

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202a-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.5 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y	space	Modulo	Addressing	EA
	cal	culations	assume	word-sized	data
	(LS	Sb of every	y EA is alw	/ays clear).	

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-6: MODULO ADDRESSING OPERATION EXAMPLE

				-			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register bits (write-only)

6.1 Reset Control Register

REGISIE	ROUN	RESET CO	VIRUL REC				
R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAP	R IOPUWR	_	_	_	_	СМ	VREGS
bit 15							bit 8
[
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
Logondi							
R = Read	ahla hit	W = Writable	hit	= Inimple	mented hit read	1 as '0'	
-n = Value	at POR	$(1)^{2} = \text{Rit is set}$	on	$0^{\circ} = \text{Bit is cle}$	ared	x = Ritis unki	nown
							IOWIT
bit 15	TRAPR: Trap	Reset Flag bit					
	1 = A Trap C	onflict Reset ha	s occurred				
	0 = A Trap Co	onflict Reset ha	s not occurre	d			
bit 14	IOPUWR: Ille	egal Opcode or	Uninitialized \	N Access Res	et Flag bit		
	1 = An illega	al opcode deter	ction, an illeg	al address m	ode or uninitial	ized W registe	er used as an
	0 = An illega	l opcode or unit	nitialized W R	eset has not o	ccurred		
bit 13-10	Unimplemen	nted: Read as ')'				
bit 9	CM: Configur	ration Mismatch	Flag bit				
	1 = A Configu	uration Mismatc	h Reset has o	occurred			
	0 = A Configu	uration Mismato	h Reset has I	NOT occurred			
bit 8	VREGS: Volt	age Regulator S	Standby Durin	ig Sleep bit			
	1 = Voltage re 0 = Voltage re	egulator is activ equilator does ir	e during Siee ito Standby m	p Iode during Sle	en		
bit 7	EXTR: Extern	nal Reset Pin (N	\overline{ACLR}) bit		500		
	1 = A Master	Clear (pin) Res	set has occurr	ed			
	0 = A Master	Clear (pin) Res	et has not oc	curred			
bit 6	SWR: Softwa	are Reset Flag (Instruction) bi	it			
	$1 = \mathbf{A} \text{ RESET}$ $0 = \mathbf{A} \text{ RESET}$	instruction has	been execute	ed cuted			
bit 5	SWDTEN: S	offware Enable/	Disable of WI	DT bit ⁽²⁾			
	1 = WDT is e	nabled					
	0 = WDT is d	lisabled					
bit 4	WDTO: Watc	hdog Timer Tim	ne-out Flag bi	t			
	1 = WDT time	e-out has occur	red				
bit 3			curreu				
DIL 3	1 = Device h	as been in Slee	n mode				
	0 = Device ha	as not been in S	Bleep mode				
bit 2	IDLE: Wake-	up from Idle Fla	g bit				
	1 = Device w	as in Idle mode					
	0 = Device w	as not in Idle m	ode				
NOTE 1:	All of the Reset sta	atus bits can be eset.	set or cleared	a in soπware. S	betting one of th	ese bits in soft	ware does not
2:	If the FWDTEN Co	onfiguration bit i	s '1' (unprogr	ammed), the V	VDT is always e	enabled, regard	lless of the
	SWDTEN bit settir	ng.	(F - 3.	,,			

REGISTER	7-21: IPC2	: INTERRUPT	PRIORITY	CONTROL R	EGISTER 2		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U1RXIP<2:0>(1)			SPI1IP<2:0> ⁽¹⁾	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		SPI1EIP<2:0>(1)		_		_
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit. rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	U1RXIP<2:	0>: UART1 Rece	eiver Interrup	t Priority bits ⁽¹⁾			
	111 = Interr	upt is Priority 7 (highest prior	ity interrupt)			
	•						
	•						
	•	untin Duinaite 4					
	001 = Interr	upt is Priority 1 jupt source is dis	abled				
hit 11	Unimpleme	ented: Read as '	מסופט הי				
bit 10-8	SPI1IP<2.0	> SPI1 Event In	° terrunt Priori	ty hits(1)			
	111 = Interr	unt is Priority 7 (highest prior	ity interrunt)			
	•		nightest phon	ity interrupt)			
	•						
	•						
	001 = Interr	upt is Priority 1	abled				
hit 7		upt source is us	ລມເອບ ດ,				
		ANIEU. Neau as i	J	ity hita(1)			
DIL 0-4	SPITEIPSZ:		highoot prior	ity bits(")			
	•	upt is Phonity 7 (nignest prior	ity interrupt)			
	•						
	•						
	001 = Interr	upt is Priority 1					
		upt source is dis	abied				
bit 3-0	Unimpleme	ented: Read as '	D.				

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

REGISTER /-2	4: IPC5:	INTERRUPT	PRIORITY		EGISTERS		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	_		—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	_	_	_			INT1IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at PC)R	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
•							

bit 15-3	Unimplemented: Read as '0)'
----------	---------------------------	----

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) ٠ 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-1	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		INT2IP<2:0>		—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3-0 Unimplemented: Read as '0'

REGISTER 8-	4: OSCTI	UN: FRC OS	CILLATOR 1		SISTER ⁽²⁾		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
<u>U-0</u>	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TUN	<5:0>(')		
bit 7							bit 0
Logondi							
R = Readable I	hit	W = Writable	bit	U = Unimpler	mented bit read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as '	0'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ce	nter frequency	+ 11.625% (8	.23 MHz)			
	011110 = Ce	nter frequency	+ 11.25% (8.2	20 MHZ)			
	•						
	•						
	000001 = Ce	nter frequency	+ 0.375% (7.4	40 MHz)			
	000000 = Ce	nter frequency	(7.37 MHz nd	ominal)			
	111111 = Ce	nter frequency	– 0.375% (7.3	345 MHz)			
	•						
	•						
	100001 = Ce 100000 = Ce	nter frequency nter frequency	– 11.625% (6 – 12% (6.49 l	.52 MHz) MHz)			

- **Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.
 - 2: This register is reset only on a Power-on Reset (POR).

13.1 Input Capture Registers

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	ICSIDL	—	_	—	_	_
bit 15		•			I		bit 8
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR ⁽¹⁾	ICI<	<1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0
		110					
Legend:	L :4	HC = Hardward	e Clearable bit		manted bit wa		
R = Readable		vv = vvritable b		0 = 0	nented bit, re	au as u	014/0
	OR	I = DILIS SEL			areu		OWI
bit 15-14	Unimplemen	ted: Read as '0	,				
bit 13	ICSIDL: Input	Capture Modul	e Stop in Idle C	ontrol bit			
	1 = Input capt	ture module halt	s in CPU Idle n	node			
	0 = Input capt	ture module con	tinues to opera	te in CPU Idle	mode		
bit 12-8	Unimplemen	ted: Read as '0	,				
bit 7	ICTMR: Input	Capture Timer	Select bit ⁽¹⁾				
	1 = TMR2 cor 0 = Reserved	ntents are captu	red on capture	event			
bit 6-5	ICI<1:0>: Sel	ect Number of C	Captures per Int	errupt bits			
	11 = Interrupt	on every fourth	capture event				
	10 = Interrupt	on every third o	capture event	.+			
	00 = Interrupt	on every captu	re event	IL			
bit 4	ICOV: Input C	apture Overflov	v Status Flag bi	t (read-only)			
	1 = Input capt	ture overflow oc	curred				
	0 = No input o	capture overflow	occurred				
bit 3	ICBNE: Input	Capture Buffer	Empty Status b	it (read-only)			
	1 = Input capt	ture buffer is not	: empty, at leasi intv	t one more cap	oture value ca	an be read	
bit 2-0	ICM<2:0>: Int	out Capture Mo	de Select bits				
2.1.2.0	111 = Input ca	apture functions	as interrupt pir	n only when de	evice is in Sle	ep or Idle mode	. Rising edge
	detect	only; all other co	ontrol bits are n	ot applicable.			0 0
	110 = Unused	d (module disab	led)				
	101 = Capture 100 = Capture	e mode, every 1 e mode, every 4	oth rising eage				
	011 = Capture	e mode, every r	ising edge				
	010 = Capture	e mode, every fa	alling edge		0. http://		
	for this	e moae, every e mode.	eage (rising and	railing). ICI<1	.u> dits do no	or control interru	pt generation

REGISTER 13-1: IC1CON: INPUT CAPTURE 1 CONTROL REGISTER

000 = Input capture module is turned off

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_		—	CMREF	<9:8> ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CMREF	⁼ <7:0> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-10	Unimplemen	ted: Read as 'o)'				
bit 9-0	CMREF<9:0>	Comparator F	Reference Vo	ltage Select bit	ts ⁽¹⁾		
	1111111111	= (CMREF * II	NTREF/1024)	or (CMREF *	(AVDD/2)/1024)	volts dependir	ng on RANGE
		bit or (CMRE	EF * EXTREF	/1024) if EXTF	REF is set		
	•						
	•						
	•						
	0000000000	= 0.0 volts					

REGISTER 20-2: CMPDACx: COMPARATOR DAC CONTROL x REGISTER

Note 1: These bits are not implemented in dsPIC33FJ06GS101A/102A devices.

22.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Programming and Diagnostics" (DS70207) and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F/PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 family of devices includes several features that are included to maximize application flexibility and reliability, and minimize cost through elimination of external components. These features are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

22.1 Configuration Bits

The configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 22-1 and Table 22-2. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration byte for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note:	Performing a page erase operation on the					
	last page of program memory, clears the					
	Flash Configuration Words, enabling code					
	protection as a result. Therefore, users					
	should avoid performing page erase					
	operations on the last page of program					
	memory					

The Configuration Flash Byte maps are shown in Table 22-1 and Table 22-2.

The Constant Current Source Calibration register is shown in Register 22-1.

Bit Field	Description
PLLKEN	PLL Lock Enable bit
	 1 = Clock switch to PLL source will wait until the PLL lock signal is valid 0 = Clock switch will not wait for the PLL lock signal
JTAGEN	JTAG Enable bit
	1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 22-3: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

24.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

24.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param.	Typical ⁽¹⁾	Max.	Units						
Idle Current (IIDLE): Core Off Clock On Base Current ⁽²⁾									
DC40d	13	21	mA	-40°C					
DC40a	13	21	mA	+25°C	3 3\/				
DC40b	13	21	mA	+85°C	5.5V				
DC40c	13	21	mA	+125°C					
DC41d	16	24	mA	-40°C					
DC41a	16	24	mA	+25°C	2 21/	16 MIPS ⁽³⁾			
DC41b	16	24	mA	+85°C	3.3V				
DC41c	16	24	mA	+125°C					
DC42d	17	27	mA	-40°C		20 MIPS ⁽³⁾			
DC42a	17	27	mA	+25°C	2 21/				
DC42b	17	27	mA	+85°C	3.3V				
DC42c	17	27	mA	+125°C					
DC43d	20	32	mA	-40°C					
DC43a	20	32	mA	+25°C	2 21/	30 MIPS ⁽³⁾			
DC43b	20	32	mA	+85°C	3.3V				
DC43c	20	32	mA	+125°C					
DC44d	23	37	mA	-40°C					
DC44a	23	37	mA	+25°C	2 21/				
DC44b	23	37	mA	+85°C	3.3V	40 101175			
DC44c	23	37	mA	+125°C					

TABLE 25-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Base Idle current is measured as follows:

CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD; WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- **3:** These parameters are characterized but not tested in manufacturing.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param.	Typical ⁽¹⁾	Max.	Doze Ratio	Units	Conditions			
Doze Current (Idoze) ⁽²⁾							
DC73a	30	45	1:2	mA				
DC73f	16	23	1:64	mA	-40°C	3.3V	40 MIPS	
DC73g	16	23	1:128	mA				
DC70a	30	45	1:2	mA				
DC70f	16	23	1:64	mA	+25°C	3.3V	40 MIPS	
DC70g	16	23	1:128	mA				
DC71a	30	45	1:2	mA			40 MIPS	
DC71f	16	23	1:64	mA	+85°C	3.3V		
DC71g	16	23	1:128	mA				
DC72a	30	45	1:2	mA				
DC72f	16	23	1:64	mA	+125°C	3.3V	40 MIPS	
DC72g	16	23	1:128	mA				

TABLE 25-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

· Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail

· CLKO is configured as an I/O input pin in the Configuration Word

· All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD; WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational

 No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)

• CPU is executing while (1) statement

TABLE 25-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
DO31	TIOR	I/O Pins: 4x Sink Driver Pins RA0-RA2, RB0-RB2, RB5-RB10, RB15	_	10	25	ns	Refer to Figure 25-1 for test conditions
		I/O Pins: 16x Sink Driver Pins RA3, RA4, RB3, RB4, RB11-RB14	—	6	15	ns	
DO32	TIOF	I/O Pins: 4x Sink Driver Pins RA0-RA2, RB0-RB2, RB5-RB10, RB15	—	10	25	ns	Refer to Figure 25-1 for test conditions
		I/O Pins: 16x Sink Driver Pins RA3, RA4, RB3, RB4, RB11-RB14	—	6	15	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_		ns	
DI40	Trbp	CNx High or Low Time (input)	2		_	TCY	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 25-14: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 25-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: $3.0V$ to $3.6V$ (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $40^{\circ}C = TA \leq +85^{\circ}C$ for Industrial				
Param No.	Symbol	Min	Тур ⁽²⁾	-40 Max	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency	—	—	9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

18-Lead PDIP

18-Lead SOIC (.300")

20-Lead SSOP

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package
Note:	If the full N line, thus I	Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.