

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202a-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		#0 DE00	RIPTION	
Pin Name	Pin Type	Buffer Type	PPS Capable	Description
AN0-AN7	I	Analog	No	Analog input channels.
CLKI	I	ST/CMOS	No	External clock source input. Always associated with OSC1 pin
CLKO	0	_	No	function. Oscillator crystal output. Connects to crystal or resonator in Crysta Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode;
OSC2	I/O	_	No	CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
CN0-CN15	I	ST	No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
IC1	I	ST	Yes	Capture Input 1.
OCFA OC1	I O	ST —	Yes Yes	Compare Fault A input (for Compare Channel 1). Compare Output 1.
INT0 INT1 INT2		ST ST ST	No Yes Yes	External Interrupt 0. External Interrupt 1. External Interrupt 2.
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15 ⁽¹⁾	I/O	ST	No	PORTB is a bidirectional I/O port.
RP0-RP15 ⁽¹⁾	I/O	ST	No	Remappable I/O pins.
T1CK T2CK		ST ST	Yes Yes	Timer1 external clock input. Timer2 external clock input.
U1CTS U1RTS U1RX U1TX	 0 0	ST — ST —	Yes Yes Yes Yes	UART1 Clear-to-Send. UART1 Ready-to-Send. UART1 receive. UART1 transmit.
SCK1 SDI1 SDO1 SS1	I/O I O I/O	ST ST — ST	Yes Yes Yes Yes	Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O.
SCL1 SDA1	I/O I/O	ST ST	No No	Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1.
TMS TCK TDI TDO	 0	TTL TTL TTL	No No No No	JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin.

TABLE 1-1:PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels
TTL = Transistor-Transistor LogicP = PowerO = OutputPPS = Peripheral Pin Select— = Does not applyNote 1:Not all pins are available on all devices. Refer to the specific device in the "Pin Diagrams" section for

availability.2: This pin is available on dsPIC33FJ09GS302 devices only.

3.4 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ^(1,4)	DA	DC
bit 15					•		bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit (
Legend:							
C = Clearab	le bit	R = Readable	e bit	U = Unimple	mented bit, read	as '0'	
S = Settable	bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15	OA: Accumul	lator A Overflow	v Status bit				
		ator A overflowe					
1.1.4.4		ator A has not c					
bit 14		lator B Overflow ator B overflowe					
		ator B has not c					
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾			
	1 = Accumula	ator A is saturat ator A is not sat	ed or has bee		some time		
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾			
		ator B is saturat ator B is not sat		en saturated at	some time		
bit 11	0AB: 0A 0	DB Combined A	ccumulator O	verflow Status	bit		
	1 = Accumula	ators A or B hav	ve overflowed				
bit 10	SAB: SA S	B Combined A	ccumulator 'St	icky' Status bit	(1,4)		
	1 = Accumula		saturated or	have been sat	urated at some	time in the past	t
bit 9	DA: DO Loop	Active bit					
	1 = DO loop ir						
	-	ot in progress					
bit 8		U Half Carry/B					
	of the res	sult occurred		-	data) or 8th low-o		
	•	-out from the 4 the result occur		bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-size
Note 1: ⊤	his bit can be rea	ad or cleared (n	ot set).				
L	he IPL<2:0> bits evel (IPL). The v PL3 = 1.						

REGISTER 3-1: SR: CPU STATUS REGISTER

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

4: Clearing this bit will clear SA and SB.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress
	0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state.
	 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z : MCU ALU Zero bit
	1 = An operation that affects the Z bit has set it at some time in the past
	0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred

Note 1: This bit can be read or cleared (not set).

- 2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
- 4: Clearing this bit will clear SA and SB.

4.5 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

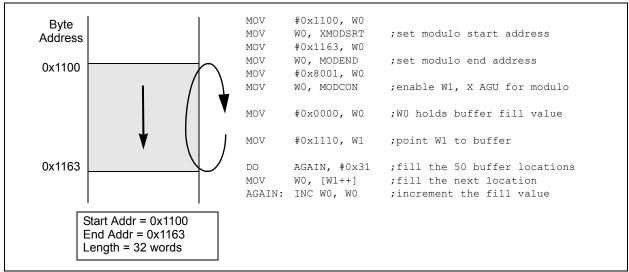
4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Υ	space	Modulo	Addressing	EA
	calculations		assume	word-sized	data
	(LS	Sb of ever	y EA is alw	/ays clear).	

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-6: MODULO ADDRESSING OPERATION EXAMPLE

7.3 Interrupt Control and Status Registers

The following registers are implemented for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit is found in IEC0<0> and the INT0IP bits are found in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-35.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	—	_	—
bit 15	·					·	bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	—		ADCP6IF	—	—	ADCP3IF ⁽¹⁾	ADCP2IF ⁽²⁾
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cleared x = Bit is unknown			nown
bit 15-5	Unimplemen	ted: Read as	'O'				
bit 4	ADCP6IF: A	DC Pair 6 Con	version Done I	nterrupt Flag S	Status bit		
	1 = Interrupt	request has o	curred				
	0 = Interrupt	request has no	ot occurred				
bit 3-2	Unimplemen	ted: Read as	'0'				
bit 1	ADCP3IF: A	DC Pair 3 Con	version Done I	nterrupt Flag S	Status bit ⁽¹⁾		
	1 = Interrupt	request has o	curred				
	0 = Interrupt	request has no	ot occurred				
bit 0	ADCP2IF: AI	DC Pair 2 Con	version Done I	nterrupt Flag S	Status bit ⁽²⁾		
	1 = Interrupt	request has o	curred				
		request has no					

- Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.
 - 2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER	7-13: IEC1:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 1		
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_		INT2IE	—	_	_	_	
bit 15					•		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	INT1IE	CNIE	AC1IE ⁽¹⁾	MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	-	ted: Read as '					
bit 13		rnal Interrupt 2					
		request is enab request is not e					
bit 12-5		ited: Read as '					
bit 4	-	rnal Interrupt 1					
Dil 4		request is enab					
		request is not e					
bit 3	CNIE: Input C	Change Notifica	tion Interrupt	Enable bit			
		request is enab					
	•	request is not e					
bit 2		og Comparator		able bit ⁽¹⁾			
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 						
bit 1	•	1 Master Even		aabla bit			
		request is enab	-				
		request is enab					
bit 0	•	1 Slave Events		able bit			
		request is enab	•				
	0 = Interrupt r	request is not e	nabled				

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER	R 7-18: IEC7:	INTERRUPT	ENABLE CO		GISTER 7		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	_	_	ADCP6IE			ADCP3IE ⁽¹⁾	ADCP2IE ⁽²⁾
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
				o Dicio die		X Dit io uniti	
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4	ADCP6IE: AI	DC Pair 6 Conv	ersion Done I	nterrupt Enable	e bit		
		request is enab					
	0 = Interrupt	request is not e	nabled				
bit 3-2	Unimplemented: Read as '0'						
	ADCP3IE: ADC Pair 3 Conversion Done Interrupt Enable bit ⁽¹⁾						
bit 1	ADCP3IE: AI	DC Pair 3 Conv	ersion Done I	nterrupt Enable	e bit ⁽¹⁾		
bit 1		DC Pair 3 Conv request is enab		nterrupt Enable	e bit ⁽¹⁾		
bit 1	1 = Interrupt		led	nterrupt Enable	e bit ⁽¹⁾		
bit 1 bit 0	1 = Interrupt 0 = Interrupt	request is enab	led nabled				
	1 = Interrupt 0 = Interrupt ADCP2IE: Al 1 = Interrupt	request is enab request is not e	led nabled ersion Done I led				

Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		T1IP<2:0>		—		OC1IP<2:0> ⁽¹⁾						
pit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		IC1IP<2:0> ⁽²⁾		—		INT0IP<2:0>						
oit 7							bit					
Legend:												
R = Readabl	e bit	W = Writable b	bit	U = Unimple	mented bit, re	ad as '0'						
n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	own					
bit 15	-	ented: Read as '0										
bit 14-12	T1IP<2:0>: Timer1 Interrupt Priority bits											
	 111 = Interrupt is Priority 7 (highest priority interrupt) 											
	•											
	•											
		upt is Priority 1 upt source is disa	abled									
bit 11	Unimpleme	ented: Read as '0	,									
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits ⁽¹⁾											
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	• 001 = Interrupt is Priority 1											
		upt source is disa	abled									
bit 7	Unimpleme	ented: Read as '0	,									
bit 6-4	IC1IP<2:0>	: Input Capture C	hannel 1 Int	errupt Priority I	oits ⁽²⁾							
		upt is Priority 7 (I										
	•											
	•											
	• 001 = Interrupt is Priority 1											
		upt source is disa	abled									
bit 3	Unimpleme	nted: Read as '0	,									
bit 2-0	INT0IP<2:0	INT0IP<2:0>: External Interrupt 0 Priority bits										
		upt is Priority 7 (I										
	•											
	•											
	•											
	001 = Interr	upt is Priority 1										

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

2: These bits are not implemented in dsPIC33FJ06GS001/101A/102A devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_		—	_	—	
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			T2CK	(R<5:0>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-6	Unimplement	ted: Read as '0)'				
bit 5-0	T2CKR<5:0>:	Assign Timer2	2 External Clo	ock (T2CK) to the	he Correspondi	ng RPn Pin bits	5
	111111 = Inp	ut tied to Vss					
		ut tied to RP35					
		ut tied to RP34					
		ut tied to RP33					
	100000 = Input tied to RP32						

REGISTER 10-4: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

•

•

00000 = Input tied to RP0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
—	—	SCK1R<5:0> ⁽¹⁾									
bit 15							bit 8				
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
				SDI1R	<5:0> ⁽¹⁾						
bit 7							bit (
Legend:											
R = Readabl		W = Writable		•	mented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
L:1 4 5 4 4		ta da Da a da a (~ '								
bit 15-14	-	ted: Read as '				(4)					
bit 13-8	SCK1R<5:0>	: Assign SPI1	Clock Input (S	CK1) to the Co	orresponding R	Pn Pin bits ⁽¹⁾					
	111111 = Input tied to Vss										
	100011 = Input tied to RP35 100010 = Input tied to RP34										
		out tied to RP3									
		out tied to RP32	2								
	•										
	•										
	00000 = Input tied to RP0										
bit 7-6		ted: Read as '	0'								
bit 5-0	-			11) to the Corre	esponding RPn	Pin bits ⁽¹⁾					
	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits ⁽¹⁾ 111111 = Input tied to Vss										
	111111 = Input tied to Vss 100011 = Input tied to RP35										
	100011 = Input tied to RP35 100010 = Input tied to RP34										
	100001 = Input tied to RP33										
		out tied to RP32									
	•										
	•										
	•										
	00000 = Inpu	t tied to RPO									
	00000 – mpu										

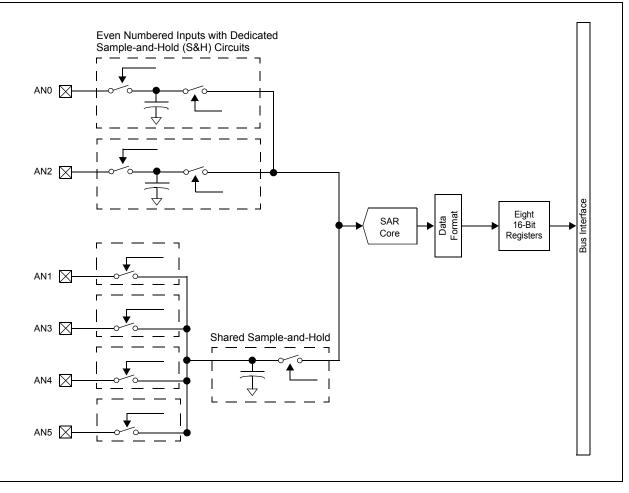
REGISTER 10-8: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

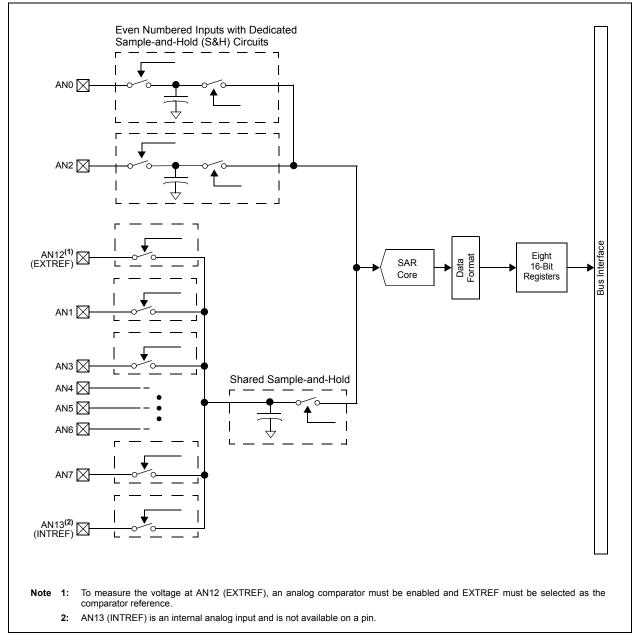
Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER (CONTINUED)

bit 8	SMEN: SMBus Input Levels bit
	 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)
	 1 = Enables interrupt when a general call address is received in the I2C1RSR (module is enabled for reception) 0 = General call address is disabled
bit 6	STREN: SCL1 Clock Stretch Enable bit (when operating as I ² C slave)
	Used in conjunction with SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDA1 and SCL1 pins and transmits ACKDT data bit. Hardware is clear at end of master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware is clear at end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Stop condition on SDA1 and SCL1 pins. Hardware is clear at end of master Stop sequence. 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Repeated Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master Start sequence.
	0 = Start condition is not in progress

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—		—	—	AMSK	AMSK<9:8>	
bit 15	·	·			- -	-	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			AMS	K<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		R '1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		


bit 15-10 Unimplemented: Read as '0'


bit 9-0 AMSK<9:0>: Mask for Address bit x Select bits

1 = Enables masking for bit x of incoming message address; bit match not required in this position

0 = Disables masking for bit x; bit match required in this position

FIGURE 19-3: ADC BLOCK DIAGRAM FOR dsPIC33FJ06GS102A DEVICE

FIGURE 19-5: ADC BLOCK DIAGRAM FOR dsPIC33FJ09GS302 DEVICE

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	_
bit 15	·						bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	—	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit		'1' = Bit is set	'0' = Bit is cleared		ared	x = Bit is unknown	
bit 15-8	Unimplemen	ted: Read as ')'				
bit 7-6	PCFG<7:6>:	Analog-to-Digit	al Port Config	uration Contro	ol bits ⁽¹⁾		

REGISTER 19-4: ADPCFG: ADC PORT CONFIGURATION REGISTER

bit 7-6 **PCFG<7:6>:** Analog-to-Digital Port Configuration Control bits

- 1 = Port pin is in Digital mode; port read input is enabled; Analog-to-Digital input multiplexer is connected to AVss
- 0 = Port pin is in Analog mode; port read input is disabled; Analog-to-Digital samples pin voltage

bit 5-4 Unimplemented: Read as '0'

- bit 3-0 **PCFG<3:0>:** Analog-to-Digital Port Configuration Control bits
 - 1 = Port pin is in Digital mode; port read input is enabled; Analog-to-Digital input multiplexer is connected to AVss
 - 0 = Port pin is in Analog mode; port read input is disabled; Analog-to-Digital samples pin voltage
- **Note 1:** This bit is not implemented in dsPIC33FJ06GS102A/202A devices.
 - 2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

IADL	E 23-2:	INSIRU	ISTRUCTION SET OVERVIEW (CONTINUED)						
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected		
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV		
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV		
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV		
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV		
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV		
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None		
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None		
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB		
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB SA,SB,SAB		
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None		
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С		
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С		
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С		
38	GOTO	GOTO	Expr	Go to Address	2	2	None		
		GOTO	Wn	Go to Indirect	1	2	None		
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z		
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z		
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z		
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z		
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z		
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z		
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z		
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z		
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z		
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z		
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z		
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB SA,SB,SAB		
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None		
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z		
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z		
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z		
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z		
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z		
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB		
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB		
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None		
		MOV	f	Move f to f	1	1	N,Z		
		MOV	f,WREG	Move f to WREG	1	1	None		
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None		
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None		
		MOV	Wn,f	Move Wn to f	1	1	None		
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None		
		MOV	WREG, f	Move WREG to f	1	1	None		
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None		
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None		
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None		

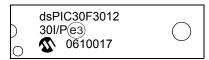
TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

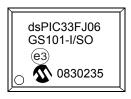
NOTES:

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

18-Lead PDIP


18-Lead SOIC (.300")


20-Lead SSOP

Example

Example

Example

Legend	: XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	e 3	Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator ((e3))
		can be found on the outer packaging for this package.
Note:		Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.

INDEX

Α	
AC Characteristics	282
Internal LPRC Accuracy	285
Internal RC Accuracy	285
Load Conditions	282
Temperature and Voltage Specifications	282
Alternate Interrupt Vector Table (AIVT)	
Arithmetic Logic Unit (ALU)	31
Assembler	
MPASM Assembler	268
Auxiliary Clock Generation	125
В	
Bit-Reversed Addressing	69
Example	70
Implementation	69
Sequence Table (16-Entry)	70
Block Diagrams	
16-Bit Timer1 Module	173
Boost Converter Implementation	21
Connections for On-Chip Voltage Regulator	256
Constant Current Source	249
CPU Core	26
Digital PFC	21
DSP Engine	
dsPIC33FJ06GS001 Device ADC	226
dsPIC33FJ06GS001/101A/102A/202A	and
dsPIC33FJ09GS302	
dsPIC33FJ06GS101A Device ADC	
dsPIC33FJ06GS102A Device ADC	
dsPIC33FJ06GS202A Device ADC	
dsPIC33FJ09GS302 Device ADC	
High-Speed Analog Comparator	
Hysteresis Control	
I ² C	
Input Capture	
Interleaved PFC	
MCLR Pin Connections	
Multiplexing of Remappable Output for RPn	
Oscillator System	
Output Compare Partitioned Output Pair, Complementary	179
· · · ·	100
PWM Mode Phase-Shifted Full-Bridge Converter	
Pll	
Recommended Minimum Connection Remappable MUX Input for U1RX	
Reset System	
Shared Port Structure	
Simplified Conceptual High-Speed PWM	
Single-Phase Synchronous Buck Converter	
Shigle-Fhase Synchronous Buck Converter	
Type B Timer2	
UART	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	
	,

С

C Compilers	
MPLAB C18	268
Capacitor on Internal Voltage Regulator (VCAP)	18
Clock Switching	134
Enabling	134
Sequence	
Code Examples	
Port Write/Read	147
PWRSAV Instruction Syntax	137
Code Protection	
Configuration Bits	251
Description	254
Configuring Analog Port Pins	147
Constant Current Source	
Description	249
Features	249
CPU	
Barrel Shifter	35
Control Registers	28
Data Addressing Overview	25
DSP Engine Overview	25
MCU Special Features	
Special Features	251
CPU Clocking System	124
PLL Configuration	125
Selection	124
Sources	124
Customer Change Notification Service	346
Customer Notification Service	
Customer Support	346

D

DAC	244
Buffer Gain	244
Output Range	245
Data Accumulators and Adder/Subtracter	33
Data Space Write Saturation	35
Overflow and Saturation	33
Round Logic	34
Write Back	34
Data Address Space	39
Alignment	39
Memory Map for Devices with 1 Kbyte of RAM	41
Memory Map for Devices with 256 Bytes of RAM.	40
Near Data Space	39
Software Stack	66
Width	39
X and Y Data	42
DC and AC Characteristics	
Graphs and Tables	315
DC Characteristics	
Doze Current (IDOZE)	277
I/O Pin Input Specifications	278
I/O Pin Output Specifications	280
Idle Current (IIDLE)	275
Operating Current (IDD)	274
Operating MIPS vs. Voltage	272
Power-Down Current (IPD)	276
Program Memory	281
Temperature and Voltage Specifications	273