

Welcome to E-XFL.COM

Microchip Technology - DSPIC33FJ06GS202AT-E/TL Datasheet

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202at-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

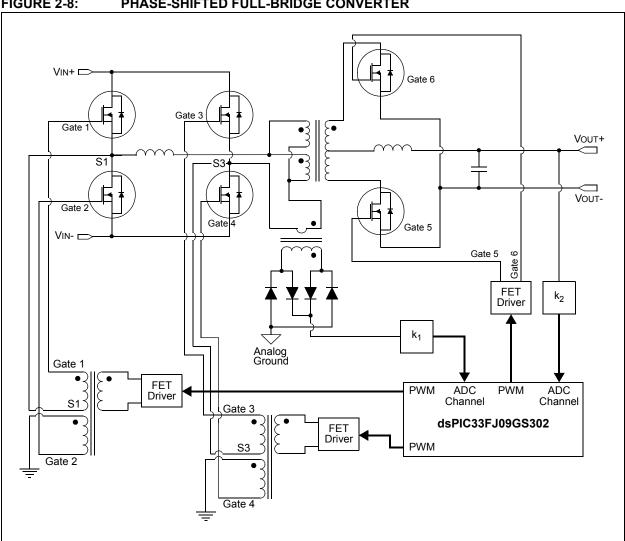


FIGURE 2-8: PHASE-SHIFTED FULL-BRIDGE CONVERTER

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress
	0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state.
	 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z : MCU ALU Zero bit
	1 = An operation that affects the Z bit has set it at some time in the past
	0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred

Note 1: This bit can be read or cleared (not set).

- 2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
- 4: Clearing this bit will clear SA and SB.

TABLE 4-29: PORTA REGISTER MAP

SFR N	Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA		02C0	_	_		—			_		_		—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	A	02C2		—	_	_	_	_	_	_	_	_	_	RA4	RA3	RA2	RA1	RA0	XXXX
LATA		02C4		—	_	_	_	_	_	_	_	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	0000
ODCA		02C6	—	—	_	—	_	_	_	_	_	_	—	ODCA4	ODCA3	—	-	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PORTB REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	_	_		_	_		—		TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	OOFF
PORTB	02CA	—	_	_	—	_		_	_	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	_		_	_	_	_	_	_	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	_	_	_	_	_	_	_	-	ODCB7	ODCB6	_	_	_	—	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	_	_	ODCB8	ODCB7	ODCB6	_	_		_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-2	4: IPC5:	INTERRUPT	PRIORITY	CONTROL RI	EGISTER 5		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	_	_	_			INT1IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) ٠ 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-1	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		INT2IP<2:0>		—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3-0 Unimplemented: Read as '0'

REGISTER 7	-30: IPC24:				REGISTER 24		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	—	—	_
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		PWM4IP ⁽¹⁾			—	—	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-7	-	ted: Read as '					
bit 6-4	PWM4IP<2:0	>: PWM4 Inter	rupt Priority b	oits ⁽¹⁾			
	111 = Interrup	ot is Priority 7 (highest priori	ty)			
	•						
	•						
	•						
	001 = Interrup	ot is Priority 1					
		ot source is dis	abled				

Note 1: These bits are not implemented in dsPIC33FJ06GS102A/202A devices.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15				· · · · · · · · · · · · · · · · · · ·			bit
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLP	OST<1:0>	_		F	PLLPRE<4:	0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpleme	ented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	own
bit 15	1 = Interrupts	on Interrupt bi will clear the I have no effec	DOZEN bit a		clock/periph	eral clock ratio is :	set to 1:1
	111 = FCY/12 110 = FCY/64 101 = FCY/32 100 = FCY/16 011 = FCY/8 (010 = FCY/4 001 = FCY/2 000 = FCY/1	-					
bit 11	DOZEN: Doze 1 = DOZE<2		es the ratio b	between the perip o is forced to 1:1	heral clocks	and the processo	or clocks
bit 10-8	111 = FRC di 110 = FRC di 101 = FRC di 100 = FRC di 011 = FRC di 010 = FRC di 001 = FRC di	vide-by-256 vide-by-64 vide-by-32 vide-by-16 vide-by-8 vide-by-4		or Postscaler bits			
bit 7-6		0>: PLL VCO (d (default)	-	er Select bits (also	o denoted a	s 'N2', PLL postsc	aler)
bit 5 bit 4-0	Unimplemen PLLPRE<4:0 11111 = Inpu • •	ted: Read as 'i >: PLL Phase I t/33		ıt Divider bits (als	o denoted a	is 'N1', PLL presca	aler)
	00001 = Inpu 00000 = Inpu						

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

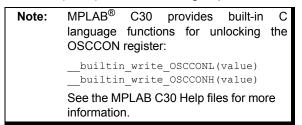
10.6.2.3 Virtual Pins

Four virtual RPn pins (RP32, RP33, RP34 and RP35) are supported, which are identical in functionality to all other RPn pins, with the exception of pinouts. These four pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP32 and the PWM Fault input can be configured for RP32 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

10.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:


- · Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared, after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT7	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT6	R<5:0>		
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '()'				
bit 13-8	•	: Assign PWM F		=I T7) to the Co	orresponding R	Pn Pin hits	
		put tied to Vss			incoponding is		
		put tied to RP35					
	100010 = ln	put tied to RP34					
		put tied to RP34 put tied to RP33					
	100001 = In		1				
	100001 = In	put tied to RP33	1				
	100001 = In	put tied to RP33	1				
	100001 = In	put tied to RP33	1				
	100001 = In 100000 = In •	put tied to RP33 put tied to RP32	1				
bit 7-6	100001 = In 100000 = In • • • 00000 = Inp	put tied to RP33 put tied to RP32 ut tied to RP0					
bit 7-6	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0	; ; ;	ELT6) to the Co	prresponding P	PDn Din hits	
bit 7-6 bit 5-0	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 :: Assign PWM F	; ; ;	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss	₎ , Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35) ⁾ Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34) ⁾ Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁼ LT6) to the Co	prresponding R	Pn Pin bits	

REGISTER 10-13: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32

REGISTER 15-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTCM	IP <15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	SE	EVTCMP <7:3>	•		_	—	_
bit 7							bit 0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 SEVTCMP<15:3>: Special Event Compare Count Value bits bit 2-0 Unimplemented: Read as '0'

REGISTER 15-5: MDC: PWM MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC<	15:8> ^(1,2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	<7:0> ^(1,2)			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown			

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits^(1,2)

Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSb to 3 LSbs.

REGISTER 15-7:	PDCx: PWMx GENERATOR DUTY CYCLE REGISTER ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDCx	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown			

bit 15-0 PDCx<15:0>: PWMx Generator # Duty Cycle Value bits⁽²⁾

- **Note 1:** In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDCx	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC>	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER⁽¹⁾

bit 15-0 SDCx<15:0>: Secondary Duty Cycle for PWMxL Output Pin bits⁽²⁾

- **Note 1:** The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
FRMEN	SPIFSD	FRMPOL	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
—	—		—	—		FRMDLY	_			
bit 7							bit C			
_egend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15	FRMEN: Fran	med SPIx Supp	ort bit							
		Framed SPIx support enabled (\overline{SSx} pin used as Frame Sync pulse input/output)								
		Plx support dis								
bit 14		me Sync Pulse		ntrol bit						
	1 = Frame Sync pulse input (slave) 0 = Frame Sync pulse output (master)									
bit 13	,	• •	()							
DIL 15		FRMPOL: Frame Sync Pulse Polarity bit <pre>L = Frame Sync pulse is active-high</pre>								
	,	inc pulse is act	•							
bit 12-2	-	ted: Read as '								
bit 1	•	ame Sync Pulse		t bit						
		nc pulse coinc	•							
		nc pulse prece								
bit 0	Unimplemen	ted: This bit m	ust not be set	t to '1' by the us	ser application					

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

17.2 I²C Registers

I2C1CON and I2C1STAT are control and status registers, respectively. The I2C1CON register is readable and writable. The lower six bits of I2C1STAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2C1RSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2C1RCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read

- I2C1TRN is the transmit register to which bytes are written during a transmit operation
- The I2C1ADD register holds the slave address
- A status bit, ADD10, indicates 10-Bit Address mode
- The I2C1BRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2C1RSR and I2C1RCV together form a double-buffered receiver. When I2C1RSR receives a complete byte, it is transferred to I2C1RCV, and an interrupt pulse is generated.

REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:	HC = Hardware Clearable	e bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

I2CEN: I2C1 Enable bit
1 = Enables the I2C1 module and configures the SDA1 and SCL1 pins as serial port pins 0 = Disables the I2C1 module; all I ² C pins are controlled by port functions
Unimplemented: Read as '0'
I2CSIDL: Stop in Idle Mode bit
 1 = Discontinues module operation when device enters an Idle mode 0 = Continues module operation in Idle mode
SCLREL: SCL1 Release Control bit (when operating as I ² C slave)
1 = Releases SCL1 clock0 = Holds SCL1 clock low (clock stretch)
<u>If STREN = 1:</u> Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear at beginning of slave transmission. Hardware is clear at end of slave reception.
<u>If STREN = 0:</u> Bit is R/S (i.e., software can only write '1' to release clock). Hardware is clear at beginning of slave transmission.
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit
1 = IPMI mode is enabled; all addresses Acknowledged0 = IPMI mode is disabled
A10M: 10-Bit Slave Address bit
 1 = I2C1ADD is a 10-bit slave address 0 = I2C1ADD is a 7-bit slave address
DISSLW: Disable Slew Rate Control bit
1 = Slew rate control is disabled
0 = Slew rate control is enabled

REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER (CONTINUED)

bit 8	SMEN: SMBus Input Levels bit
	 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)
	 1 = Enables interrupt when a general call address is received in the I2C1RSR (module is enabled for reception) 0 = General call address is disabled
bit 6	STREN: SCL1 Clock Stretch Enable bit (when operating as I ² C slave)
	Used in conjunction with SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDA1 and SCL1 pins and transmits ACKDT data bit. Hardware is clear at end of master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware is clear at end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Stop condition on SDA1 and SCL1 pins. Hardware is clear at end of master Stop sequence. 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Repeated Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master Start sequence.
	0 = Start condition is not in progress

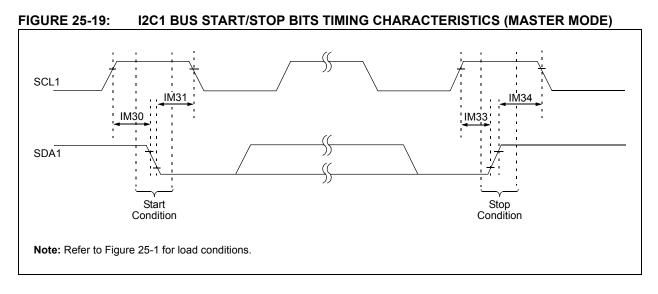
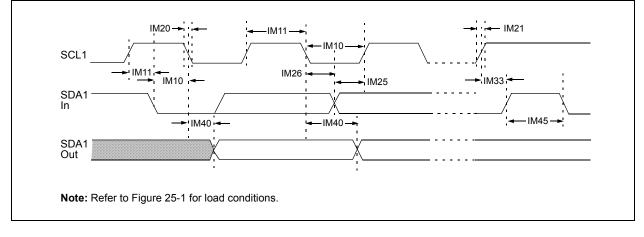

DC CHARA	ACTERISTICS		Standard	Operating Co temperature	$\begin{array}{ll} \mbox{Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{re} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$		
Param.	Typical ⁽¹⁾	Max.	Units		Conditions		
Operating	Current (IDD)	(2)					
DC20d	15	23	mA	-40°C			
DC20a	15	23	mA	+25°C	3.3V	10 MIPS	
DC20b	15	23	mA	+85°C	3.3V	TO MIPS	
DC20c	15	23	mA	+125°C			
DC21d	23	34	mA	-40°C			
DC21a	23	34	mA	+25°C	0.01/	16 MIPS ⁽³⁾	
DC21b	23	34	mA	+85°C	- 3.3V	16 MIPS(*)	
DC21c	23	34	mA	+125°C			
DC22d	25	38	mA	-40°C			
DC22a	25	38	mA	+25°C	2.21/	20 MIPS ⁽³⁾	
DC22b	25	38	mA	+85°C	- 3.3V	20 MIPS(*)	
DC22c	25	38	mA	+125°C			
DC23d	34	51	mA	-40°C			
DC23a	34	51	mA	+25°C	3.3V	30 MIPS ⁽³⁾	
DC23b	34	51	mA	+85°C	- 3.3V	30 MIPS(*)	
DC23c	34	51	mA	+125°C			
DC24d	43	64	mA	-40°C			
DC24a	43	64	mA	+25°C	2 2)/	40 MIPS ⁽³⁾	
DC24b	43	64	mA	+85°C	- 3.3V	40 MIP 5 9	
DC24c	43	64	mA	+125°C			
DC25d	83	125	mA	-40°C		40 MIPS	
DC25a	83	125	mA	+25°C	3.3V	See Note 2, except PWM and ADC	
DC25b	83	125	mA	+85°C	J.JV	are operating at maximum speed	
DC25c	83	125	mA	+125°C		(PTCON2 = 0x0000)	

TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)


Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD; WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU is executing while (1) statement
- **3:** These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS ⁽²⁾			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				√≤ +85°C for Industrial
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
	Dynamic Performance						
AD30	THD	Total Harmonic Distortion	_	-73	_	dB	
AD31	SINAD	Signal to Noise and Distortion	—	58	_	dB	
AD32	SFDR	Spurious Free Dynamic Range	—	-73	_	dB	
AD33	Fnyq	Input Signal Bandwidth	—		1	MHz	
AD34	ENOB	Effective Number of Bits		9.4		bits	

TABLE 25-39: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage and has no missing codes.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function, but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

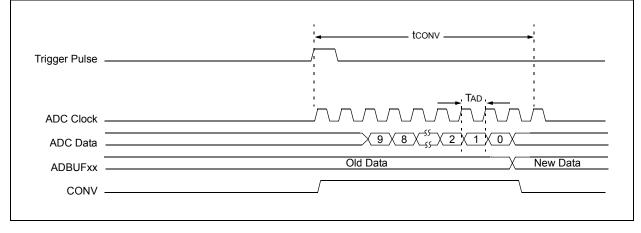
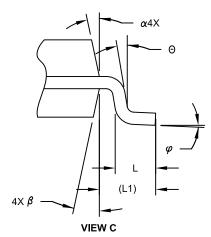
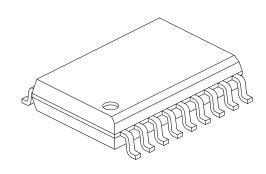

3: These parameters are characterized by similarity, but are not tested in manufacturing.

TABLE 25-40: 10-BIT HIGH-SPEED ADC MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
	Clock Parameters							
AD50b	Tad	ADC Clock Period	35.8	—	_	ns		
		Con	version F	late				
AD55b	tCONV	Conversion Time	—	14 Tad	—	—		
AD56b	FCNV	Throughput Rate						
		Devices with Single SAR	_	—	2.0	Msps		
Timing Parameters								
AD63b	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On	1.0	—	10	μS		


Note 1: These parameters are characterized but not tested in manufacturing.


FIGURE 25-23: ANALOG-TO-DIGITAL CONVERSION TIMING PER INPUT

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	MILLIMETER	S
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	11.55 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5° - 15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

Revision C (August 2012)

This revision includes minor typographical updates and content corrections. Major changes include new figures in Section 26.0 "DC and AC Device Characteristics Graphs", updated values in Table 25-39 in Section 25.0 "Electrical Characteristics" and updated package drawings in Section 27.0 "Packaging Information".

DC Specifications	
DAC Output (DACOUT Pin)	
Development Support	
Doze Mode	138
DSC Guidelines	17
Basic Connection Requirements	17
Decoupling Capacitors	17
DSP Engine	31
Multiplier	

Е

Electrical Characteristics	
Absolute Maximum Ratings	
Equations	
Device Operating Frequency	
Fosc Calculation	
Maximum Page Erase Time	76
Minimum Page Erase Time	
XT with PLL Mode Example	
Errata	

F

Fail-Safe Clock Monitor (FSCM)	135
Flash Program Memory	75
Control Registers	
Operations	76
Table Instructions	75
Flexible Configuration	

Н

High-Speed 10-Bit ADC	
Description	225
Features	
Functionality	
High-Speed Analog Comparator	
Applications	
Control Registers	
DAC	
Digital Logic	
Hysteresis	
Input Range	
Interaction with I/O Buffers	
High-Speed PWM	183
Control Registers	186

I

I/O Ports	
Helpful Tips	152
Parallel I/O (PIO)	
Resources	
Write/Read Timing	
I ² C	
Operating Modes	211
Registers	
In-Circuit Debugger	
In-Circuit Emulation	251
In-Circuit Serial Programming (ICSP)	
Analog, Digital Pins Configuration	
Pins	
Input Capture	
Input Change Notification	

Instruction Addressing Modes	66
File Register Instructions	66
Fundamental Modes Supported	67
MAC Instructions	
MCU Instructions	66
Move and Accumulator Instructions	67
Other Instructions	67
Instruction Set	
Overview	262
Summary	259
Instruction-Based Power-Saving Modes	137
ldle	138
Sleep	137
Interfacing Program and Data Memory Spaces	71
Internal RC Oscillator	
Use with WDT	257
Internet Address	346
Interrupt Control and Status Registers	90
IECx	90
IFSx	90
INTCON1	90
INTCON2	90
INTTREG	90
IPCx	90
Interrupt Setup Procedures	122
Initialization	122
Interrupt Disable	122
Interrupt Service Routine	122
Trap Service Routine	122
Interrupt Vector Table (IVT)	87
Interrupts Coincident with Power Save Instructions	138

J

JTAG Boundary Scan Interface	251
JTAG Interface	258

L

```
LEBCONx (PWMx Leading-Edge Blanking Control) ...... 202
```

Μ

Master Clear (MCLR)	18
Memory Organization	37
Microchip Internet Web Site	346
Modulo Addressing	68
Applicability	
Operation Example	68
Start and End Address	
W Address Register Selection	68
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB Integrated Development	
Environment Software	
MPLAB PM3 Device Programmer	270
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	

0

Open-Drain Configuration	147
Oscillator	
External Pins	19
Value Conditions on Start-up	20
Oscillator Configuration	123
Output Compare	179