

Welcome to E-XFL.COM

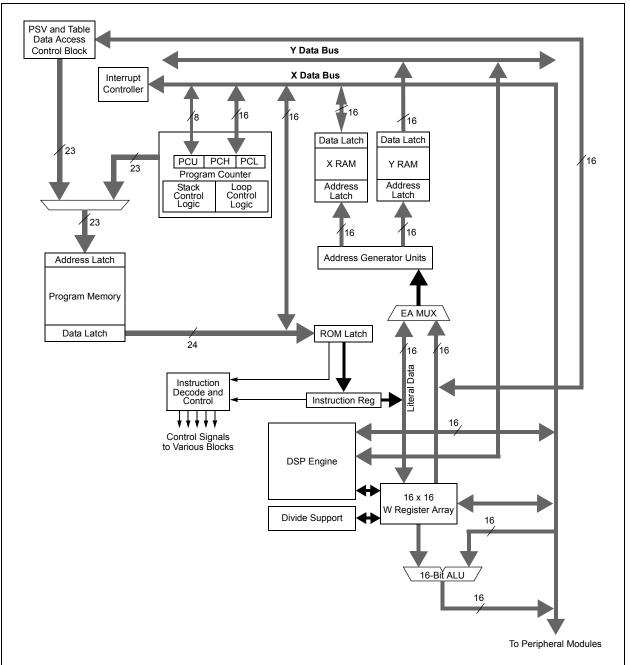
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202a-e-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Special MCU Features

A 17-bit by 17-bit single-cycle multiplier is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The 16/16 and 32/16 divide operations are supported, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: CPU CORE BLOCK DIAGRAM

IADLE	4-1.		LINIOF		NOLLEN				IN USFI	COOLING	002027							
File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	—	—	—	_	—	_	-	—	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084		—	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	_	T2IF	—	_	_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	_	_	INT2IF	_	_	_	_	-	_	_		INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	008A	_	_	_	_	—	_	PSEMIF	-		_		_	_		_		0000
IFS4	008C	_	_	_	_	_	_	_	_	_	_	_	_	—	_	U1EIF		0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_		_	_	_	_	_	_	_		_	JTAGIF	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	_	_	AC2IF	_	_	_	—	_	_		0000
IFS7	0092	_	_	_	_	_	_	_	_	_	_	_	ADCP6IF	—	_	_	ADCP2IF	0000
IEC0	0094	_	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	_	T2IE	_	_	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	_	_	INT2IE	_	_	_	_	_	_	_	_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	_	_	_	_	_	PSEMIE	_	_	_	_	_	_	_	_	_	0000
IEC4	009C		—	—	—	—		—			—		_	—	-	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	_	_	_	_	_	_	_	_	_	_	_	_	_	JTAGIE	0000
IEC6	00A0	ADCP1IE	ADCP0IE	—	—	—		—		AC2IE	—		_	—	_	—	_	0000
IEC7	00A2		—	—	—	—		—			—		ADCP6IE	—		—	ADCP2IE	0000
IPC0	00A4			T1IP<2:0>		—	U	OC1IP<2:0)>			IC1IP<2:0>	•	—		INT0IP<2:0>		4444
IPC1	00A6			T2IP<2:0>		—		—			—		—	—		—		4000
IPC2	00A8			U1RXIP<2:0)>	—		SPI1IP<2:0)>		5	SPI1EIP<2:0)>	—		—		4440
IPC3	00AA		—	—	—	—		—				ADIP<2:0>		—	ι	J1TXIP<2:0>	•	0044
IPC4	00AC			CNIP<2:0>	•	—		AC1IP<2:0	>		Ν	/II2C1IP<2:0)>	—	9	SI2C1IP<2:0	>	4444
IPC5	00AE		—	—	—	—		—			—		—	—		INT1IP<2:0>		0004
IPC7	00B2		—	—	—	—		—				INT2IP<2:0	>	—		—		0040
IPC14	00C0		—	—	—	—		—			F	PSEMIP<2:0)>	—		—		0040
IPC16	00C4		—	—	—	—		—				U1EIP<2:0	>	—		—		0040
IPC20	00CC		—	—	—	—		—			—		—	—	,	JTAGIP<2:0>	•	0004
IPC23	00D2		F	PWM2IP<2:()>	—	Р	WM1IP<2:	0>		—		—	—		—		4400
IPC25	00D6	-		AC2IP<2:0	>	_		_	_	_	_	_	_	—	-	_	_	4000
IPC27	00DA		A	ADCP1IP<2:	0>	—	A	DCP0IP<2	:0>		-	-	_	—	-	—	_	4400
IPC28	00DC	-	_	_	_	_		_	_	_	_	_	_	—	A	DCP2IP<2:0	>	0004
IPC29	00DE	-	_	_	_	_	_	_	-	_	_	_	_	_	A	DCP6IP<2:0	>	0004
INTTREG	00E0	_	_	_	_		ILR<	3:0>		_			١	/ECNUM<6:0)>			0000

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS202A DEVICES ONLY

		USFICJ	313036	53302														
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0480	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC	<1:0>	—	—	—	CAM	XPRES	IUE	0000
IOCON4	0482	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	AT<1:0>	FLTDA	T<1:0>	CLDA	T<1:0>	SWAP	OSYNC	0000
FCLCON4	0484	IFLTMOD			CLSRC<4	:0>		CLPOL	CLMOD		F	LTSRC<4	:0>		FLTPOL	FLTMO	D<1:0>	0000
PDC4	0486								PDC4<15	:0>								0000
PHASE4	0488								PHASE4<1	5:0>								0000
DTR4	048A	_	-		DTR4<13:0>							0000						
ALTDTR4	048C	_	—						/	ALTDTR4	<13:0>							0000
SDC4	048E								SDC4<15	:0>								0000
SPHASE4	0490							5	SPHASE4<	15:0>								0000
TRIG4	0492						TRGC	MP<15:3>							—	_	—	0000
TRGCON4	0494		TRGD	IV<3:0>		_	_	_	—	DTM	—			TRG	STRT<5:0	>		0000
STRIG4	0496						STRGC	MP<15:3>							—	_	—	0000
PWMCAP4	0498						PWMC	AP4<15:3>							—	_	—	0000
LEBCON4	049A	PHR	PHF	PLR	PLF FLTLEBEN CLLEBEN LEB<6:0>							0000						
AUXCON4	049E	HRPDIS	HRDDIS	_	_	_	_	_	_	_	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000
1																		

TABLE 4-15: HIGH-SPEED PWM GENERATOR 4 REGISTER MAP FOR dsPIC33FJ06GS001, dsPIC33FJ06GS101A AND dsPIC33FJ09GS302

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7	-9: IFS5:	INTERRUPT	FLAG STAT	US REGISTI	ER 5		
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
PWM2IF ⁽¹⁾	PWM1IF			_			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_			_	_	_	_	JTAGIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	hit	l I = l Inimplei	mented bit, read	l as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	PWM2IF: PV	VM2 Interrupt F	lag Status bit ^{(*}	1)			
		request has oc					
	0 = Interrupt	request has not	occurred				
bit 14	PWM1IF: PV	VM1 Interrupt F	ag Status bit				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has not	t occurred				
bit 13-1	Unimplemer	nted: Read as '	0'				
bit 0	JTAGIF: JTA	G Interrupt Flag	g Status bit				
		request has oc	-				
	•	request has not					

Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0		
—	—	—	—	ILR<3:0>					
bit 15							bit 8		
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
—				VECNUM<6:0>					
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	it	U = Unimpleme	nted bit, re	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkn	own		
bit 15-12	Unimpleme	nted: Read as '0'							
bit 11-8	ILR<3:0>: ℕ	lew CPU Interrupt	t Priority Lev	/el bits					
	1111 = CPL	J Interrupt Priority	Level is 15						
	•								
	•								
	• 0001 = CPI	J Interrupt Priority	l evel is 1						
		J Interrupt Priority							
bit 7	Unimpleme	nted: Read as '0'							
bit 6-0	-	:0>: Vector Numb		ng Interrupt bits					
		Interrupt vector pe		•					
	•	··· · · · · · · · · · ·	J						
	•								
	•	Interruption	anding in Ne	mbor 0					
		Interrupt vector pe Interrupt vector pe	•						
	- 0000000 -								

8.4 Oscillator Control Registers

REGISTER	、8-1: OSCC	ON: OSCILL	ATOR CON	TROL REGIS	STER		
U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
		COSC<2:0>				NOSC<2:0>(2)	
bit 15	·						bit
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0
CLKLOC		LOCK		CF			OSWEN
bit 7		LOOK		01			bit
Legend:		•	•	ration bits on P			
R = Reada		W = Writable		•	mented bit, rea		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cl€	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only	()		
	101 = Low-Po 100 = Reserv 011 = Primar 010 = Primar 001 = Fast R	C Oscillator (Fl ower RC Oscill yed y Oscillator (XT y Oscillator (XT C Oscillator (Fl C Oscillator (Fl	ator (LPRC) , HS, EC) wit , HS, EC) RC) with PLL	-			
oit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bit	S ⁽²⁾			
	110 = Fast R 101 = Low-Po 100 = Reserv 011 = Primar 010 = Primar 001 = Fast R	C Oscillator (FI C Oscillator (FI ower RC Oscilla red y Oscillator (XT y Oscillator (XT C Oscillator (FI C Oscillator (FI	RC) with divid ator (LPRC) , HS, EC) wit , HS, EC) RC) with PLL	le-by-16			
oit 7		Clock Lock Ena					
	1 = Clock sw	itching is disab	led, system c	lock source is	locked	SC<7:6>) bits =	
oit 6	1 = Peripheri		locked, write			sters is not allow registers is allow	
oit 5	LOCK: PLL L	ock Status bit (read-only)				
		that PLL is in I that PLL is ou				L is disabled	
	Writes to this regis in the <i>"dsPIC33F/</i> F					cillator (Part IV)" (DS70307
2:	Direct clock switch ted. This applies to FRC mode as a tra	es between an clock switche	y Primary Os s in either dire	cillator mode w ection. In these	vith PLL and Fl instances, the		
	This register is res						

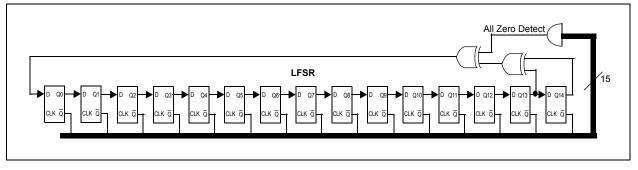
REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

3: This register is reset only on a Power-on Reset (POR).

8.6 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate, even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.


If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

8.7 Pseudo-Random Generator

The pseudo-random generator is implemented with a 15-bit Linear Feedback Shift Register (LFSR), which is a shift register with a few exclusive OR gates. The shift register is clocked by the PWM clock and is a read-only register. The purpose of this feature is to provide the ability to randomly change the period or the active portion of the PWM.

A firmware routine can be used to read "n" random bits from the LFSR register and combine them, by either summing or performing another logical operation with the PWM period of the Duty Cycle registers. The result will be a PWM signal whose nominal period (or duty cycle) is the desired one, but whose effective value changes randomly. This capability will help in reducing the EMI/EMC emissions by spreading the power over a wider frequency range.

Figure 8-3 provides a block diagram of the LFSR.

			-	-			
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_				T1Cł	<r<5:0></r<5:0>		
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		_	—	—	—
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13-8	T1CKR<5:0>	: Assign Timer	1 External Clo	ock (T1CK) to t	he Correspond	ling RPn Pin bits	6
	111111 = Inp	out tied to Vss					
	100011 = Inp	out tied to RP35	5				
		out tied to RP34					
		out tied to RP33					
	100000 = Inp	out tied to RP32	2				
	•						
	•						
	•						
	00000 = Inpu	it tied to RP0					
bit 7-0	Unimplemen	ted: Read as ')'				
	-						

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			SCK1F	R<5:0> ⁽¹⁾		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
				SDI1R	<5:0> ⁽¹⁾		
bit 7							bit (
Legend:							
R = Readabl		W = Writable		•	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
L:1 4 5 4 4		ta da Da a da a (~ '				
bit 15-14	-	ted: Read as '				(4)	
bit 13-8	SCK1R<5:0>	: Assign SPI1	Clock Input (S	CK1) to the Co	prresponding R	Pn Pin bits ⁽¹⁾	
	111111 = Inp						
		out tied to RP3					
		out tied to RP34					
		out tied to RP3					
		out tied to RP32	2				
	•						
	•						
	00000 = Inpu	t tied to RP0					
bit 7-6		ted: Read as '	0'				
bit 5-0	-			11) to the Corre	esponding RPn	Pin bits ⁽¹⁾	
	111111 = Inp				sepending rain		
		out tied to RP3	5				
		out tied to RP34					
		out tied to RP33					
		out tied to RP32					
	•						
	•						
	•						
	00000 = Inpu	t tied to RPO					
	00000 – mpu						

REGISTER 10-8: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT7	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT6	R<5:0>		
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '()'				
bit 13-8	•	: Assign PWM F		=I T7) to the Co	orresponding R	Pn Pin hits	
		put tied to Vss			incoponding is		
		put tied to RP35					
	100010 = ln	put tied to RP34					
		put tied to RP34 put tied to RP33					
	100001 = In		1				
	100001 = In	put tied to RP33	1				
	100001 = In	put tied to RP33	1				
	100001 = In	put tied to RP33	1				
	100001 = In 100000 = In •	put tied to RP33 put tied to RP32	1				
bit 7-6	100001 = In 100000 = In • • • 00000 = Inp	put tied to RP33 put tied to RP32 ut tied to RP0					
bit 7-6	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0	; ; ;	ELT6) to the Co	prresponding P	PDn Din hits	
bit 7-6 bit 5-0	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 :: Assign PWM F	; ; ;	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss	₎ , Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35) ⁾ Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34) ⁾ Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁼ LT6) to the Co	prresponding R	Pn Pin bits	

REGISTER 10-13: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP9R	<5:0> ⁽¹⁾		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			RP8R	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 10-20: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP9R<5:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP8R<5:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 10-21: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				RP11F	<5:0> ⁽¹⁾		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RP10F	<5:0> ⁽¹⁾		
bit 7							bit 0

Legend:			
R = Readable bit W = Writable bit		U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

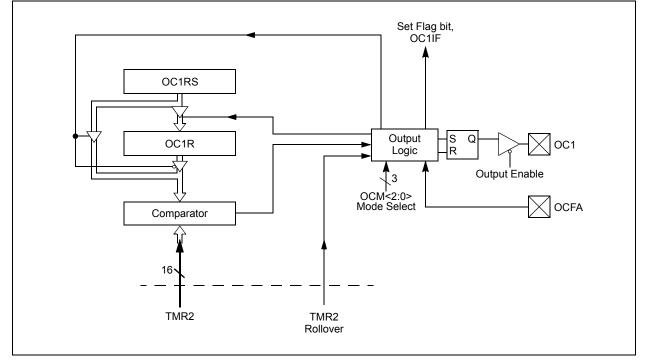
- RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits⁽¹⁾ bit 13-8 (see Table 10-2 for peripheral function numbers) bit 7-6 Unimplemented: Read as '0'
- RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits⁽¹⁾ bit 5-0 (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

14.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer1 or Timer2 for its time base. The module compares the value of the timer with the value of one or two Compare registers, depending on the operating mode selected. The state of the output pin changes when the timer value matches the Output Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.


The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

Note:	The out	put co	mpare	module	is	not
	implemer	nted in	the dsF	PIC33FJ0	6GS	6001
	device.					

If a Fault condition is detected on the OCFA pin, the output pin(s) of the output compare module are placed in tri-state. The user may elect to use a pull-down or pull-up resistor on the PWM pin to provide for a desired state if a Fault condition occurs.

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

15.2 Feature Description

The PWM module is designed for applications that require:

- High-resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode, and Push-Pull mode outputs
- · The ability to create multiphase PWM outputs

For Center-Aligned mode, the duty cycle, period, phase and dead-time resolutions will be 8.32 ns.

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

A phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable. A multiphase PWM is often used to improve DC/DC Converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC Converters are often operated in parallel, but phase-shifted in time. A single PWM output, operating at 250 kHz, has a period of 4 μ s, but an array of four PWM channels staggered by 1 μ s each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

A variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50%, and the power flow is controlled by varying the relative phase-shift between the two PWM generators.

REGISTER 15-15: FCLCONX: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

bit 7-3

FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits^(2,3)

- .
- .
- •
- 01000 = Reserved
- 00111 = Fault 8 00110 = Fault 7 00101 = Fault 6 00100 = Fault 5 00011 = Fault 4 00010 = Fault 3
- 00001 = Fault 2 00000 = Fault 1
- bit 2 **FLTPOL:** Fault Polarity for PWMx Generator # bit⁽¹⁾
 - 1 = The selected Fault source is active-low
 - 0 = The selected Fault source is active-high

bit 1-0 **FLTMOD<1:0>:** Fault Mode for PWMx Generator # bits

- 11 = Fault input is disabled
- 10 = Reserved
- 01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
- 00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 2: When Independent Fault mode is enabled (IFLTMOD<1:0> = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
 - 3: When Independent Fault mode is enabled (IFLTMOD<1:0> = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

REGISTE	R 17-2: I20	C1STAT: I2C1	STATUS RE	GISTER			
R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT			_	BCL	GCSTAT	ADD10
bit 15					•		bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0
Legend:		HS - Hardwa	re Settable biť	HSC - Hardward	e Settable/Clearab	le hit	
R = Reada	blo bit	W = Writable I			ited bit, read as '0'		hit
			JIL	•			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleare	a	x = Bit is unkr	IOWN
bit 15	(when operat 1 = NACK is	received from s	ter, applicable t slave	o master transmi	t operation)		
		ceived from sla					
bit 14			end of slave Ack		applicable to ma	etor transmit o	poration)
DIL 14			gress (8 bits +	-	applicable to ma		peration)
	0 = Master tra	ansmit is not in	progress		are is clear at en	d of slave Ackr	owledge.
bit 13-11	Unimplemen	ted: Read as '	0'				
bit 10	BCL: Master	Bus Collision I	Detect bit				
	0 = No collisio	on		ig a master opera	ation		
1.11.0			of bus collision	1.			
bit 9		neral Call Statu					
	0 = General o	call address wa call address wa set when addre	is not received	neral call address	s. Hardware is cle	ear at Stop dete	ection.
bit 8		Bit Address Stat	-				
	0 = 10-bit add	dress was mate dress was not r	natched	tched 10-bit addr	ess. Hardware is	clear at Stop o	letection
bit 7		e Collision Det	-				
				ister failed becau	se the I ² C modul	e is busv	
	0 = No collisio	on	-		sy (cleared by sol	-	
bit 6	I2COV: Rece	ive Overflow F	lag bit				
	0 = No overflo	ow		-	olding the previo	-	
6.4 <i>C</i>					(cleared by softw	vare).	
bit 5	1 = Indicates 0 = Indicates	that the last by that the last by		s data s the device addr	ess by reception of s	lave byte.	
bit 4	P: Stop bit						
	1 = Indicates 0 = Stop bit w	as not detecte		cted last ted Start or Stop	is detected		

REGISTER 17-2: I2C1STAT: I2C1 STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	_	—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—		—
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
—	_	CCSCAL<5:0>					
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplei	mented bit, read	1 as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 22-1: CONSTANT CURRENT SOURCE CALIBRATION REGISTER

bit 23-6 Unimplemented: Read as '0'

bit 5-0 CCSCAL<5:0>: Constant Current Source Calibration bits

The value of these bits must be copied into the ISRCCAL<5:0> bits (ISRCCON<5:0>). Refer to the Current Source Control register (Register 21-1) in **Section 21.0** "**Constant Current Source**".

22.4 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

22.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit (FWDT<4>). With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

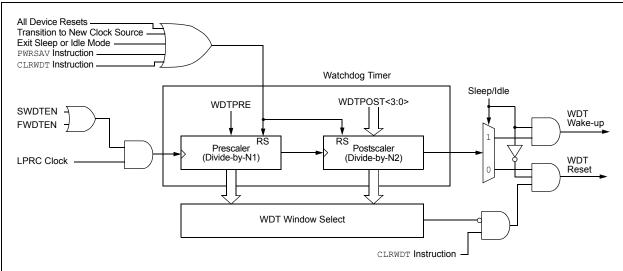
A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC<2:0> bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

22.4.2 SLEEP AND IDLE MODES


If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP bit (RCON<3>) or IDLE bit (RCON<2>) will need to be cleared in software after the device wakes up.

22.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register (FWDT<7>). When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

FIGURE 22-2: WDT BLOCK DIAGRAM

	E 23-2:		JCTION SET OVERVIE		1		
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
			Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	2	None
		CALL	Wn	Call Indirect Subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
10	0111	CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT	Acc, wa, wau, wy, wyu, Awb	Clear Watchdog Timer	1	1	WDTO,Sleep
			<u></u>	$f = \overline{f}$			
17	COM	COM	f		1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – \overline{C})	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
27		DEC2	f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z
							-,,,,_
		DEC2	Ws,Wd	Wd = Ws – 2	1	1	C,DC,N,OV,Z

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

24.0 DEVELOPMENT SUPPORT

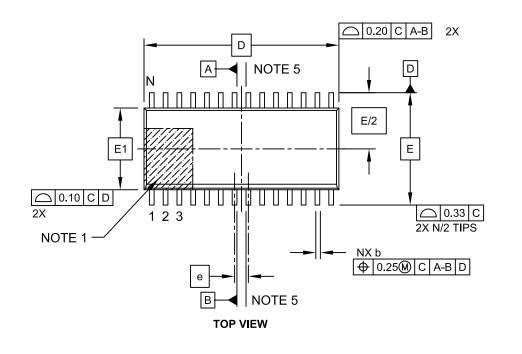
The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

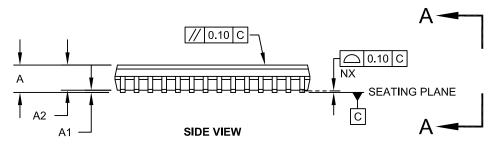
- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

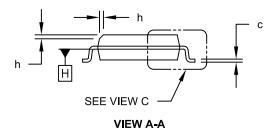
24.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers


The MPLAB IDE allows you to:


- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code


MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2