

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202a-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-	-14:	HIGH-S	PEED F	WM GEN	NERATO	OR 2 REG	SISTER N	IAP FOF	R dsPIC3	3FJ060	S102A	, dsPIC	C33FJ0)6GS2	02A AN	D dsPIC	33FJ09G	3302
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0440	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	_		—	CAM	XPRES	IUE	0000
IOCON2	0442	PENH	PENL	POLH	POLL	PMOD	0<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	0000
FCLCON2	0444	IFLTMOD			CLSRC<4:	0>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	0000
PDC2	0446								PDC2<15:0)>								0000
PHASE2	0448							P	HASE2<15	:0>								0000
DTR2	044A	_	_							DTR2<13:0)>							0000
ALTDTR2	044C	_	_						А	LTDTR2<1	3:0>							0000
SDC2	044E								SDC2<15:0)>								0000
SPHASE2	0450							SI	PHASE2<1	5:0>								0000
TRIG2	0452						TRGCM	P<15:3>							—	—	_	0000
TRGCON2	0454		TRGD	IV<3:0>		_	_	_	_	DTM	_			TR	GSTRT<5:()>		0000
STRIG2	0456						STRGC	/IP<15:3>							_	_	_	0000
PWMCAP2	0458						PWMCA	P2<15:3>							_	_	_	0000
LEBCON2	045A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN			LE	B<6:0>				_	_	_	0000
AUXCON2	045E	HRPDIS	HRDDIS	—	_	—	_	—	_	—	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000
1						1 (1) D												

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.1 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-5. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x1000 in RAM, initialize the SPLIM with the value 0x0FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.4 Instruction Addressing Modes

The addressing modes shown in Table 4-39 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.4.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all of the addressing modes shown above. Individual instructions can support different subsets of these addressing modes.

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- Upper boundary addresses for incrementing buffers
- · Lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWMx bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- · BREN bit is set in the XBREV register
- Addressing mode used is Register Indirect with Pre-increment or Post-increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing should not be enabled
	together. If an application attempts to do
	so, Bit-Reversed Addressing will assume
	priority when active for the X WAGU and X
	WAGU; Modulo Addressing will be dis-
	abled. However, Modulo Addressing will
	continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

REGISTER 7	-11: IFS7: I	NTERRUPT	FLAG STAT	US REGISTI	ER 7			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	—	_		_	—	_	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	
		<u> </u>	ADCP6IF			ADCP3IF ⁽¹⁾	ADCP2IF ⁽²⁾	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4	ADCP6IF: AD	C Pair 6 Conv	ersion Done I	nterrupt Flag S	Status bit			
	1 = Interrupt r	equest has occ	curred					
	0 = Interrupt r	equest has not	occurred					
bit 3-2	Unimplemen	ted: Read as '	D'					
bit 1	ADCP3IF: AD	C Pair 3 Conv	ersion Done I	nterrupt Flag S	Status bit ⁽¹⁾			
	1 = Interrupt r	equest has occ	curred					
	0 = Interrupt r	equest has not	occurred					
bit 0	ADCP2IF: AD	C Pair 2 Conv	ersion Done I	nterrupt Flag S	Status bit ⁽²⁾			
	1 = Interrupt r	equest has occ	curred					
	0 = Interrupt r	equest has not	occurred					

- Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.
 - 2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER	7-26: IPC14	: INTERRUP		CONTROL F	REGISTER 1	4		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		_	—	—	—	—	
bit 15							bit 8	
r								
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—		PSEMIP<2:0>		—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-7	Unimplemen	ted: Read as '	0'					
bit 6-4	PSEMIP<2:0	>: PWM Specia	al Event Mato	h Interrupt Prio	rity bits			
	111 = Interrupt is Priority 7 (highest priority interrupt)							
	•							
	•							
	•							

- 001 = Interrupt is Priority 1
- 000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—			—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		U1EIP<2:0> ⁽¹⁾		—	—	—	—
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	U1EIP<2:0>: UART1 Error Interrupt Priority bits ⁽¹⁾
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_			RP9R	<5:0>(1)				
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_			RP8R	<5:0> ⁽¹⁾				
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at F	POR	'1' = Bit is set		0° = Bit is cleared x = Bit is unknown					

REGISTER 10-20: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP9R<5:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP8R<5:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 10-21: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP11F	<5:0> ⁽¹⁾		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP10F	<5:0> ⁽¹⁾		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits⁽¹⁾ bit 13-8 (see Table 10-2 for peripheral function numbers) bit 7-6 Unimplemented: Read as '0'
- RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits⁽¹⁾ bit 5-0 (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

14.2 Output Compare Control Registers

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
		OCSIDL					_
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	U-0	R/W-0	R/W-0	R/W-0
	_	—	OCFLT	—		OCM<2:0>	
bit 7							bit 0

REGISTER 14-1: OC1CON: OUTPUT COMPARE 1 CONTROL REGISTER

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare 1 halts in CPU Idle mode
	0 = Output Compare 1 continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	1 = PWM Fault condition has occurred (cleared in hardware only)
	0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	Unimplemented: Read as '0'
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OC1, Fault pin is enabled
	110 = PWM mode on OC1, Fault pin is disabled
	101 = Initializes OC1 pin low, generates continuous output pulses on OC1 pin
	100 = Initializes OC1 pin low, generates single output pulse on OC1 pin
	011 = Compare event toggles OC1 pin
	010 = Initializes OC1 pin high, compare event forces OC1 pin low
	001 = Initializes OC1 pin low, compare event forces OC1 pin high
	000 = Output compare channel is disabled

110/110							
	$\frac{1}{10} HS/HC-0$	HS/HC-0				K/W-0	
	ULSIANU	IKGSIAI	FLIIEN	GLIEN	IKGIEN	118,4	
DIC 15							DIL 8
R/W-	0 R/W-0	11-0	U-0	U-0	R/W-0	R/W-0	R/W-0
1011	DTC<1:0>	_			CAM ^(2,3)	XPRES ⁽⁴⁾	IUE
bit 7	2.0				•••	/	bit 0
Legend:		HC = Hardware	Clearable bit	HS = Hardw	are Settable bi	t	
R = Read	lable bit	W = Writable bit		U = Unimple	mented bit, rea	ad as 'O'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known
bit 15	FLTSTAT: Fa	ult Interrupt Statu	s bit ⁽¹⁾				
	1 = Fault inte	rrupt is pending	a: this hit is clo	arod by sotting			
hit 14	CL STAT: Cur	rrent-l imit Interrur	ig, this bit is clea at Status bit(1)	area by setting			
	1 = Current-li	mit interrupt is pe	ndina				
	0 = No currer	nt-limit interrupt is	pending; this bi	t is cleared by	setting CLIEN	= 0	
bit 13	TRGSTAT: Tr	rigger Interrupt Sta	atus bit				
	1 = Trigger in	terrupt is pending			TROJEN		
h:: 40	0 = No trigge	r interrupt is pend	ing; this bit is clo	eared by settin	ig TRGIEN = 0		
DIT 12	1 = Fault inte	it interrupt Enable	DIT				
	0 = Fault inte	rrupt is disabled a	ind the FLTSTA	T bit is cleared			
bit 11	CLIEN: Curre	ent-Limit Interrupt	Enable bit				
	1 = Current-li 0 = Current-li	mit interrupt is en mit interrupt is dis	abled abled and the C	LSTAT bit is c	leared		
bit 10	TRGIEN: Trig	gger Interrupt Ena	ble bit				
	1 = A trigger o 0 = Trigger ev	event generates a vent interrupts are	an interrupt requed to a second the second term of ter	est ne TRGSTAT b	it is cleared		
bit 9	ITB: Indepen	dent Time Base M	lode bit ⁽³⁾				
	1 = PHASEx/ 0 = PTPER re	SPHASEx registe egister provides ti	er provides time ming for this PV	base period fo /M generator	r this PWM ge	nerator	
bit 8	MDCS: Maste	er Duty Cycle Reg	gister Select bit ^{(;}	3)			
	1 = MDC regi 0 = PDCx/SD	ister provides duty OCx register provid	/ cycle informati les duty cycle ir	on for this PW formation for t	M generator his PWM gene	erator	
bit 7-6	DTC<1:0>: D	ead-Time Control	bits				
	11 = Reserve	ed					
	10 = Dead-tin 01 = Negative	ne function is disa	abled	Loutout modes	3		
	00 = Positive	dead time activel	y applied for all	output modes	•		
bit 5-3	Unimplemen	ted: Read as '0'					
Note 1:	Software must clea	ar the interrupt sta	atus here and th	e correspondir	ng IFSx bit in ti	he interrupt co	ontroller.
2:	The Independent T CAM bit is ignored	Time Base mode (I.	(ITB = 1) must b	e enabled to u	se Center-Alig	ned mode. If	TB = 0, the
3:	These bits should yield unpredictable	be changed only e results.	when PTEN = 0	. Changing the	e clock selectio	on during oper	ation will
4:	To operate in Exte	rnal Period Reset 9>) bit = 1.	mode, configur	e the CLMOD	(FCLCONx<8	>) bit = 0 and	

REGISTER 15-6: PWMCONX: PWMx CONTROL REGISTER

16.3 SPI Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	—	SPISIDL	_	_	—	_	—
bit 15							bit 8
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
—	SPIROV	—	—	—	—	SPITBF	SPIRBF
bit 7							bit 0

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	SPIEN: SPIx Enable bit
	1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module
bit 14	Unimplemented: Read as '0'
bit 13	SPISIDL: Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	 SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded; the user software has not read the previous data in the SPIxBUF register 0 = No overflow has occurred
bit 5-2	Unimplemented: Read as '0'
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when the CPU writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	 1 = Receive is complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads the SPIxBUF location, reading SPIxRXB.

REGISTER 20-1: CMPCONx: COMPARATOR CONTROL x REGISTER (CONTINUED)

bit 5	EXTREF: Enable External Reference bit ⁽¹⁾
	 1 = External source provides reference to DAC (maximum DAC voltage determined by external voltage source)
	 Internal reference sources provide reference to DAC (maximum DAC voltage determined by RANGE bit setting)
bit 4	HYSPOL: Comparator Hysteresis Polarity Select bit ⁽¹⁾
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 3	CMPSTAT: Current State of Comparator Output Including CMPPOL Selection bit ⁽¹⁾
bit 2	HGAIN: DAC Gain Enable bit ⁽¹⁾
	 1 = Reference DAC output to comparator is scaled at 1.8x 0 = Reference DAC output to comparator is scaled at 1.0x
bit 1	CMPPOL: Comparator Output Polarity Control bit ⁽¹⁾
	1 = Output is inverted0 = Output is non-inverted
bit 0	RANGE: Selects DAC Output Voltage Range bit ⁽¹⁾
	1 = High Range: Max DAC Value = AVDD/2, 1.65V at 3.3V AVDD 0 = Low Range: Max DAC Value = INTREF ⁽³⁾
Note 1:	This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

- 2: DACOUT can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DAC output by setting their respective DACOE bit.
- **3:** For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in **Section 25.0 "Electrical Characteristics"**.

21.3 Current Source Control Register

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
ISRCEN			—			OUTSEL<2:0>		
bit 15							bit 8	
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
—	—			ISRCC	AL<5:0>			
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable I	oit	U = Unimpler	nented bit, rea	id as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own	
bit 14-11 bit 10-8	0 = Current s Unimplemer OUTSEL<2:0 111 = Resen 110 = Resen 101 = Resen 100 = Select 011 = Select 010 = Select 000 = No out	 0 = Current source is enabled 0 = Current source is disabled Unimplemented: Read as '0' OUTSEL<2:0>: Output Current Select bits 111 = Reserved 101 = Reserved 100 = Select input pin, ISRC4 (AN4) 011 = Select input pin, ISRC3 (AN5) 010 = Select input pin, ISRC2 (AN6) 001 = Select input pin, ISRC1 (AN7) 000 = No output is selected 						
bit 7-6	Unimplemer	nted: Read as '0)'					
bit 5-0	ISRCCAL<5	:0>: Current Sou	urce Calibrati	ion bits				
The calibration value must be copied from Flash address, 0x800840, into these bits. Refer to Constant Current Source Calibration Register (Register 22-1) in Section 22.0 "Special Feat for more information.						fer to the Features"		

REGISTER 21-1: ISRCCON: CONSTANT CURRENT SOURCE CONTROL REGISTER⁽¹⁾

Note 1: This register is available in the dsPIC33FJ09GS302 device only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	2	None
		CALL	Wn	Call Indirect Subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C,DC,N,OV,Z
0.1				$(Wb - Ws - \overline{C})$			N
21	CPSEQ	CPSEQ	Wb, Wn	Compare vvb with vvh, Skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f – 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACTERISTICS			Standard Operating te	erating Conditions emperature -40°C -40°C	s: 3.0V to 3.6V (unles ≤ TA ≤ +85°C for Ind ≤ TA ≤ +125°C for Ex	ss otherwise stated) ustrial ktended				
Param.	Typical ⁽¹⁾	Max.	Units		Conditions					
Idle Current (I	Idle Current (IIDLE): Core Off Clock On Base Current ⁽²⁾									
DC40d	13	21	mA	-40°C						
DC40a	13	21	mA	+25°C	3 3\/					
DC40b	13	21	mA	+85°C	5.5V					
DC40c	13	21	mA	+125°C						
DC41d	16	24	mA	-40°C						
DC41a	16	24	mA	+25°C	2 21/	16 MIDS(3)				
DC41b	16	24	mA	+85°C	5.50	10 1011-517				
DC41c	16	24	mA	+125°C						
DC42d	17	27	mA	-40°C		20 MIPS ⁽³⁾				
DC42a	17	27	mA	+25°C	2 21/					
DC42b	17	27	mA	+85°C	3.3V					
DC42c	17	27	mA	+125°C						
DC43d	20	32	mA	-40°C						
DC43a	20	32	mA	+25°C	2 21/	20 MIDS(3)				
DC43b	20	32	mA	+85°C	3.3V	30 MIF 3 **				
DC43c	20	32	mA	+125°C						
DC44d	23	37	mA	-40°C						
DC44a	23	37	mA	+25°C	2 21/					
DC44b	23	37	mA	+85°C	3.3V	40 101175				
DC44c	23	37	mA	+125°C						

TABLE 25-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Base Idle current is measured as follows:

CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD; WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- **3:** These parameters are characterized but not tested in manufacturing.

TABLE 25-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Condit					
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC	
		Oscillator Crystal Frequency	3.0 10		10 32	MHz MHz	XT HS	
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns		
OS25	TCY	Instruction Cycle Time ⁽²⁾	25	_	DC	ns		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	_	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2		ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

^{2:} Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

27.2 Package Details

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES		
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		18			
Pitch	e		.100 BSC			
Top to Seating Plane	А	-	-	.210		
Molded Package Thickness	A2	.115	.130	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.300	.310	.325		
Molded Package Width	E1	.240	.250	.280		
Overall Length	D	.880	.900	.920		
Tip to Seating Plane	L	.115	.130	.150		
Lead Thickness	С	.008	.010	.014		
Upper Lead Width	b1	.045	.060	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	-	-	.430		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

DC Specifications	
DAC Output (DACOUT Pin)	
Development Support	
Doze Mode	138
DSC Guidelines	17
Basic Connection Requirements	17
Decoupling Capacitors	17
DSP Engine	31
Multiplier	

Е

Electrical Characteristics	
Absolute Maximum Ratings	
Equations	
Device Operating Frequency	
Fosc Calculation	
Maximum Page Erase Time	76
Minimum Page Erase Time	76
XT with PLL Mode Example	
Errata	

F

Fail-Safe Clock Monitor (FSCM)				
Flash Program Memory	75			
Control Registers	76			
Operations	76			
Table Instructions	75			
Flexible Configuration				

Н

High-Speed 10-Bit ADC	
Description	225
Features	
Functionality	
High-Speed Analog Comparator	243
Applications	
Control Registers	
DAC	
Digital Logic	
Hysteresis	
Input Range	
Interaction with I/O Buffers	
High-Speed PWM	183
Control Registers	186

I

I/O Ports	
Helpful Tips	152
Parallel I/O (PIO)	
Resources	
Write/Read Timing	
I ² C	
Operating Modes	211
Registers	
In-Circuit Debugger	
In-Circuit Emulation	251
In-Circuit Serial Programming (ICSP)	
Analog, Digital Pins Configuration	
Pins	
Input Capture	
Input Change Notification	

Instruction Addressing Modes	66
File Register Instructions	66
Fundamental Modes Supported	67
MAC Instructions	67
MCU Instructions	66
Move and Accumulator Instructions	67
Other Instructions	67
Instruction Set	
Overview	262
Summary	259
Instruction-Based Power-Saving Modes	137
ldle	138
Sleep	137
Interfacing Program and Data Memory Spaces	71
Internal RC Oscillator	
Use with WDT	257
Internet Address	346
Interrupt Control and Status Registers	90
IECx	90
IFSx	90
INTCON1	90
INTCON2	90
INTTREG	90
IPCx	90
Interrupt Setup Procedures	122
Initialization	122
Interrupt Disable	122
Interrupt Service Routine	122
Trap Service Routine	122
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions	138
•	

J

JTAG Boundary Scan Interface	251
JTAG Interface	258

L

```
LEBCONx (PWMx Leading-Edge Blanking Control) ...... 202
```

Μ

Master Clear (MCLR)	18
Memory Organization	37
Microchip Internet Web Site	346
Modulo Addressing	68
Applicability	69
Operation Example	68
Start and End Address	68
W Address Register Selection	68
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB Integrated Development	
Environment Software	267
MPLAB PM3 Device Programmer	270
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	268

0

Open-Drain Configuration		
Oscillator		
External Pins	19	
Value Conditions on Start-up		
Oscillator Configuration	123	
Output Compare	179	

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Rar Package — Pattern —	mark amily - y Size (ag (if a nge	(KB)	SPIC 33 FJ 06 GS0 01 T - E / SP - XXX	Examples: a) dsPIC33FJ06GS001-I/SS: SMPS dsPIC33, 6-Kbyte program memory, 20-pin, Industrial temp.,SSOP package.
Architecture:	33	=	16-bit Digital Signal Controller	
Flash Memory Family:	FJ	=	Flash program memory, 3.3V	
Product Group:	GS0 GS1 GS2 GS3	= = =	Switch Mode Power Supply (SMPS) family Switch Mode Power Supply (SMPS) family Switch Mode Power Supply (SMPS) family Switch Mode Power Supply (SMPS) family	
Pin Count:	01 02	=	18-pin, 20-pin 28-pin, 36-pin	
Temperature Range:	I E	= =	-40°C to+85°C (Industrial) -40°C to+125°C (Extended)	
Package:	P SO SS SP MM TL	= = =	Plastic Dual In-line – 300 mil (PDIP) Plastic Small Outline – Wide – 7.50 mm body (SOIC) Plastic Shrink Small Outline – 5.30 mm body (SSOP) Skinny Plastic Dual In-Line – 300 mil body (SPDIP) Plastic Quad Flat, No Lead Package – 6x6x0.9 mm body (QFN-S) Very Thin Leadless Array – 5x5x0.9 mm body (VTLA)	