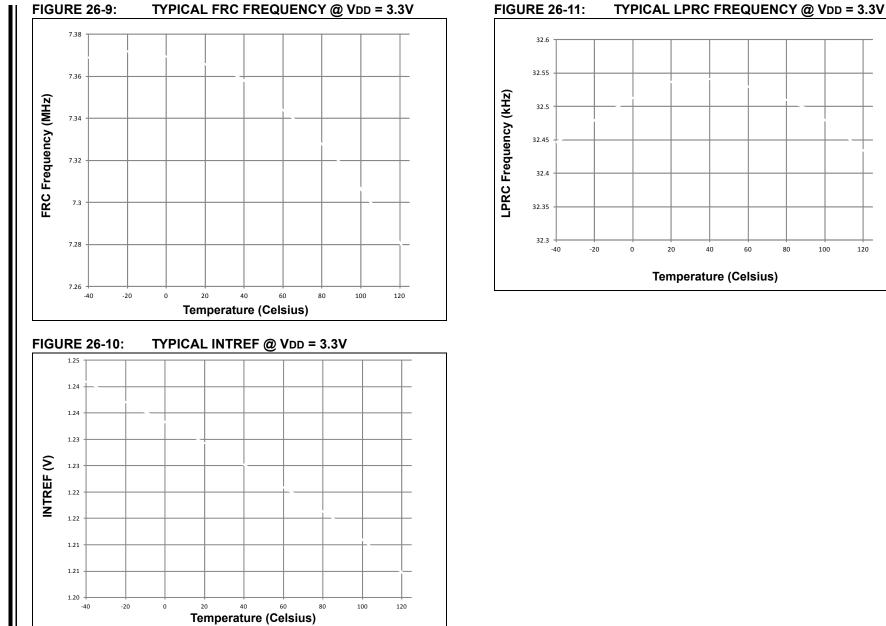
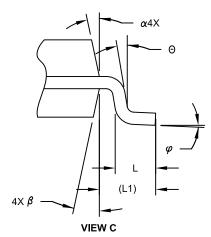
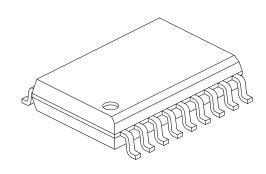

TABL	ABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)							
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected	
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z	
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z	
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z	
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None	
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None	
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z	
69	SETM	SETM	f	f = 0xFFFF	1	1	None	
		SETM	WREG	WREG = 0xFFFF	1	1	None	
		SETM	Ws	Ws = 0xFFFF	1	1	None	
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB	
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB	
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z	
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z	
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z	
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z	
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z	
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB	
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z	
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z	
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,Z	
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z	
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z	
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z	
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z	
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z	
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z	
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z	
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z	
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z	
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z	
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z	
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z	
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z	
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z	
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z	
76	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None	
10	OWIT	SWAP	Wn	Wn = Byte Swap Wn	1	1	None	
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None	
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None	
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None	
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None	
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None	
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z	
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z	
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z	
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z	
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z	
83	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N	

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

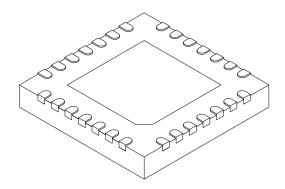




18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Lin	nits	MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E 10.30 BSC			
Molded Package Width	Ith E1 7.50 BSC			
Overall Length	D	11.55 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimensi	on Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2