

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202a-i-sp

Email: info@E-XFL.COM

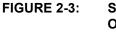
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP[™] Pins

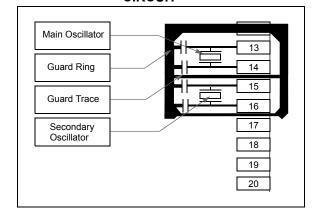
The PGECx and PGEDx pins are used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins, are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and Input Voltage High (VIH) and Input Voltage Low (VIL) pin requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.


For more information on MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site (www.microchip.com):

- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- "Multi-Tool Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" (DS51616)
- *"Using MPLAB[®] REAL ICE™"* (poster) (DS51749)


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

3.4 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ^(1,4)	DA	DC
bit 15					•		bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit (
Legend:							
C = Clearab	le bit	R = Readable	e bit	U = Unimple	mented bit, read	as '0'	
S = Settable	bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15	OA: Accumul	lator A Overflow	v Status bit				
		ator A overflowe					
1.1.4.4		ator A has not c					
bit 14		lator B Overflow ator B overflowe					
		ator B has not c					
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾			
	1 = Accumula	ator A is saturat ator A is not sat	ed or has bee		some time		
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾			
		ator B is saturat ator B is not sat		en saturated at	some time		
bit 11	0AB: 0A 0	DB Combined A	ccumulator O	verflow Status	bit		
	1 = Accumula	ators A or B hav	ve overflowed				
bit 10	SAB: SA S	B Combined A	ccumulator 'St	icky' Status bit	(1,4)		
	1 = Accumula		saturated or	have been sat	urated at some	time in the past	t
bit 9	DA: DO Loop	Active bit					
	1 = DO loop ir						
	-	ot in progress					
bit 8		U Half Carry/B					
	of the res	sult occurred		-	data) or 8th low-o		
	•	-out from the 4 the result occur		bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-size
Note 1: ⊤	his bit can be rea	ad or cleared (n	ot set).				
L	he IPL<2:0> bits evel (IPL). The v PL3 = 1.						

REGISTER 3-1: SR: CPU STATUS REGISTER

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

4: Clearing this bit will clear SA and SB.

IABLE 4	-21.	nion	SFEEL			GISTEI		OK US	FICJJI	30003	IUZA A	UD USFIC	33L10009	ZUZA				
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	_	GSWTRG	—	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	_	A	DCS<2:0	>	0003
ADPCFG	0302	_	—	_	—	_	_	_	_	—		PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	—	_	—	_	—		_	—	P6RDY	_	—	_	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308							Α	DBASE<	15:1>							_	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1		TRG	SRC1<4:0>			IRQEN0	PEND0	SWTRG0		TRGS	RC0<4:0>			0000
ADCPC1	030C	_	—	_	_	_	—		_	IRQEN2	PEND2	SWTRG2		TRGS	RC2<4:0>			0000
ADCPC3	0310	_	_	_	_	_	_	_	_	IRQEN6	PEND6	SWTRG6		TRGS	RC6<4:0>			0000
ADCBUF0	0320								ADC D	ata Buffer 0)							XXXX
ADCBUF1	0322								ADC D	ata Buffer 1								XXXX
ADCBUF2	0324								ADC D	ata Buffer 2	2							XXXX
ADCBUF3	0326								ADC D	ata Buffer 3	3							XXXX
ADCBUF4	0328								ADC D	ata Buffer 4	ļ							XXXX
ADCBUF5	032A		ADC Data Buffer 5							XXXX								
ADCBUF12	0338		ADC Data Buffer 12							XXXX								
ADCBUF13	033A		ADC Data Buffer 13								XXXX							

TABLE 4-21: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS102A AND dsPIC33FJ06GS202A

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

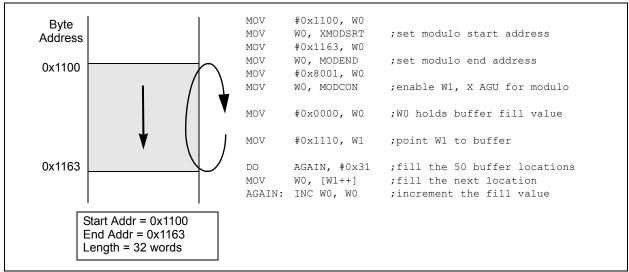
4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Υ	space	Modulo	Addressing	EA
	cal	culations	assume	word-sized	data
	(LS	Sb of ever	y EA is alw	/ays clear).	

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

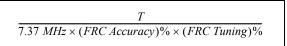
FIGURE 4-6: MODULO ADDRESSING OPERATION EXAMPLE

5.2 RTSP Operation

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 25-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.


All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 8-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 25-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 8-4) are set to `b111111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM PAGE ERASE TIME

$$T_{RW} = \frac{168517 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 21.85 ms$$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM PAGE ERASE TIME

$$T_{RW} = \frac{168517 \text{ Cycles}}{7.37 \text{ MHz} \times (1 - 0.05) \times (1 - 0.00375)} = 24.16 \text{ ms}$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

Flash Memory Control Registers 5.5

bit 15 Invariant	R/SO-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Image: Image	WR ⁽¹⁾	WREN ⁽¹⁾	WRERR ⁽¹⁾	_	—	_	_	_
	bit 15		· · ·				·	bit 8
- ERASE ⁽¹⁾ - NVMOP<3:0:: 1.2 bit 7	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 bit 7 Legend: SO = Settable Only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit ⁽¹⁾ 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the b cleared by hardware once operation is complete. This bit can only be set (not cleared) in software once operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations o = Inhibits Flash program/erase operations o = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation sepecified by NVMOP<3:0> on the next WR command bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1011 = No operation 0010 = Memory page erase operation 0011 = No oper	_		_	_		NVMOP	<3:0> ^(1,2)	-
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit ⁽¹⁾ 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bic cleared by hardware once operation is complete. This bit can only be set (not cleared) in software one operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation selectified by NVMOP<3:0> on the next WR command 0 = Performs the program operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1010 = Erase general segment 0011 = Memory page erase operation 0011 = No operation 0011 = Reserved If ERASE = 0: 11111 = No operation	bit 7							bit
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit ⁽¹⁾ 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bic cleared by hardware once operation is complete. This bit can only be set (not cleared) in software once operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Depration 1101 = Erase general segment 0101 = No operation 1101 = No operation	Legend:		SO = Settab	le Only bit				
bit 15 WR: Write Control bit ⁽¹⁾ 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the b cleared by hardware once operation is complete. This bit can only be set (not cleared) in softwa 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as 'o' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) <u>If ERASE = 1:</u> 1111 = No operation 1001 = Erase general segment 0010 = Reserved 0000 = Reserved <u>If ERASE = 0:</u> 1111 = No operation 1001 = No operation	R = Readable	e bit	W = Writable	e bit	U = Unimple	mented bit, read	l as '0'	
1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bicleared by hardware once operation is complete. This bit can only be set (not cleared) in software or erase operation is complete and inactive 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation specified hy NVMOP<3:0> on the next WR command 0 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 011 = No operation 1101 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1101 = No operation 1111 = No operation 1101 = No operation	-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkr	iown
cleared by hardware once operation is complete. This bit can only be set (not cleared) in softwa 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1010 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0010 = Reserved 0000 = Reserved 1111 = No operation 1011	bit 15				r orono oporati	on The operation	an is colf timed	and the bit i
bit 14 WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation Select bits ^(1,2) bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0010 = Reserved 0000 = Reserved 0000 = Reserved 1111 = No operation 1011 = No operation 1011 = No operation 1011 = No operation 1011 = No operation 0010 = Memory word program operation 0011 = Memory word program operation 0010 = No operation 0011 = No operation 0010 = No operati		cleared by	hardware onc	eoperation	is complete. Th	is bit can only be		
1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0000 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1101 = No operation 0011 = No operation 1011 = No operation 10011 = No operation 1001 = No operation 0011 = No operation 1011 = No operation 1011 = No operation 1001 = No operation 0011 = Ne operation 0011 = Ne operatio	bit 14	•		· · · P				
1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0010 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0101 = No operation 0011 = Nemory word program operation 011 = No operation 0011 = Nemory word program operation 0011 = Nemory word program operation 0011 = Nemory word program operation 0010 = No operation 0010 = No operation								
1 = An improper program or erase sequence attempt or termination has occurred (bit is automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 101 = Erase general segment 0011 = Reserved 0010 = Memory page erase operation 0011 = Reserved 1111 = No operation 1101 = No operation 0010 = Reserved If ERASE = 0: 11111 = No operation 1101 = No operation 0011 = Reserved 0000 = Reserved 1101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 0011 = Nemory word program operation 0011 = Memory word program operation 0011 = No operation 011 = No operation 0110 = No operation 011 = No operation	bit 13	WRERR: Write	Sequence Er	ror Flag bit ⁽	1)			
bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0010 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 101 = No operation 101 = No operation 0011 = Memory word program operation 0010 = No operation		1 = An improp automatica	per program of ally on any set	or erase se attempt of t	equence attem he WR bit)		on has occurre	ed (bit is se
bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾ 1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1011 = Erase general segment 0011 = Kno operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0010 = Memory page erase operation 0011 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1001 = No operation 1001 = No operation 0010 = No operation 0011 = No operation 0011 = No operation 0010 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0111 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 0011 = No operation	hit 10 7				ipieted normali	у		
1 = Performs the erase operation specified by NVMOP<3:0> on the next WR command 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1011 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0101 = No operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1001 = No operation 0011 = No operation 0011 = No operation 0010 = No operation 0011 = No operation		-						
 0 = Performs the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation 	DILO		•			<3:0> on the new	vt WP comman	d
bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation								
bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2) If ERASE = 1: 1111 = No operation 1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation 0010 = No operation	bit 5-4				,			
If ERASE = 1: 1111 = No operation 101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0011 = Memory word program operation 0010 = No operation	bit 3-0	-			ts ^(1,2)			
<pre>1101 = Erase general segment 0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved <u>If ERASE = 0:</u> 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation</pre>								
0011 = No operation 0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved If ERASE = 0: 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation 0010 = No operation		•						
0010 = Memory page erase operation 0001 = Reserved 0000 = Reserved <u>If ERASE = 0:</u> 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation				ent				
0001 = Reserved 0000 = Reserved <u>If ERASE = 0:</u> 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation				oneration				
If ERASE = 0: 1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation				peration				
<pre>1111 = No operation 1101 = No operation 0011 = Memory word program operation 0010 = No operation</pre>		0000 = Reserv	red					
1101 = No operation 0011 = Memory word program operation 0010 = No operation			vration					
0011 = Memory word program operation 0010 = No operation								
				m operation	I			
0001 = Reserved		0010 = No ope	ration					
0000 = Reserved								
		-						
Note 1: These bits can only be reset on a Power-on Reset (POR).								

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

6.2 System Reset

There are two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC Configuration bits in the FOSC Configuration register select the device clock source.

A warm Reset is the result of all the other Reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source, as indicated by the Current Oscillator Selection bits (COSC<2:0>) in the Oscillator Control register (OSCCON<14:12>).

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is provided in Figure 6-2.

Oscillator Mode	Oscillator Start-up Delay	Oscillator Start-up Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd ⁽¹⁾	_	_	Toscd ⁽¹⁾
FRCPLL	Toscd ⁽¹⁾	—	ТLОСК ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
HS	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
EC	—	—	—	—
XTPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLОСК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
HSPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLOCK ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
ECPLL	—	—	ТLOCK ⁽³⁾	ТLОСК ⁽³⁾
LPRC	Toscd ⁽¹⁾		_	Toscd ⁽¹⁾

Note 1: TOSCD = Oscillator start-up delay (1.1 μs max. for FRC, 70 μs max. for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer (OST) delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

TABLE 6-1: OSCILLATOR DELAY

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

REGISTER 7-	-12: IEC0:	INTERRUPT	ENABLE CO	ONTROL REC	GISTER 0		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	_	ADIE	U1TXIE ⁽¹⁾	U1RXIE ⁽¹⁾	SPI1IE ⁽¹⁾	SPI1EIE ⁽¹⁾	
bit 15							bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	_	_		T1IE	OC1IE ⁽¹⁾	IC1IE ⁽²⁾	INTOIE
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkno	own
			•	0 2000 0.00			
bit 15-14	Unimplemen	ted: Read as	ʻ0 '				
bit 13	ADIE: ADC1	Conversion Co	omplete Interru	ipt Enable bit			
		request is enal					
		request is not e		(4)			
bit 12			er Interrupt Ena	ble bit ⁽¹⁾			
	•	request is enal request is not e					
bit 11	-	-	Interrupt Enabl	e hit(1)			
		request is enal	-	C Dit			
		request is not e					
bit 10	SPI1IE: SPI1	Event Interrup	ot Enable bit ⁽¹⁾				
		request is enal request is not (
bit 9	•	•	upt Enable bit ⁽¹	1)			
		request is enal					
	•	request is not e					
bit 8	Unimplemen	ted: Read as	ʻ0'				
bit 7		Interrupt Enab					
		request is enal					
bit 6-4	•	request is not o					
bit 3	-	ited: Read as					
bit 5		Interrupt Enat request is enal					
		request is not e					
bit 2	OC1IE: Outp	ut Compare Cl	nannel 1 Interro	upt Enable bit ⁽¹)		
		request is enal request is not e					
bit 1	•	•	nel 1 Interrupt E	Enable bit(2)			
		request is enal					
	•	request not en					
bit 0	INTOIE: Exter	rnal Interrupt 0	Enable bit				
		request is enal request is not e					
Note 1: This	bit is not impl	emented in ds		001/1010/102/	daviaca		

REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A/102A devices.

2: This bit is not implemented in the dsPIC33FJ06GS001 device.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" for details.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This register is reset only on a Power-on Reset (POR).

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

REGISTER 10-16: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP1F	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RPOF	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	RP1R<5:0>	Peripheral Out	out Function	is Assigned to F	RP1 Output Pir	n bits	
	(see Table 1	0-2 for periphera	al function nu	imbers)			

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP0R<5:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-17: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP3F	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP2F	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP3R<5:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP2R<5:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹
bit 15							bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	—	SYNCSF	RC<1:0> ⁽¹⁾		SEV	[PS<3:0> ⁽¹⁾	
bit 7							bit (
Legend:		HC = Hardware	e Clearable bit	HS = Hardv	vare Settable	bit	
R = Readable	bit	W = Writable b	it	U = Unimpl	lemented bit,	read as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is c	cleared	x = Bit is unkr	lown
bit 15	PTFN: PWM	Module Enable	bit				
		dule is enabled					
	0 = PWM mod	dule is disabled					
bit 14		ted: Read as '0					
bit 13		V Time Base Sto	•	bit			
		e base halts in C					
bit 12		e base runs in C cial Event Interr					
DIT 12		/ent interrupt is	•				
	•	/ent interrupt is	•				
bit 11	SEIEN: Speci	al Event Interrup	ot Enable bit				
	•	ent interrupt is					
	-	/ent interrupt is		n			
bit 10		Immediate Peri					
		riod register is u riod register upd			oundaries		
bit 9		ynchronization I			Janaanee		
		nd SYNCO1 po		•			
		nd SYNCO1 are	-				
bit 8		rimary Time Ba		bit ⁽¹⁾			
		output is enable					
hit 7		output is disable ternal Time Base		n Enchla hit	(1)		
bit 7		synchronization	•				
		synchronization					
bit 6		ted: Read as '0'					
bit 5-4		:0>: Synchrono		ction bits ⁽¹⁾			
	11 = Reserve	d					
	10 = Reserve						
	01 = SYNCI2 00 = SYNCI1						
bit 3-0		>: PWM Special	Event Trigger (Jutnut Posts	caler Select I	_{Dits} (1)	
		Postscaler genera					atch event
	•	3	-1	55 0	. ,		
	•						
	• 0001 = 1·2 Pr	ostscaler genera	ites a Special F	vent Trigger (nn everv sec	ond compare m	atch event
		ostscaler genera					
		-	-				
		be changed only					
		ogram the Peric			signuy large	er man me expe	scied period of

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER

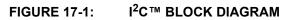
the external synchronization input signal.

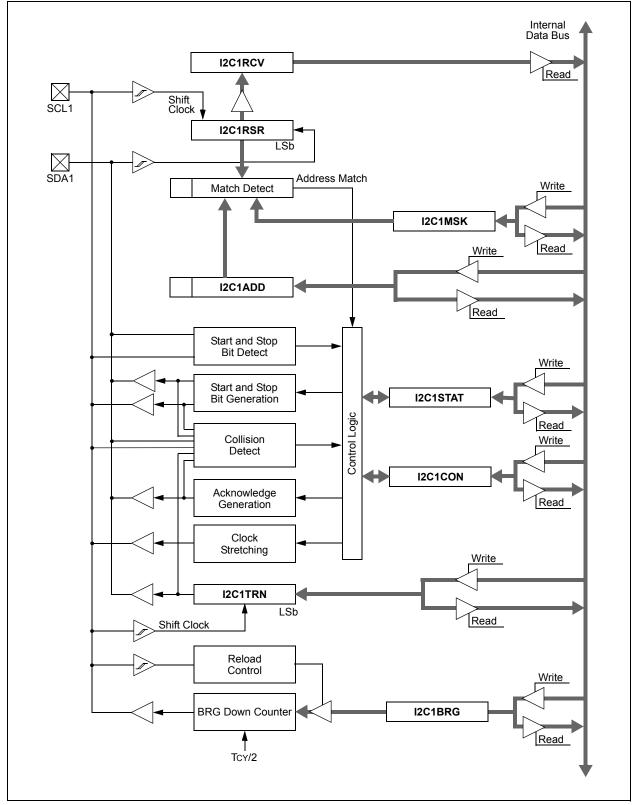
REGISTER 15-7:	PDCx: PWMx GENERATOR DUTY CYCLE REGISTER ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDCx	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-0 PDCx<15:0>: PWMx Generator # Duty Cycle Value bits⁽²⁾

- **Note 1:** In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDCx	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC>	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown


REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER⁽¹⁾

bit 15-0 SDCx<15:0>: Secondary Duty Cycle for PWMxL Output Pin bits⁽²⁾

- **Note 1:** The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

17.2 I²C Registers

I2C1CON and I2C1STAT are control and status registers, respectively. The I2C1CON register is readable and writable. The lower six bits of I2C1STAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2C1RSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2C1RCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read

- I2C1TRN is the transmit register to which bytes are written during a transmit operation
- The I2C1ADD register holds the slave address
- A status bit, ADD10, indicates 10-Bit Address mode
- The I2C1BRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2C1RSR and I2C1RCV together form a double-buffered receiver. When I2C1RSR receives a complete byte, it is transferred to I2C1RCV, and an interrupt pulse is generated.

REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:	HC = Hardware Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

I2CEN: I2C1 Enable bit
1 = Enables the I2C1 module and configures the SDA1 and SCL1 pins as serial port pins 0 = Disables the I2C1 module; all I ² C pins are controlled by port functions
Unimplemented: Read as '0'
I2CSIDL: Stop in Idle Mode bit
 1 = Discontinues module operation when device enters an Idle mode 0 = Continues module operation in Idle mode
SCLREL: SCL1 Release Control bit (when operating as I ² C slave)
1 = Releases SCL1 clock0 = Holds SCL1 clock low (clock stretch)
<u>If STREN = 1:</u> Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear at beginning of slave transmission. Hardware is clear at end of slave reception.
<u>If STREN = 0:</u> Bit is R/S (i.e., software can only write '1' to release clock). Hardware is clear at beginning of slave transmission.
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit
1 = IPMI mode is enabled; all addresses Acknowledged0 = IPMI mode is disabled
A10M: 10-Bit Slave Address bit
 1 = I2C1ADD is a 10-bit slave address 0 = I2C1ADD is a 7-bit slave address
DISSLW: Disable Slew Rate Control bit
1 = Slew rate control is disabled
0 = Slew rate control is enabled

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

REGISTER 19-7: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3 ⁽¹⁾								
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IRQEN6	PEND6	SWTRG6 TRGSRC6<4:0>						
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, re	ad as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-8	Unimplemen	ted: Read as '0	,					
bit 7	IRQEN6: Inte	rrupt Request E	nable 6 bit					
	1 = Enable IR	Q generation w	hen requeste	ed conversion o	of channels AN	N13 and AN12 i	s completed	

ADADAA ADA AANNEDT DAID AANTDAL DEGIATED A(1)

	0 = IRQ is not generated
bit 6	PEND6: Pending Conversion Status 6 bit 1 = Conversion of channels AN13 and AN 12 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	SWTRG6: Software Trigger 6 bit
	 1 = Starts conversion of AN13 (INTREF) and AN12 (EXTREF) if selected by TRGSRC bits⁽²⁾ This bit is automatically cleared by hardware when the PEND6 bit is set. 0 = Conversion has not started

Note 1: If other conversions are in progress, conversion will be performed when the conversion resources are available.

2: AN13 is internally connected to Vref in all devices. AN12 is internally connected to the EXTREF pin in the dsPIC33FJ06001/202A and dsPIC33FJ09GS302 devices. The dsPIC33FJ06GS101A/102A devices not have an EXTREF pin; therefore, any data read on the corresponding AN12 input will be invalid.

NOTES:

24.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

24.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

24.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

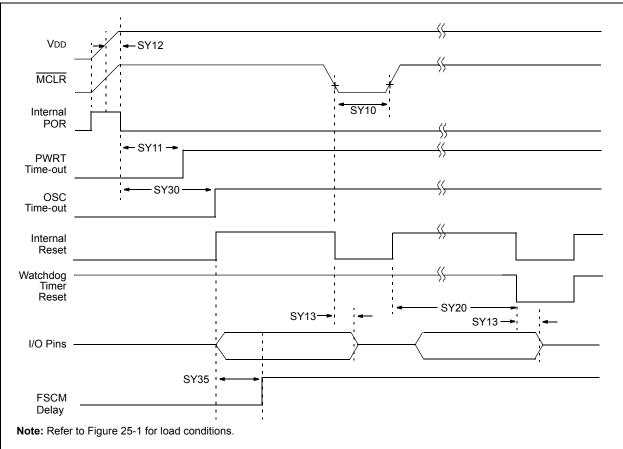
- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

24.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

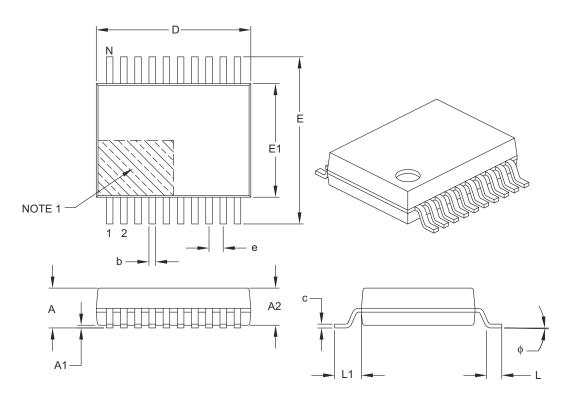

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

24.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

TABLE 25-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions				
SY10	TMCL	MCLR Pulse Width (low)	2	—	_	μS	-40°C to +125°C
SY11	TPWRT	Power-up Timer Period	—	64	_	ms	-40°C to +125°C
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +125°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	
SY30	Tost	Oscillator Start-up Time	—	1024 Tosc	_	_	Tosc = OSC1 period

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

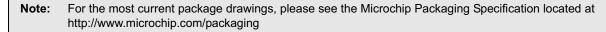
20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

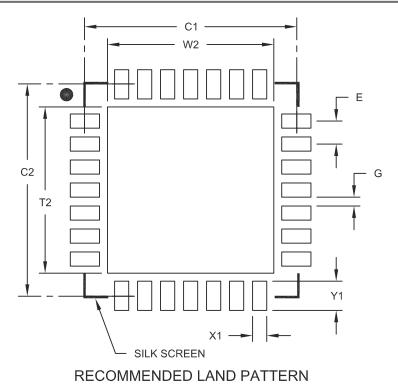
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
Dimer	nsion Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е		0.65 BSC	
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	_	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

	MILLIMETERS			
Dimensio	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A