Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|-----------------------------------------------------------------------------------| | Product Status | Active | | Core Processor | dsPIC | | Core Size | 16-Bit | | Speed | 40 MIPs | | Connectivity | I ² C, IrDA, LINbus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 21 | | Program Memory Size | 6KB (2K x 24) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 1K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | Data Converters | A/D 6x10b; D/A 2x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-VQFN Exposed Pad | | Supplier Device Package | 28-QFN-S (6x6) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202at-i-mm | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Pin Diagrams (Continued) # TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback. #### **Most Current Data Sheet** To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: #### http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). #### **Errata** An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: - Microchip's Worldwide Web site; http://www.microchip.com - · Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. # **Customer Notification System** Register on our web site at www.microchip.com to receive the most current information on all of our products. ## 2.5 ICSP™ Pins The PGECx and PGEDx pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins, are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and Input Voltage High (VIH) and Input Voltage Low (VIL) pin requirements. Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device matches the physical connections for the ICSP to MPLAB® ICD 3 or MPLAB REAL ICE $^{\text{TM}}$. For more information on MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site (www.microchip.com): - "Using MPLAB® ICD 3" (poster) (DS51765) - "Multi-Tool Design Advisory" (DS51764) - "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" (DS51616) - "Using MPLAB® REAL ICE™" (poster) (DS51749) #### 2.6 External Oscillator Pins Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details). The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3. FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ06GS001/101A/102A DEVICES WITH 256 BYTES OF RAM # 6.5 External Reset (EXTR) The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 25.0 "Electrical Characteristics" for minimum pulse width specifications. The external Reset (MCLR) pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset. # 6.5.1 EXTERNAL SUPERVISORY CIRCUIT Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This external Reset signal can be directly connected to the $\overline{\text{MCLR}}$ pin to reset the device when the rest of the system is reset. #### 6.5.2 INTERNAL SUPERVISORY CIRCUIT When using the internal power supervisory circuit to reset the device, the external Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected. # 6.6 Software RESET Instruction (SWR) Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will still remain. SYSRST is released at the next instruction cycle and the Reset vector fetch will commence. The Software Reset (SWR) flag (instruction) in the Reset Control register (RCON<6>) is set to indicate the software Reset. # 6.7 Watchdog Time-out Reset (WDTO) Whenever a Watchdog Timer time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor. The Watchdog Timer Time-out (WDTO) flag in the Reset Control (RCON<4>) register is set to indicate the Watchdog Timer Reset. Refer to **Section 22.4** "Watchdog Timer (WDT)" for more information on Watchdog Reset. # 6.8 Trap Conflict Reset If a lower priority hard trap occurs, while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of Priority Level 13 through Level 15, inclusive. The address error (Level 13) and oscillator error (Level 14) traps fall into this category. The Trap Reset (TRAPR) flag in the Reset Control register (RCON<15>) is set to indicate the Trap Conflict Reset. Refer to **Section 7.0** "Interrupt Controller" for more information on Trap Conflict Resets. # 6.9 Illegal Condition Device Reset An illegal condition device Reset occurs due to the following sources: - Illegal Opcode Reset - · Uninitialized W Register Reset - · Security Reset The illegal opcode or Uninitialized W Access Reset (IOPUWR) flag in the Reset Control register (RCON<14>) is set to indicate the illegal condition device Reset. #### 6.9.1 ILLEGAL OPCODE RESET A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory. The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 0x3F, which is an illegal opcode value. # 6.9.2 UNINITIALIZED W REGISTER RESET Any attempt to use the uninitialized W register as an Address Pointer will Reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to. ## REGISTER 7-9: IFS5: INTERRUPT FLAG STATUS REGISTER 5 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | |-----------------------|--------|-----|-----|-----|-----|-----|-------| | PWM2IF ⁽¹⁾ | PWM1IF | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 R/W-0 | |-------|-----|-----|-----|-----|-----|-----|--------| | _ | _ | _ | _ | | _ | | JTAGIF | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 **PWM2IF:** PWM2 Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 14 **PWM1IF:** PWM1 Interrupt Flag Status bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 13-1 **Unimplemented:** Read as '0' bit 0 JTAGIF: JTAG Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A devices. ## REGISTER 7-11: IFS7: INTERRUPT FLAG STATUS REGISTER 7 | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | |-------|-----|-----|---------|-----|-----|------------------------|------------------------| | _ | _ | _ | ADCP6IF | _ | _ | ADCP3IF ⁽¹⁾ | ADCP2IF ⁽²⁾ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 **Unimplemented:** Read as '0' bit 4 ADCP6IF: ADC Pair 6 Conversion Done Interrupt Flag Status bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 3-2 **Unimplemented:** Read as '0' bit 1 ADCP3IF: ADC Pair 3 Conversion Done Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 0 ADCP2IF: ADC Pair 2 Conversion Done Interrupt Flag Status bit⁽²⁾ 1 = Interrupt request has occurred0 = Interrupt request has not occurred Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices. 2: This bit is not implemented in dsPIC33FJ06GS001/101A devices. ## REGISTER 7-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5 | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-1 | R/W-0 | R/W-0 | |-------|-----|-----|-----|-----|-------|-------------|-------| | _ | _ | _ | _ | _ | | INT1IP<2:0> | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-3 **Unimplemented:** Read as '0' bit 2-0 **INT1IP<2:0>:** External Interrupt 1 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) • 001 = Interrupt is Priority 1 000 = Interrupt source is disabled # REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7 | U-0 | U-1 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | |-------|-------|-------------|-------|-----|-----|-----|-------| | _ | | INT2IP<2:0> | | _ | _ | _ | _ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-4 **INT2IP<2:0>:** External Interrupt 2 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) • 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3-0 **Unimplemented:** Read as '0' ## REGISTER 10-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2 | U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | |--------|-----|-------|-------|-------|---------|-------|-------| | _ | _ | | | T1CK | (R<5:0> | | | | bit 15 | | | | | | | bit 8 | | U-0 |-------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 **Unimplemented:** Read as '0' bit 13-8 T1CKR<5:0>: Assign Timer1 External Clock (T1CK) to the Corresponding RPn Pin bits 111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32 • • • 00000 = Input tied to RP0 bit 7-0 **Unimplemented:** Read as '0' # REGISTER 15-7: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER⁽¹⁾ | R/W-0 |---------------------------|-------|-------|-------|-------|-------|-------|-------| | PDCx<15:8> ⁽²⁾ | | | | | | | | | bit 15 | | | | | | | bit 8 | | R/W-0 | |--------------|-------|-------|-------|-------|-------|-------|-------|--| | PDCx<7:0>(2) | | | | | | | | | | bit 7 | | | | | | | | | ## Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown # bit 15-0 PDCx<15:0>: PWMx Generator # Duty Cycle Value bits⁽²⁾ - **Note 1:** In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008. - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs. # REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER⁽¹⁾ | R/W-0 | |---------------------------|-------|-------|-------|-------|-------|-------|-------|--| | SDCx<15:8> ⁽²⁾ | | | | | | | | | | bit 15 | | | | | | | | | | R/W-0 | |--------------------------|-------|-------|-------|-------|-------|-------|-------|--| | SDCx<7:0> ⁽²⁾ | | | | | | | | | | bit 7 | | | | | | | | | #### Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown ## bit 15-0 **SDCx<15:0>:** Secondary Duty Cycle for PWMxL Output Pin bits⁽²⁾ - **Note 1:** The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008. - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs. # REGISTER 17-2: I2C1STAT: I2C1 STATUS REGISTER (CONTINUED) bit 3 S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware is set or clear when Start, Repeated Start or Stop is detected. bit 2 **R_W:** Read/Write Information bit (when operating as I²C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware is set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive is complete, I2C1RCV is full 0 = Receive is not complete, I2C1RCV is empty Hardware is set when I2C1RCV is written with received byte. Hardware is clear when software reads I2C1RCV. bit 0 TBF: Transmit Buffer Full Status bit 1 = Transmit is in progress, I2C1TRN is full 0 = Transmit is complete, I2C1TRN is empty Hardware is set when software writes I2C1TRN. Hardware is clear at completion of data transmission. # 18.3 UART Registers #### REGISTER 18-1: U1MODE: UART1 MODE REGISTER | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | |-------------------------|-----|----------------------|-----------------------|----------------------|-----|-------------|-------| | UARTEN ^(1,3) | _ | USIDL ⁽³⁾ | IREN ^(2,3) | RTSMD ⁽³⁾ | _ | UEN<1:0>(3) | | | bit 15 | | | | | | | bit 8 | | R/W-0, HC | R/W-0 | R/W-0, HC | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |---------------------|-----------------------|----------------------|-----------------------|---------------------|--------|----------------------|----------------------| | WAKE ⁽³⁾ | LPBACK ⁽³⁾ | ABAUD ⁽³⁾ | URXINV ⁽³⁾ | BRGH ⁽³⁾ | PDSEL< | <1:0> ⁽³⁾ | STSEL ⁽³⁾ | | bit 7 | | | | | | | bit 0 | | Legend: | HC = Hardware Clearable bit | | | | | |-------------------|-----------------------------|------------------------------------|--------------------|--|--| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read as '0' | | | | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | | | bit 15 **UARTEN:** UART1 Enable bit^(1,3) 1 = UART1 is enabled; all UART1 pins are controlled by UART1, as defined by UEN<1:0> 0 = UART1 is disabled; all UART1 pins are controlled by port latches; UART1 power consumption is minimal bit 14 Unimplemented: Read as '0' bit 13 **USIDL:** Stop in Idle Mode bit⁽³⁾ 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12 IREN: IrDA® Encoder and Decoder Enable bit (2,3) 1 = IrDA[®] encoder and decoder are enabled 0 = IrDA® encoder and decoder are disabled bit 11 RTSMD: Mode Selection for U1RTS Pin bit (3) $1 = \overline{\text{U1RTS}}$ pin is in Simplex mode $0 = \overline{\text{U1RTS}}$ pin is in Flow Control mode bit 10 **Unimplemented:** Read as '0' bit 9-8 **UEN<1:0>:** UART1 Pin Enable bits⁽³⁾ 11 = U1TX, U1RX and BCLK pins are enabled and used; U1CTS pin is controlled by port latches 10 = U1TX, U1RX, $\overline{\text{U1CTS}}$ and $\overline{\text{U1RTS}}$ pins are enabled and used 01 = U1TX, U1RX and $\overline{\text{U1RTS}}$ pins are enabled and used; $\overline{\text{U1CTS}}$ pin is controlled by port latches 00 = U1TX and U1RX pins are enabled and used; U1CTS and U1RTS/BCLK pins are controlled by port latches bit 7 **WAKE:** Wake-up on Start bit Detect During Sleep Mode Enable bit⁽³⁾ 1 = UART1 will continue to sample the U1RX pin; interrupt is generated on falling edge; bit is cleared in hardware on following rising edge 0 = No wake-up is enabled bit 6 LPBACK: UART1 Loopback Mode Select bit(3) 1 = Enable Loopback mode 0 = Loopback mode is disabled bit 5 **ABAUD:** Auto-Baud Enable bit⁽³⁾ 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (0x55) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for receive or transmit operation. 2: This feature is only available for the 16x BRG mode (BRGH = 0). 3: This bit is not available in the dsPIC33FJ06GS001 device. # REGISTER 19-2: ADSTAT: ADC STATUS REGISTER | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | R/C-0, HS | U-0 | U-0 | R/C-0, HS | R/C-0, HS | R/C-0, HS | R/C-0, HS | |-------|-----------|-----|-----|----------------------|----------------------|-----------|-----------| | _ | P6RDY | _ | _ | P3RDY ⁽¹⁾ | P2RDY ⁽²⁾ | P1RDY | P0RDY | | bit 7 | | | | | | | bit 0 | | Legend: | C = Clearable bit | HS = Hardware Settabl | HS = Hardware Settable bit | | | | |-------------------|-------------------|-----------------------|------------------------------------|--|--|--| | R = Readable bit | W = Writable bit | U = Unimplemented bit | U = Unimplemented bit, read as '0' | | | | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | | | | | bit 15-7 | Unimplemented: Read as '0' | |----------|-------------------------------------------------------------------------------------| | bit 6 | P6RDY: Conversion Data for Pair 6 Ready bit | | | Bit is set when data is ready in buffer, cleared when a '0' is written to this bit. | | bit 5-4 | Unimplemented: Read as '0' | | bit 3 | P3RDY: Conversion Data for Pair 3 Ready bit ⁽¹⁾ | | | Bit is set when data is ready in buffer, cleared when a '0' is written to this bit. | | bit 2 | P2RDY: Conversion Data for Pair 3 Ready bit ⁽²⁾ | | | Bit is set when data is ready in buffer, cleared when a '0' is written to this bit. | | bit 1 | P1RDY: Conversion Data for Pair 1 Ready bit | | | Bit is set when data is ready in buffer, cleared when a '0' is written to this bit. | | bit 0 | P0RDY: Conversion Data for Pair 0 Ready bit | | | Bit is set when data is ready in buffer, cleared when a '0' is written to this bit. | Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.2: This bit is not implemented in dsPIC33FJ06GS001/101A devices. # 21.3 Current Source Control Register # REGISTER 21-1: ISRCCON: CONSTANT CURRENT SOURCE CONTROL REGISTER⁽¹⁾ | R/W-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-----|-----|-----|-------|-------------|-------| | ISRCEN | _ | _ | _ | _ | | OUTSEL<2:0> | | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 | R-0 | R-0 | |-------|-----|-----|-----|-------|---------|-----|-------| | _ | _ | | | ISRCC | AL<5:0> | | | | bit 7 | | | | | | | bit 0 | | Legend: | | | | | | |-------------------|------------------|------------------------|------------------------------------|--|--| | R = Readable bit | W = Writable bit | U = Unimplemented bit, | U = Unimplemented bit, read as '0' | | | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | | | bit 15 ISRCEN: Current Source Enable bit 1 = Current source is enabled0 = Current source is disabled bit 14-11 **Unimplemented:** Read as '0' bit 10-8 OUTSEL<2:0>: Output Current Select bits 111 = Reserved 110 = Reserved 101 = Reserved 100 = Select input pin, ISRC4 (AN4) 011 = Select input pin, ISRC3 (AN5) 010 = Select input pin, ISRC2 (AN6) 001 = Select input pin, ISRC1 (AN7) 000 = No output is selected bit 7-6 **Unimplemented:** Read as '0' bit 5-0 ISRCCAL<5:0>: Current Source Calibration bits The calibration value must be copied from Flash address, 0x800840, into these bits. Refer to the Constant Current Source Calibration Register (Register 22-1) in **Section 22.0 "Special Features"** for more information. Note 1: This register is available in the dsPIC33FJ09GS302 device only. # 24.0 DEVELOPMENT SUPPORT The PIC® microcontrollers and dsPIC® digital signal controllers are supported with a full range of software and hardware development tools: - · Integrated Development Environment - MPLAB® IDE Software - · Compilers/Assemblers/Linkers - MPLAB C Compiler for Various Device Families - HI-TECH C® for Various Device Families - MPASM™ Assembler - MPLINK™ Object Linker/ MPLIB™ Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families - · Simulators - MPLAB SIM Software Simulator - Emulators - MPLAB REAL ICE™ In-Circuit Emulator - · In-Circuit Debuggers - MPLAB ICD 3 - PICkit™ 3 Debug Express - · Device Programmers - PICkit™ 2 Programmer - MPLAB PM3 Device Programmer - Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits # 24.1 MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains: - · A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - In-Circuit Emulator (sold separately) - In-Circuit Debugger (sold separately) - · A full-featured editor with color-coded context - A multiple project manager - Customizable data windows with direct edit of contents - · High-level source code debugging - · Mouse over variable inspection - Drag and drop variables from source to watch windows - · Extensive on-line help - Integration of select third party tools, such as IAR C Compilers The MPLAB IDE allows you to: - · Edit your source files (either C or assembly) - One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information) - · Debug using: - Source files (C or assembly) - Mixed C and assembly - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. ## 24.7 MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. # 24.8 MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. # 24.9 MPLAB ICD 3 In-Circuit Debugger System MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC® Flash microcontrollers and dsPIC® DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE). The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. # 24.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™]. The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software. # 27.1 Package Marking Information (Continued) #### 28-Lead SPDIP ## 28-Lead SOIC # 28-Lead SSOP # 28-Lead QFN-S ## 36-Lead VTLA # Example # Example # Example ## Example # Example 18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | Units | | MILLIMETERS | | | |-----------------------|----|-------------|------|------| | Dimension Limits | | MIN | NOM | MAX | | Contact Pitch | Е | 1.27 BSC | | | | Contact Pad Spacing | С | | 9.40 | | | Contact Pad Width | Х | | | 0.60 | | Contact Pad Length | Υ | | | 2.00 | | Distance Between Pads | Gx | 0.67 | | | | Distance Between Pads | G | 7.40 | | | # Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2051A # THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives # CUSTOMER CHANGE NOTIFICATION SERVICE Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions. #### **CUSTOMER SUPPORT** Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - Field Application Engineer (FAE) - · Technical Support - · Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://microchip.com/support #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. #### **Trademarks** The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2011-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-62076-494-7 # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949= Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.