

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202a-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.

This document contains device-specific information for the following dsPIC33F Digital Signal Controller (DSC) devices:

- dsPIC33FJ06GS001
- dsPIC33FJ06GS101A
- dsPIC33FJ06GS102A
- dsPIC33FJ06GS202A
- dsPIC33FJ09GS302

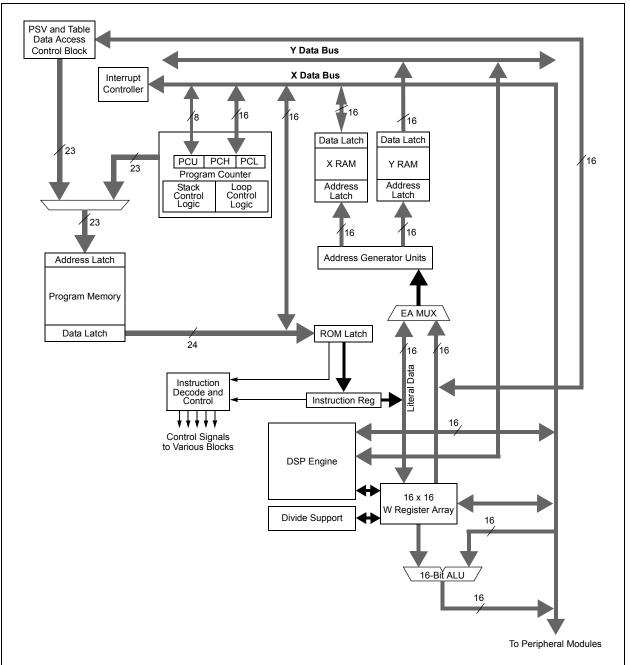

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

3.3 Special MCU Features

A 17-bit by 17-bit single-cycle multiplier is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The 16/16 and 32/16 divide operations are supported, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: CPU CORE BLOCK DIAGRAM

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

IABLE 4-1	1:		LE KEGI															
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000						V	Vorking Regist	er 0									0000
WREG1	0002						V	Vorking Regist	er 1									0000
WREG2	0004						V	Vorking Regist	er 2									0000
WREG3	0006						V	Vorking Regist	er 3									0000
WREG4	0008						V	Vorking Regist	er 4									0000
WREG5	000A						V	Vorking Regist	er 5									0000
WREG6	000C						V	Vorking Regist	er 6									0000
WREG7	000E						V	Vorking Regist	er 7									0000
WREG8	0010						V	Vorking Regist	er 8								,	0000
WREG9	0012						V	Vorking Regist	er 9									0000
WREG10	0014						W	orking Registe	er 10								,	0000
WREG11	0016						W	/orking Registe	er 11								,	0000
WREG12	0018						W	orking Registe	er 12									0000
WREG13	001A						W	orking Registe	er 13								,	0000
WREG14	001C						W	orking Registe	er 14									0000
WREG15	001E						W	orking Registe	er 15								,	0800
SPLIM	0020						Stack	Pointer Limit	Register								,	XXXX
ACCAL	0022							ACCAL										XXXX
ACCAH	0024							ACCAH									,	XXXX
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCA	Ú				XXXX
ACCBL	0028							ACCBL		•							,	XXXX
ACCBH	002A							ACCBH										XXXX
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCB	U				XXXX
PCL	002E					•	Program C	Counter Low W	ord Register	r								0000
PCH	0030	_	_	_	_	_	_	_	_			Program	Counter Hig	gh Byte I	Register			0000
TBLPAG	0032	_	_	_	_	_	_	_	_			Table Pa	ge Address	Pointer I	Register			0000
PSVPAG	0034	_	_	_	_	_	_	_	_		Program	Memory V	isibility Pag	e Addres	ss Pointe	er Regist	er	0000
RCOUNT	0036						Repea	t Loop Counte	r Register									XXXX
DCOUNT	0038							DCOUNT<15:	0>									XXXX
DOSTARTL	003A						DOST	TARTL<15:1>									0	XXXX
DOSTARTH	003C	—	—	_	_	_	_	_	—	—	—		DC	START	H<5:0>			00xx
DOENDL	003E						DOE	NDL<15:1>									0	XXXX
DOENDH	0040	—	—	_	_	_	_	_	—	—	—			DOEN	DH			00xx
	0042	OA	OB	SA	SB	1		-			IPL<2:0		1		-	-		+

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK	—	GSWTRG	_	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	A	DCS<2:0	>	0003
ADPCFG	0302	_	—	_	—	-	—	_	_	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306		—	—	—		_	_	—	_	P6RDY	—	—	P3RDY	P2RDY	P1RDY	PORDY	0000
ADBASE	0308							Α	DBASE<	15:1>							_	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1		TRO	SRC1<4:0>			IRQEN0	PEND0	SWTRG0		TRGS	RC0<4:0>			0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3		TRO	SRC3<4:0>			IRQEN2	PEND2	SWTRG2		TRGS	RC2<4:0>			0000
ADCPC3	0310		—	—	_		_	_	—	IRQEN6	PEND6	SWTRG6		TRGS	RC6<4:0>			0000
ADCBUF0	0320								ADC Da	ata Buffer 0								XXXX
ADCBUF1	0322								ADC Da	ata Buffer 1								XXXX
ADCBUF2	0324								ADC Da	ata Buffer 2								XXXX
ADCBUF3	0326								ADC Da	ata Buffer 3								XXXX
ADCBUF4	0328								ADC Da	ata Buffer 4								XXXX
ADCBUF5	032A								ADC Da	ata Buffer 5								XXXX
ADCBUF6	032C		ADC Data Buffer 6								XXXX							
ADCBUF7	032E		ADC Data Buffer 7								xxxx							
ADCBUF12	0338		ADC Data Buffer 12								xxxx							
ADCBUF13	033A		ADC Data Buffer 13 x							xxxx								

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: ANALOG COMPARATOR CONTROL REGISTER MAP FOR dsPIC33FJ06GS001, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

File Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMPCON1	0540	CMPON	_	CMPSIDL	HYSSI	EL<1:0>	FLTREN	FCLKSEL	DACOE ⁽¹⁾	INSEL	.<1:0>	EXTREF	HYSPOL	CMPSTAT	HGAIN	CMPPOL	RANGE	0000
CMPDAC1	0542	_	_	_	_	_	_					CMR	EF<9:0>					0000
CMPCON2	0544	CMPON	_	CMPSIDL	HYSSI	EL<1:0>	FLTREN	FCLKSEL	DACOE ⁽¹⁾	INSEL	.<1:0>	EXTREF	HYSPOL	CMPSTAT	HGAIN	CMPPOL	RANGE	0000
CMPDAC2	0546	—	_	_	_	_	_	CMREF<9:0>						0000				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is not available in the dsPIC33FJ06GS001 device.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred

bit 0 POR: Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles; otherwise, the program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and the old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

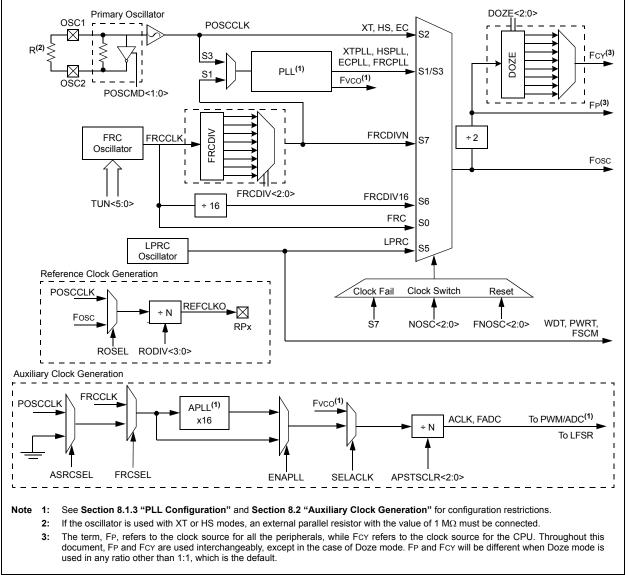
The following steps outline the procedure to disable all user interrupts:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0xE0 with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(Level 8-Level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.


8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase Lock Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection
- An auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: OSCILLATOR SYSTEM DIAGRAM

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15				· · · · · · · · · · · · · · · · · · ·			bit
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLP	OST<1:0>	_		F	PLLPRE<4:	0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpleme	ented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	own
bit 15	1 = Interrupts	on Interrupt bi will clear the I have no effec	DOZEN bit a		clock/periph	eral clock ratio is :	set to 1:1
	111 = FCY/12 110 = FCY/64 101 = FCY/32 100 = FCY/16 011 = FCY/8 (010 = FCY/4 001 = FCY/2 000 = FCY/1	-					
bit 11	DOZEN: Doze 1 = DOZE<2		es the ratio b	between the perip o is forced to 1:1	heral clocks	and the processo	or clocks
bit 10-8	111 = FRC di 110 = FRC di 101 = FRC di 100 = FRC di 011 = FRC di 010 = FRC di 001 = FRC di	vide-by-256 vide-by-64 vide-by-32 vide-by-16 vide-by-8 vide-by-4		or Postscaler bits			
bit 7-6		0>: PLL VCO (d (default)	-	er Select bits (also	o denoted a	s 'N2', PLL postsc	aler)
bit 5 bit 4-0	Unimplemen PLLPRE<4:0 11111 = Inpu • •	ted: Read as 'i >: PLL Phase I t/33		ıt Divider bits (als	o denoted a	is 'N1', PLL presca	aler)
	00001 = Inpu 00000 = Inpu						

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

REGISTER 9	-3: PMD3	3: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 3	
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	—	—	—	—	CMPMD ⁽¹⁾	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—				_	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at F	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown

DECISTED 0 2. AL MODULE DISABLE CONTROL DECISTED 2 DMD2. DE

bit 15-11	Unimplemented:	Read as '0'	,

bit 10	CMPMD: Analog Comparator Module Disable bit ⁽¹⁾
	1 = Analog comparator module is disabled
	0 = Analog comparator module is enabled
bit 9-0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Generator Module Disable bit
	1 = Reference clock generator module is disabled
	0 = Reference clock generator module is enabled
bit 2-0	Unimplemented: Read as '0'

REGISTER 9	EGISTER 9-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7							
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
	_	—	_			CMP2MD ⁽¹⁾	CMP1MD ⁽¹⁾	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	—	—	—	_	—		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown	

bit 15-10	Unimplemented: Read as '0'
bit 9	CMP2MD: Analog Comparator 2 Module Disable bit ⁽¹⁾
	1 = Analog Comparator 2 module is disabled0 = Analog Comparator 2 module is enabled
bit 8	CMP1MD: Analog Comparator 1 Module Disable bit ⁽¹⁾
	1 = Analog Comparator 1 module is disabled0 = Analog Comparator 1 module is enabled
bit 7-0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

10.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some digital only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V), on any desired 5V tolerant pins, by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to the **"Pin Diagrams"** section for the available pins and their functionality.

10.3 Configuring Analog Port Pins

The ADPCFG and TRIS registers control the operation of the Analog-to-Digital port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin, defined as a digital input (including the ANx pins), can cause the input buffer to consume current that exceeds the device specifications.

10.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 10-1.

10.5 Input Change Notification

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States (COS), even in Sleep mode when the clocks are disabled. Depending on the device pin count, up to 16 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the CN module. The CNEN1 register contains the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pin.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately, using the CNPU1 register, which contains the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_		—	_	_		—				
bit 15							bit 8			
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
			10/00-1		R<5:0> ⁽¹⁾	10/00-1	10/00-1			
bit 7							bit 0			
. .										
Legend:										
R = Readab	ole bit	W = Writable	bit	-	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
h# 45 0		ata da Danadara (j	~ .							
bit 15-6	-	nted: Read as '				(1	N N			
bit 5-0		>: Assign Outpu	it Compare A	(OCFA) to the	Corresponding	RPn Pin bits)			
		put tied to Vss								
		put tied to RP35								
		put tied to RP34								
		put tied to RP33								
	100000 = In	put tied to RP32	2							
	•									
	•									
	•									
	00000 = Inp	ut tied to RP0								
	·									

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

15.0 HIGH-SPEED PWM

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 43. "High-Speed PWM" (DS70323) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed PWM module supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction (PFC)
- Uninterruptible Power Supply (UPS)
- Inverters
- · Battery Chargers
- · Digital Lighting

15.1 Features Overview

The high-speed PWM module incorporates the following features:

- Two to three PWM generators with four to six outputs
- Individual time base and duty cycle for each of the six PWM outputs
- · Dead time for rising and falling edges:
- Duty cycle resolution of 1.04 ns^(1,2)
- Dead-time resolution of 1.04 ns^(1,2)
- Phase-shift resolution of 1.04 ns^(1,2)
- Frequency resolution of 1.04 ns^(1,2)

Note 1: Resolution is 8.32 ns in Center-Aligned PWM mode.

2: Resolution is 8.32 ns for dsPIC33FJ06GS001 devices.

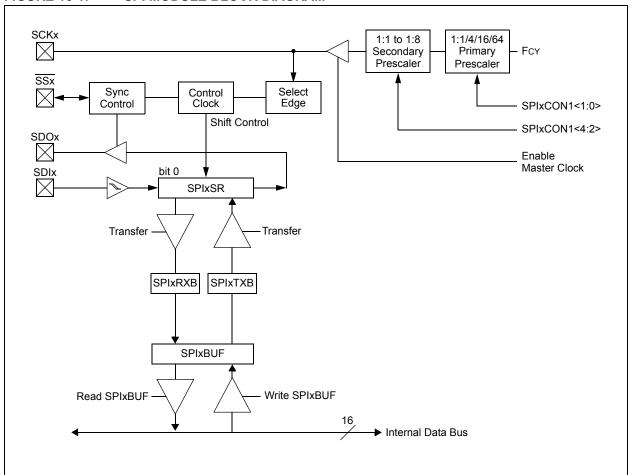
- Supported PWM modes:
 - Standard Edge-Aligned
 - True Independent Output
 - Complementary
 - Center-Aligned
 - Push-Pull
 - Multiphase
 - Variable Phase
 - Fixed Off Time
 - Current Reset
 - Current Limit
- Independent Fault/Current-Limit inputs for each of the six PWM outputs
- Output override control
- Special Event Trigger
- · PWM capture feature
- Prescaler for input clock
- Dual trigger from PWM to ADC
- PWMxH, PWMxL output pin swapping
- Remappable PWM4H, PWM4L pins
- On-the-fly PWM frequency, duty cycle and phase-shift changes
- Disabling of individual PWM generators to reduce power consumption
- Leading-Edge Blanking (LEB) functionality
- PWM output chopping (see Note 1)
 - **Note 1:** The chopping function performs a logical AND of the PWM outputs with a very high-frequency clock signal. The chopping frequency is typically hundreds or thousands of time higher in frequency, as compared to the PWM frequency. Chopping a PWM signal constrains the use of a pulse transformer to cross the isolation barrier.

Figure 15-1 conceptualizes the PWM module in a simplified block diagram. Figure 15-2 illustrates how the module hardware is partitioned for each PWM output pair for the Complementary PWM mode. Each functional unit of the PWM module is discussed in subsequent sections.

The PWM module contains three PWM generators. The module has up to six PWM output pins: PWM1H, PWM1L, PWM2H, PWM2L, PWM4H and PWM4L. For complementary outputs, these six I/O pins are grouped into H/L pairs.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- · SDIx (serial data input)
- · SDOx (serial data output)
- · SCKx (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCKx is a clock output; in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

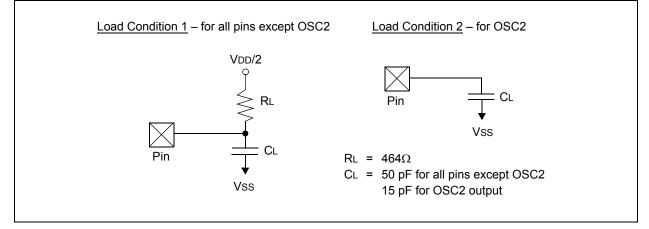
REGISTER 19-7: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3⁽¹⁾ (CONTINUED)

```
bit 4-0
  TRGSRC6<4:0>: Trigger 6 Source Selection bits
  Selects trigger source for conversion of analog channels AN13 and AN12.
   11111 = Timer2 period match
  11011 = Reserved
  11010 = PWM Generator 4 current-limit ADC trigger
  11001 = Reserved
  11000 = PWM Generator 2 current-limit ADC trigger
  10111 = PWM Generator 1 current-limit ADC trigger
  10110 = Reserved
  10010 = Reserved
  10001 = PWM Generator 4 secondary trigger is selected
  10000 = Reserved
  01111 = PWM Generator 2 secondary trigger is selected
  01110 = PWM Generator 1 secondary trigger is selected
  01101 = Reserved
```

01101 = Timer1 period match 01100 = Timer1 period match 01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00011 = Global software trigger is selected 00001 = Individual software trigger is selected

00000 = No conversion is enabled

- **Note 1:** If other conversions are in progress, conversion will be performed when the conversion resources are available.
 - 2: AN13 is internally connected to Vref in all devices. AN12 is internally connected to the EXTREF pin in the dsPIC33FJ06001/202A and dsPIC33FJ09GS302 devices. The dsPIC33FJ06GS101A/102A devices not have an EXTREF pin; therefore, any data read on the corresponding AN12 input will be invalid.


25.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 AC characteristics and timing parameters.

TABLE 25-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Table 25-1.

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	_	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCL1, SDA1		_	400	pF	In I ² C™ mode

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8		8	MHz	ECPLL, XTPLL modes		
OS51	Fsys	On-Chip VCO System Frequency	100	—	200	MHz			
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	mS			
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	Measured over 100 ms period		

TABLE 25-17:PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCK) is 2 MHz.

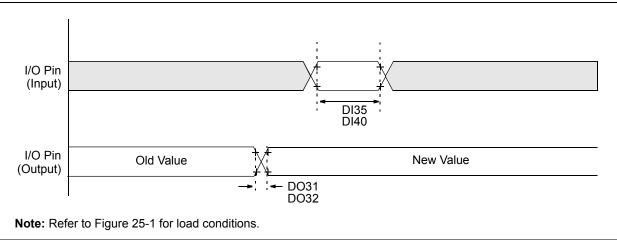
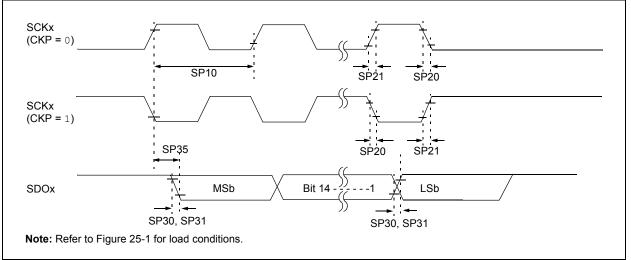

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$

TABLE 25-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

			(unless	rd Operat otherwis ng temper	e stated) ature -4	0°C ≤ TA	3.0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions				
OS56	Fhpout	On-Chip 16x PLL CCO Frequency	112	118	120	MHz	
OS57	Fhpin	On-Chip 16x PLL Phase Detector Input Frequency	7.0	7.37	7.5	MHz	
OS58	Tsu	Frequency Generator Lock Time	—	—	10	μs	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

TABLE 25-21: I/O TIMING REQUIREMENTS


AC CHARACTERISTICS			(unless	rd Operat otherwis	e statec ature -	i) -40°C ≤ T	3.0V to 3.6V $A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extended
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	I/O Pins: 4x Sink Driver Pins RA0-RA2, RB0-RB2, RB5-RB10, RB15	_	10	25	ns	Refer to Figure 25-1 for test conditions
		I/O Pins: 16x Sink Driver Pins RA3, RA4, RB3, RB4, RB11-RB14	—	6	15	ns	
DO32	TioF	I/O Pins: 4x Sink Driver Pins RA0-RA2, RB0-RB2, RB5-RB10, RB15	_	10	25	ns	Refer to Figure 25-1 for test conditions
		I/O Pins: 16x Sink Driver Pins RA3, RA4, RB3, RB4, RB11-RB14	—	6	15	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_		ns	
DI40	Trbp	CNx High or Low Time (input)	2		_	TCY	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

AC CHARAG	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	СКЕ	СКР	SMP		
15 MHz	Table 25-30	_	_	0,1	0,1	0,1		
9 MHz	_	Table 25-31	—	1	0,1	1		
9 MHz	—	Table 25-32	—	0	0,1	1		
15 MHz	_	—	Table 25-33	1	0	0		
11 MHz	—	—	Table 25-34	1	1	0		
15 MHz	_	—	Table 25-35	0	1	0		
11 MHz	_	—	Table 25-36	0	0	0		

TABLE 25-29: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

TABLE 25-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	_		11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	-		ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40			ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.