

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202at-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000						V	Vorking Regist	er 0									0000
WREG1	0002						V	Vorking Regist	er 1									0000
WREG2	0004						V	Vorking Regist	er 2									0000
WREG3	0006		Working Register 3 0000												0000			
WREG4	0008						٧	Vorking Regist	er 4									0000
WREG5	000A						٧	Vorking Regist	er 5									0000
WREG6	000C						٧	Vorking Regist	er 6									0000
WREG7	000E						٧	Vorking Regist	er 7									0000
WREG8	0010						V	Vorking Regist	er 8									0000
WREG9	0012						٧	Vorking Regist	er 9									0000
WREG10	0014						W	orking Registe	er 10									0000
WREG11	0016						W	/orking Registe	er 11									0000
WREG12	0018						W	orking Registe	er 12									0000
WREG13	001A						W	orking Registe	er 13									0000
WREG14	001C						W	orking Registe	er 14									0000
WREG15	001E						W	orking Registe	er 15									0800
SPLIM	0020						Stack	Pointer Limit I	Register									XXXX
ACCAL	0022							ACCAL										xxxx
ACCAH	0024							ACCAH										XXXX
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCA	U				XXXX
ACCBL	0028							ACCBL										XXXX
ACCBH	002A							ACCBH	-									xxxx
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCE	U				XXXX
PCL	002E						Program C	Counter Low W	/ord Register									0000
PCH	0030	_	—	—		_	—	_	_			Program	Counter Hig	gh Byte	Register			0000
TBLPAG	0032	_	_	—			_	-	_			Table Pag	ge Address	Pointer	Register			0000
PSVPAG	0034	_	_	—	—	—	—	_	_		Program	Memory V	isibility Pag	e Addre	ss Pointe	er Regis	ter	0000
RCOUNT	0036						Repeat	t Loop Counte	r Register									XXXX
DCOUNT	0038		DCOUNT<15:0> xxx									xxxx						
DOSTARTL	003A		DOSTARTL<15:1> 0 xxx								xxxx							
DOSTARTH	003C										00xx							
DOENDL	003E						DOE	NDL<15:1>									0	xxxx
DOENDH	0040	_	_	_	_	_	—	_	_		_			DOEN	DH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC		IPL<2:()>	RA	Ν	OV	Z	С	0000

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-	-14:	HIGH-S	PEED F	WM GEN	NERATO	OR 2 REG	SISTER N	IAP FOF	R dsPIC3	3FJ060	S102A	, dsPIC	C33FJ0)6GS2	02A AN	D dsPIC	33FJ09G	3302
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	3 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								Bit 0	All Resets				
PWMCON2	0440	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB MDCS DTC<1:0> — — CAM XPRES						IUE	0000			
IOCON2	0442	PENH	PENL	POLH	POLL	PMOD	0<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	0000
FCLCON2	0444	IFLTMOD			CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTMOD<1:0> 0								0000					
PDC2	0446				PDC2<15:0> 0000								0000					
PHASE2	0448		PHASE2<15:0> 0000															
DTR2	044A	_	- DTR2<13:0> 0000										0000					
ALTDTR2	044C	_	_						А	LTDTR2<1	3:0>							0000
SDC2	044E								SDC2<15:0)>								0000
SPHASE2	0450							SI	PHASE2<1	5:0>								0000
TRIG2	0452						TRGCM	P<15:3>							—	—	_	0000
TRGCON2	0454		TRGD	IV<3:0>		_	_	_	_	DTM	_			TR	GSTRT<5:()>		0000
STRIG2	0456						STRGC	/IP<15:3>							_	_	_	0000
PWMCAP2	0458				PWMCAP2<15:3> 000								0000					
LEBCON2	045A	PHR	PHF	PLR	PLF	FLTLEBEN	EBEN CLLEBEN LEB<6:0> 00							0000				
AUXCON2	045E	HRPDIS	HRDDIS	—	_	CHOPSEL<3:0> CHOPHEN CHOPLEN 00								0000				
1						1 (1) D												

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y	space	Modulo	Addressing	EA
	cal	culations	assume	word-sized	data
	(LS	Sb of every	y EA is alw	/ays clear).	

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-6: MODULO ADDRESSING OPERATION EXAMPLE

TABLE 4-40: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

REGISTER 7-	-1: SR: C	PU STATUS I	REGISTER	')			
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	bit	U = Unimpler	mented bit, read	as '0'	
R = Readable	bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		

(4)

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.

3: The IPL<2:0> status bits are read-only when NSTDIS (INTCON1<15>) = 1.

CORCON: CORE CONTROL REGISTER⁽¹⁾ **REGISTER 7-2:**

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				

R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit, read	as '0'

IPL3: CPU Interrupt Priority Level Status bit 3(2) bit 3

- 1 = CPU Interrupt Priority Level is greater than 7
 - 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-	7: IFS3: I	NTERRUPT	FLAG STAT	US REGIST	ER 3		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	_	—	—	PSEMIF	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—			—	—	_
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIF: PWM Special Event Match Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-8: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIF ⁽¹⁾	—
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-2	Unimplemented: Read as '0'
bit 1	U1EIF: UART1 Error Interrupt Flag Status bit ⁽¹⁾
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in the dsPIC33FJ06GS001 device.

REGISTER 7-13: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1							
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	—	INT2IE	_	—	_	—	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		_	INT1IE	CNIE	AC1IE ⁽¹⁾	MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	INT2IE: Exter	mal Interrupt 2	Enable bit				
	1 = Interrupt r	request is enab	bled				
h: 40 F		request is not e					
DIT 12-5	Unimplemen	ted: Read as					
DIT 4	INITIE: Exter	nal interrupt 1	Enable bit				
	0 = Interrupt r	request is enal	enabled				
bit 3	CNIE: Input C	Change Notifica	ation Interrupt	Enable bit			
	1 = Interrupt r	request is enab	bled				
	0 = Interrupt r	request is not e	enabled				
bit 2	AC1IE: Analo	og Comparator	1 Interrupt En	able bit ⁽¹⁾			
	1 = Interrupt r	request is enab	bled				
	0 = Interrupt r	request is not e	enabled				
bit 1	MI2C1IE: I2C	1 Master Ever	its Interrupt Er	hable bit			
	1 = Interrupt r	request is enat					
hit 0		1 Slave Events		blo hit			
	1 = Interrupt r	rollest is enab	aled				
	0 = Interrupt r	request is not e	enabled				

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER 7	-22: IPC3:	INTERRUPT	PRIORITY (EGISTER 3		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—		—	—	—	_
bit 15							bit 8
	-	D 444 A	D 444 A		-	5444.6	D 444 A
0-0	R/W-1	R/W-0	R/W-0	0-0	R/W-1	R/W-0	R/W-0
		ADIP<2:0>		—		U11XIP<2:0>(*	,
Dit 7							DIt U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	ADIP<2:0>: A	ADC1 Conversi	on Complete	Interrupt Priori	ty bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup 000 = Interrup	pt is Priority 1 pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	U1TXIP<2:0>	UART1 Trans	smitter Interru	pt Priority bits ⁽	1)		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

8.1 CPU Clocking System

The devices provide six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator
- FRC Oscillator with Postscaler

8.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 32 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

The LPRC internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase Lock Loop (PLL) to provide a wide range of

output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 25-20) and the value of the FRC Oscillator Tuning register (see Register 8-4).

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 22.1 "Configuration Bits" for further details.) The initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits. POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), FOSC, is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device and speeds up to 40 MHz are supported by the device architecture.

Instruction execution speed or device operating frequency, FCY, is given by Equation 8-1.

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Reserved	Reserved	XX	100	—
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	_
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	—
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	—
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 8-5: ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER''							
R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1
ENAPLL	APLLCK	SELACLK	_	_	AP	STSCLR<2:0>	(2)
bit 15				•	•		bit 8
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
ASRCSEL	FRCSEL	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	ENAPLL: Aux 1 = APLL is e 0 = APLL is d	xiliary PLL Enal nabled isabled	ble bit				
bit 14	APLLCK: AP 1 = Indicates 0 = Indicates	LL Locked Stat that auxiliary P that auxiliary P	us bit (read-ou LL is in lock LL is not in loc	nly) ck			
bit 13	SELACLK: S	elect Auxiliary (Clock Source	for Auxiliary C	lock Divider bit		
	1 = Auxiliary o 0 = Primary P	oscillators provi PLL (Fvco) prov	des the sourc	e clock for au ce clock for au	xiliary clock divio xiliary clock divi	der der	
bit 12-11	Unimplemen	ted: Read as 'o)'				
bit 10-8	APSTSCLR<	2:0>: Auxiliary	Clock Output	Divider bits ⁽²⁾			
	APSISCLR<2:0>: Auxiliary Clock Output Divider bits ⁽²⁾ 111 = Divided by 1 110 = Divided by 2 101 = Divided by 4 100 = Divided by 8 011 = Divided by 16 010 = Divided by 32 001 = Divided by 64 000 = Divided by 64						
bit 7	ASRCSEL: S	elect Reference	e Clock Sourc	e for Auxiliary	Clock bit		
	1 = Primary o 0 = No clock i	scillator is the c input is selected	clock source				
bit 6	FRCSEL: Select Reference Clock Source for Auxiliary PLL bit 1 = Selects FRC clock for auxiliary PLL 0 = Input clock source is determined by ASRCSEL bit setting						
bit 5-0	Unimplemen	ted: Read as 'd)'		-		
Note 1: This	s register is res	et only on a Po	wer-on Reset	(POR).			

(1) _

2: The auxiliary clock postscaler must be configured to divide-by-1 (APSTSCLR<2:0> = 111) for proper operation of the PWM module.

REGISTER	8 9-5: PMD6	6: PERIPHER		E DISABLE C	ONTROL RE	EGISTER 6	
U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
	—	—	—	PWM4MD ⁽¹⁾		PWM2MD ⁽²⁾	PWM1MD
bit 15		·					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	<u> </u>			—		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-12	Unimplemen	ted: Read as '	o'				
bit 11	PWM4MD: P	WM Generator	4 Module Disa	able bit ⁽¹⁾			
	1 = PWM Ger	nerator 4 modu	le is disabled				
	0 = PWM Ger	nerator 4 modu	le is enabled				
bit 10	Unimplemen	ted: Read as '	o'				
bit 9	PWM2MD: P	WM Generator	2 Module Disa	able bit ⁽²⁾			
	1 = PWM Ger	nerator 2 modu	le is disabled				
	0 = PWM Ger	nerator 2 modu	le is enabled				
bit 8	PWM1MD: P	WM Generator	1 Module Disa	able bit			
	1 = PWM Ger	nerator 1 modu	le is disabled				
	0 = PWM Ger	nerator 1 modu	le is enabled				
bit 7-0	Unimplemen	ted: Read as '	o'				

Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

10.6 Peripheral Pin Select (PPS)

Peripheral Pin Select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

10.6.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 16 pins. The number of available pins depends on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn", in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

10.6.2.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-15). Each register contains sets of 6-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Figure 10-2 illustrates the remappable pin selection for the U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_		_				—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			OCFA	R<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkn			nown
bit 15-6	Unimplemen	ted: Read as ')'				
bit 5-0	OCFAR<5:0>	: Assign Outpu	it Compare A	(OCFA) to the	Corresponding	RPn Pin bits ⁽¹⁾	
	111111 = Inp	out tied to Vss					
	100011 = Inp	out tied to RP35	5				
	$100010 = \ln p$	but fied to RP34	+ }				
	100001 = Inp	out tied to RP33))				
	•		-				
	•						
	•						
	00000 = Inn u	it tied to RP0					
	access inpu						

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

22.4 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

22.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit (FWDT<4>). With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC<2:0> bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

22.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP bit (RCON<3>) or IDLE bit (RCON<2>) will need to be cleared in software after the device wakes up.

22.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register (FWDT<7>). When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

FIGURE 22-2: WDT BLOCK DIAGRAM

FIGURE 25-14: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 25-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	-40 Max	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	—	—	9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS ⁽²⁾			Standar (unless Operatin	d Operatir otherwise g temperat	ng Conditi stated) ture -40 -40	i ons: 3. 0°C ≤ T₄ 0°C ≤ T₄	0V and 3.6V $a \le +85^{\circ}C$ for Industrial $a \le +125^{\circ}C$ for Extended
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
			Device S	upply			
AD01	AVdd	Module VDD Supply	—	_	—	_	AVDD is internally connected to VDD on 18-pin and 28-pin devices. See parameters (DC10) in Table 25-4.
AD02	AVss	Module Vss Supply	_	_	_	_	AVss is internally connected to Vss on 18-pin and 28-pin devices
			Analog I	nput			
AD10	VINH-VINL	Full-Scale Input Span	Vss	_	Vdd	V	
AD11	Vin	Absolute Input Voltage	AVss	_	AVdd	V	
AD12	IAD	Operating Current		8	_	mA	
AD13	_	Leakage Current	—	±0.6	—	μA	$V_{INL} = AV_{SS} = 0V,$ $AV_{DD} = 3.3V,$ Source Impedance = 100 Ω
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	—	100	Ω	
		DC Accuracy @ 1.	5 Msps fo	or 18 and 2	8-Pin Dev	vices	
AD20a	Nr	Resolution		10 data	a bits		
AD21a	INL	Integral Nonlinearity	-0.5	-0.3/+0.5	+1.2	LSb	See Note 3
AD22a	DNL	Differential Nonlinearity	-0.9	±0.6	+0.9	LSb	See Note 3
AD23a	Gerr	Gain Error		10	20	LSb	See Note 3
AD24a	EOFF	Offset Error	_	10	20	LSb	See Note 3
AD25a	_	Monotonicity ⁽¹⁾	—	_	_	_	Guaranteed
		DC Accuracy @ 2.	0 Msps fo	or 18 and 2	8-Pin Dev	vices	
AD20b	Nr	Resolution		10 data	a bits	-	
AD21b	INL	Integral Nonlinearity	-1	±1.5	+2.8	LSb	
AD22b	DNL	Differential Nonlinearity	-1.5	±2	+2.8	LSb	
AD23b	Gerr	Gain Error	—	10	20	LSb	
AD24b	EOFF	Offset Error	—	10	20	LSb	
AD25b	—	Monotonicity ⁽¹⁾			_	—	Guaranteed
		DC Accuracy @ 2.	0 Msps fo	or 20 and 3	6-Pin Dev	vices	
AD20c	Nr	Resolution		10 data	a bits		
AD21c	INL	Integral Nonlinearity	> -2	±0.5	< 2	LSb	See Note 3
AD22c	DNL	Differential Nonlinearity	> -1	±0.5	< 1	LSb	See Note 3
AD23c	Gerr	Gain Error		10	20	LSb	See Note 3
AD24c	EOFF	Offset Error		10	20	LSb	See Note 3
AD25c		Monotonicity ⁽¹⁾		—	<u> </u>		Guaranteed

TABLE 25-39: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS

1: The Analog-to-Digital conversion result never decreases with an increase in input voltage and has no missing codes. Note

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function, but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

3: These parameters are characterized by similarity, but are not tested in manufacturing.

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

18-Lead PDIP

18-Lead SOIC (.300")

20-Lead SSOP

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package
Note:	If the full N line, thus I	Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.

27.1 Package Marking Information (Continued)

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62076-494-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.